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Abstract—Optical networking is a promising candidate
for high-speed communication networks because of its
huge bandwidth. In this paper we study optimal schedul-
ing in bufferedWDM packet switching networks with ar-
bitrary wavelength conversion ability. We focus on lim-
ited range wavelength conversion while considering full
range wavelength conversion as a special case of it. We
formalize the problem of maximizing network through-
put and minimizing total delay in such a network as find-
ing an optimal matching in a weighted bipartite graph.
We then give a simple and fast algorithm called the Scan
and Swap Algorithm that solves the problem in O(kB2)
time, where k is the number of wavelengths per fiber and
B is the buffer length, as compared to other existing al-
gorithms that need at least O(k2B2+ k2BN) time where
N is the number of input fibers.
Index Terms—Wavelength-division-multiplexing (WDM),

packet scheduling, wavelength conversion, limited range
wavelength conversion, optical packet switching, optical
switches, optical switching networks, optical buffering,
packet loss probability,

I. INTRODUCTION AND BACKGROUND

All optical networking has been proposed as a promis-
ing candidate for high-speed communication networks [13],
[8], [12] because of the huge bandwidth of optics: a single
fiber has a bandwidth of nearly 50 THz [16]. To fully u-
tilize the bandwidth, a fiber is further divided into a num-
ber of independent channels, with each channel on a differ-
ent wavelength. This is referred to as wavelength-division-
multiplexing(WDM).
Several different technologies have been developed for

transmitting data over WDM [13], such as broadcast-and-
select, wavelength routing, optical packet switching, and
optical burst switching. Broadcast-and-select networks and
wavelength routing networks have been extensively studied.
Optical packet switching and burst switching, especially op-
tical packet switching, though still in research phase, are at-
tracting more and more interests as it may offer better flexi-
bility and better exploitations of the bandwidth [13]. In this
paper, we will focus on WDM packet switching networks.
In a WDM optical packet switched network, data packet

is modulated on a specific wavelength and may travel several
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hops before reaching the destination. In each hop, a switch-
ing network (or simply a switch) is used to direct the incom-
ing packet to the correct output fiber link. There can be many
input fiber links and output fiber links in a switching network
and on each link there can be multiple wavelength channel-
s. Output contention occurs when some packets on the same
wavelength are destined for one output fiber. In general, there
are three ways to combat output contention: deflection rout-
ing, buffering and exploiting the wavelength domain [13].
Deflection routing is to send the contending packet to some
other output link (which may or may not have a route to the
destination). By doing so the packet is not dropped. How-
ever, the end-to-end delay may be long and the packets ar-
rived at the destination may not be in a correct order. In
this paper we study the combination of the second and the
third methods: buffering and exploiting the wavelength do-
main. By buffering, the contending packet will be delayed
by fiber delay lines until it can be transmitted. Exploiting the
wavelength domain means if there are more than one optical
packets on the same wavelength destined for an output fiber,
the wavelengths of some of these packets are converted to i-
dle wavelengths (if there are any) on the output fiber, such
that the packets can still be transmitted. Buffering in optical
domain needs fiber delay lines and will be costly and bulky.
However, it has been shown in [18] that by only exploiting
the wavelength domain, the arrival rate to a network cannot
be very high if the packet loss probability needs to be con-
trolled under the generally accepted rate 10−10 for a typical
switching network. Thus, some buffers may have to be used
in a network with heavy traffic.

To translate a signal on one wavelength to another wave-
length converters are needed. If a wavelength converter is ca-
pable of converting a wavelength to any other wavelength in
the optical system, it is called full range wavelength convert-
er. However, this type of wavelength conversion is quite dif-
ficult and expensive to implement due to technological limi-
tations [14] [11]. A realistic all-optical wavelength converter
may only be able to convert a given wavelength to a limited
number of wavelengths, which is called limited range wave-
length converter. It was shown [14], [11], [15] that limit-
ed range wavelength converters can achieve network perfor-
mance similar to full range wavelength converters even when
the conversion degree is very small. Thus, limited range con-
verters are considered as a practical, cost-effective choice for
providing wavelength conversion ability in WDM network-
s, which will be the main focus of this paper. It should be
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mentioned that full range wavelength converters are also con-
sidered in this paper and will be treated as a special case of
limited range wavelength converters.
We assume the duration of an optical packet arrived at

the switching network is one time slot, as in [13] [8] [12].
The traffic pattern considered in this paper is unicast, i.e.,
each packet is destined for only one output fiber. The packet
does not specify which wavelength channel on the destina-
tion fiber it should be connected to, and we can assign to it
any free wavelength channel accessible to this packet. We
will study scheduling algorithms in such WDM switching
networks. Note that if the wavelength conversion in the WD-
M switching networks is full range, the scheduling is trivial.
This is because that in this case we do not need to be con-
cerned with the wavelength of the packets, since full range
wavelength converters are capable of converting any incom-
ing wavelength to any outgoing wavelength. When the wave-
length conversion is limited ranged, the scheduling becomes
complicated. We solved the problem of maximizing network
throughput in an unbuffered WDM switching network with
limited range wavelength conversion in [17]. In this paper
we study the buffered case. We show that the problem of
maximizing network throughput and minimizing total delay
in such a network can be formalized as finding an optimal
matching in a weighted bipartite graph called request graph
and present an efficient algorithm called the Scan and Swap
Algorithm that solves this problem in O(kB2) time, where
k is the number of wavelengths per fiber and B is the buffer
length.
In the past, buffered WDM switching networks with ful-

l range wavelength converters were studied and their per-
formance were evaluated with analytical models [8] [19].
BufferedWDM switching networks with limited range wave-
length conversion were studied in [12], in which the authors
suggested to “store a packet in the output buffer that has s-
mallest number of packets” when contention arises. Howev-
er, no proof was given as to whether this will either achieve
maximum throughput or minimum total delay. In this paper
we consider the same network model as in [12] but will prove
that our algorithm gives an optimal scheduling that both max-
imizes network throughput and minimizes total delay.
The rest of this paper is organized as follows. Section II

describes the assumptions on limited range wavelength con-
version and the network model. Section III gives the formal-
ization of the problem. Section IV briefly reviews the algo-
rithms for maximum matchings in request graphs. Section
V presents the Scan and Swap Algorithm for finding optimal
matchings in request graphs. Section VI presents the simula-
tion results. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Wavelength Conversion

As mentioned earlier, with limited range wavelength con-
version, an incoming wavelength may be converted to a set
of adjacent outgoing wavelengths. We define the set of these

outgoing wavelengths as the adjacency set of this input wave-
length. The cardinality of the adjacency set is the conversion
degree of this wavelength.
The wavelength conversion considered in this paper can

be called “ordered interval” because the adjacency set of any
wavelength can be represented by an interval of integers, and
intervals for different wavelengths are “ordered”. To be spe-
cific, we have the following assumptions:
Assumption 1: The wavelengths in the adjacency set

can be represented by an interval of integers. The ad-
jacency set of an input wavelength λi is denoted by
[begin(i), end(i)], where begin(i) and end(i) are positive
integers and begin(i)≤ end(i).
Assumption 2: For two wavelengths λi and λj , if i < j,

then begin(i)≤ begin(j) and end(i)≤ end(j).
The first assumption says that if a wavelength can be con-

verted to λi−1 and λi+1 by a wavelength converter, then it
can also be converted to λi by this wavelength converter. The
second assumption says that if the wavelength converters are
capable of converting, say, λ1 to λ5, then they should also be
capable of converting λ2 to λ5, as λ2 is “closer” to λ5 than
λ1.
We can use a bipartite graph to visualize the wavelength

conversion: the left side vertices represent input wavelengths
and the right side vertices represent output wavelengths. If
input wavelength λi can be converted to output wavelength
λj , there is an edge between them. Fig. 1 shows a conver-
sion graph for k = 6, e.g. the adjacency set of λ1 can be
represented as [1,2].
Note that under this type of wavelength conversion dif-

ferent wavelengths may have different conversion degrees.
For example, in Fig. 1 the conversion degree of λ1 is 2 but
the conversion degree of λ2 is 3. Thus, we introduce the
conversion distance defined as the largest difference between
the index of a wavelength and a wavelength that it can be
converted to. In Fig. 1 the conversion distance for λ1 is
2− 1 = 1. In fact, the conversion distance is 1 for all the
wavelengths in this example. It should be mentioned that in
our scheduling algorithms there is no need to assume that
the conversion distances are the same for all wavelengths, as
in real WDM networks wavelengths may have different con-
version distances. The two assumptions we made are very
general and can be applied to a wide variety of wavelength
convertible WDM networks, and even for full range wave-
length conversion, which can simply be considered as letting
the conversion degrees for all wavelengths be k.

B. Network Model

TheWDM switching network we consider is shown in Fig.
2. It is an N ×N switch, i.e., there are N fibers on the in-
put side of the switch and N fibers on the output side of the
switch. On each fiber there are k wavelengths that carry in-
dependent data. There are limited range wavelength convert-
ers equipped for each input channel at the input side of the
switch. There are optical buffers for each output fiber at the
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Fig. 1. Conversion graph on an optical fiber with 6 wavelengths.

λ1

λk

λ1 λk... λ1 λk...

λ1

λk

λ1 λk... λ1 λk...

1
0

0

B

B
N

WC

1
0

0

B

B
N

B*T

0*T

ODL

D
M
U
X

M
U
X

1
0

0

B

B
N

WC

1
0

0

B

B
N

B*T

0*T

ODL

D
M
U
X

M
U
X

fiber 1

fiber N

fiber 1

fiber N

INPUT OUTPUT

Fig. 2. A buffered wavelength convertible WDM optical switching network.

output side of the switch. As in most proposedWDM switch-
ing networks, we assume the optical buffers are implemented
with Optical Fiber Delay Lines (ODL). A light signal that en-
ters an ODL will come out of the ODL after a certain delay
time proportional to the length of the ODL [13]. There are
B + 1 ODLs for each output fiber, capable of delaying the
optical packet for 0,1,2, . . . ,B time slots, respectively. As
can be seen from the figure, the output of theseB+1 buffers
are directly combined together and sent to the output fiber.
The switching fabric is capable of connecting any input

wavelength channel to any of the B+1 ODLs for any out-
put fiber. With limited range wavelength conversion, an input
wavelength channel may be assigned to any one of the wave-
lengths it can be converted to (in its adjacent set) on an ODL.

III. PROBLEM FORMALIZATION

In this section we show how the problem of maximizing
network throughout and minimizing total delay in the WDM
switching network can be formalized into a weighted bipar-
tite graph matching problem.
First consider the optical packets arrived at the WDM

switching network at a time slot. We can partition them into
N subsets according to their destination fibers. The decision
of accepting or rejecting a connection request in one subset
does not affect the decisions for other subsets. Hence the
scheduling for one output fiber can be done independently of
other output fibers. The input to the scheduling algorithm is
the packets destined to this fiber at this time slot. The out-

put of the algorithm is the decision of whether a request is
granted, and if granted, which wavelength on which ODL it
is assigned to.
As in [13] [8], we assume that there are k wavelengths in

an ODL, similar to input and output fibers. Since the packet
is one time slot long, an ODL of length b can accommodate
up to bk packets, k for each time slot. However, there may not
be so many packets stored in the ODLs since there is another
constraint. From Fig. 2 we can see that the outputs of the
B+1ODLs are directly combined into one signal and sent to
the output fiber. Hence, it is required that no two packets on
the same wavelength should come out of these ODLs at the
same time slot, otherwise collision will occur. For example,
at the beginning of a time slot, if there is a packet coming out
of ODL 1 on wavelength λ1, we cannot assign channel λ1 in
ODL 0 to any newly arrived packets, neither should there be
a packet on λ1 coming out of any other ODLs at this time
slot.
More precisely, let {λ01,λ02, . . . ,λ0k}, {λ11,λ12, . . . , λ1k} . . .

{λB1 ,λB2 , . . . ,λBk } denote the wavelength channels on ODL 0
toB where λbi represents the wavelength channel λi on ODL
b, 1 ≤ i ≤ k and 0 ≤ b ≤ B. If the buffer is empty at the
beginning of a time slot, all these (B+1)k channels will be
available for newly arrived packets. However, it is not the
case if the buffer is not empty. Channel λbi is available if and
only if there is no packet on wavelength λi which will come
out of an ODL after b time slots. For example, λB−1i is not
available if there is a packet on λi that was directed to ODL
B at the previous time slot. λB−2i is not available if there is a
packet on λi that was directed to ODL B− 1 at the previous
time slot, or to ODL B two time slots ago. We can see that©
λB1 ,λ

B
2 , . . . ,λ

B
k

ª
will always be available, since there will

be no previously arrived packet coming out of any ODL after
B time slots because the longest delay time is B.
Given the buffer occupancy state, we can find the set of

available wavelength channels for newly arrived packets in
linear time. After getting the available channels, we can draw
a bipartite graph that will be referred to as request graph as
follows. The right side vertices represent the arrived packets
destined to this output fiber sorted according to their wave-
length indexes, lower indexed first. There might be several
packets on the same wavelength, in this case their orders are
arbitrary. The left side of the vertices represent the available
wavelength channels also sorted according to wavelength in-
dexes. There may also be more than one available wave-
length channels of the same wavelength. In this case, we put
the wavelength channel with a shorter delay in a higher posi-
tion (though it is not necessary). There is an edge connecting
a left side vertex a and a right side vertex b if the wavelength
of the packet represented by b can be converted to the output
wavelength represented by a. Such a request graph is shown
in Fig. 3.
We could freely choose which side of vertices should rep-

resent the arrived packets and which side of vertices should
represent the available wavelengths. Here we put the avail-
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Fig. 3. A request graph with 6 wavelengths and 3 fiber delay lines and the
conversion ability as defined in Fig. 1.

able wavelengths on the left side simply because the wave-
lengths will be assigned weights and it is more convenient
to consider the weighted vertices are on the left side of the
bipartite graph. In a request graph G, let E denote the set of
edges. Any wavelength assignment can be represented by a
subset of E, E0, where edge ab ∈ E0 if wavelength channel
a is assigned to packet b. Under unicast traffic, any pack-
et needs only one output channel and an output channel can
be assigned to only one packet. It follows that the edges in
E0 are vertex disjoint, since if two edges share a vertex, ei-
ther one packet is assigned two wavelength channels or one
wavelength channel is assigned to two packets. Thus, E0 is
a matching in G. For a given set of packets, to maximize
network throughput, we should find a maximum cardinality
matching in the request graph. This problem for a bufferless
WDM switching network was studied and solved in [17].
However, for a buffered switching network, although a

maximum cardinality matching maximizes network through-
put, it may or may not give the best wavelength assignmen-
t, as we should also consider the delay time of the packets.
Note that in [17] the network is bufferless and there is no
packet delay since a packet is either transmitted immediately
or rejected. In the buffered case, a packet that is granted may
have several choices or can be assigned to several ODLs. It
is naturally preferred to choose the one with shortest delay
time. When considering all the arrived packets together, we
want to minimize the total delay time of the granted packet-
s. Note that this is under the pre-condition that we grant the
maximum number of packets, since otherwise we can sim-
ply reject all arrived packets and the total delay time of the

granted packets would be zero. As will be seen later, the
solution we give will have the following two properties: (1)
the number of granted packets is maximum, and (2) the total
delay of the granted packets is minimum among all possible
wavelength assignments when the same number of packets
are granted.
To solve this problem, we introduce weights to the left side

vertices and define the weight of λbi for 1 ≤ i ≤ k and 0 ≤
i≤B to beB−b. Given a matchingM of the request graph,
the weight of M is the sum of the weights of the left side
vertices covered by M . It is a large positive number minus
the total delay time of the granted packets. Thus, the larger
the weight, the smaller the total delay time. If we can find a
matching that has both maximum cardinality and maximum
weight, we have found a wavelength assignment that both
maximizes network throughput and minimizes total delay.

IV. MAXIMUM MATCHINGS IN REQUEST GRAPHS

Before we move onto solving the problem formalized
in the previous section, we first briefly discuss maximum
matchings in request graphs. Based on the definition of a
request graph, it can be shown that the request graph has the
following properties:
Property 1: The adjacency set of any left side vertex is an

interval. Namely, if left side vertex ai is adjacent to right
side vertices bu and bv where u < v, ai is adjacent to all
the vertices between bu and bv, or, to all bw where u ≤ w ≤
v. In the following we use interval [begin(ai), end(ai)] to
represent the adjacency set of any left side vertex ai.
Property 2: Let [begin(ai), end(ai)] be the adjacency set

of left side vertex ai, and [begin(aj), end(aj)] be the adja-
cency set of left side vertex aj . If i < j then begin(ai) ≤
begin(aj) and end(ai)≤ end(aj).
Property 3: In request graph G, if edge aibu ∈ E, ajbv ∈

E and i < j, u > v, then aibv ∈E, ajbu ∈E.
Property 4: In a request graph, edges aibu and ajbv are

a pair of crossing edges if i < j and u > v. There exists
a maximum matching of a request graph with no crossing
edges. As a result, in this matching, the ith matched left side
vertex is matched to the ith matched right side vertex.
Property 5: Properties 1 and 2 also hold for right side

vertices. Namely, the adjacency set of any right side
vertex bu is also an interval or can be represented by
[begin0(bu),end0(bu)], and for two right side vertices bu and
bv, if u < v then begin0(bu) ≤ begin0(bv) and end0(bu) ≤
end0(bv).
Property 6: Removing any vertex from the request graph,

all the above properties still hold.
As in [17], we can use a simple algorithm called the

First Available Algorithm described in Table 1 for finding
a maximum cardinality matching in a request graph. The
input to this algorithm is: (1) The left side vertex set A
and the right side vertex set B; (2) For each left side ver-
tex a, the set of vertices adjacent to it denoted by interval
[begin(a), end(a)]. We call begin(a) and end(a) the begin
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TABLE 1
FIRST AVAILABLE ALGORITHM

First Available Algorithm
for i := 1 to n do

let bj be the first vertex in B
adjacent to ai and is not matched yet
if no such bj exists

MATCH[i] := Λ
else

MATCH[i] := j
end if

end for

value and end value of a, respectively. The output of the al-
gorithm is array MATCH[]. MATCH[i] = j means that
the ith left side vertex is matched to the jth right side vertex.
MATCH[i] = Λ if the ith left side vertex is not matched to
any left side vertex. In the description of the algorithm n is
the number of left side vertices. In this algorithm, left side
vertex ai is matched to the first available right side vertex that
is adjacent to it. We can image this as picking the “top” edge
in the request graph and adding it to the matching in each
iteration. [17] gave a proof for the following theorem.
Theorem 1: First Available Algorithm finds a maximum

matching in a request graph.
Finding the first available vertex is easy and can be imple-

mented in hardware. The time complexity of this algorithm is
O(n), since the loop is executed n times which is the number
of left side vertices.

V. THE SCAN AND SWAP ALGORITHM

In this section we give the Scan and Swap Algorithm for
finding an optimal scheduling for a buffered WDM switch-
ing network. Recall that the problem to be solved is: Given a
request graph with weighted left side vertices, find a match-
ing that maximizes both the number and the total weight of
the covered left side vertices. (We will soon explain we can
do both.) Such a matching is called an optimal matching. We
will first consider a greedy algorithm called matroid algorith-
m.

A. Matroid Greedy Algorithm

Loosely speaking, a matroid is a structure on a set S and a
family of subsets of S with properties such as independence
defined for these subsets. Greedy algorithms can be used for
finding optimal solutions for a matroid. In a graph, the set
of vertices that can be covered by a matching is a matroid.
Thus, an optimal matching of an arbitrary bipartite graph can
be found by the following matroid greedy algorithm [1]: Start
with an empty list. In step t, let ai be the left side vertex with
the tth largest weight. Check if there is a matching covering
ai and all the previously selected vertices in the list. If yes,
add ai to the list. Otherwise leave ai uncovered. Set t← t+1

and repeat until all vertices have been checked.
The resulting matching is optimal in a strong sense:
1. It is a maximum cardinality matching.
2. The sum of the weights covered by the matching is
maximum.

3. The matching is also lexicographically maximum: Let
the matching found by the greedy algorithm be M and
let a1, a2, . . . , a|M| represent the covered left side ver-
tices by M sorted in an non-increasing order accord-
ing to their weights. Let M 0 be any other matching
and a01, a02, . . . , a0|M 0| be the covered left side vertices
by M 0 sorted in an non-increasing order according to
their weights. Thenw(a0i)≤w(ai) for all 1≤ i≤|M 0 |
where w() is the weight of a vertex.

The key operation of the matroid algorithm is to check if
a matching covering the new vertex and all the previously s-
elected vertices can be found. Suppose we are checking ver-
tex ai. Let the matching covering all the vertices in the list
in this step be Mi. If there is an Mi alternating path with
one end being ai and the other end being an unmatched right
side vertex, we can find such a matching. Otherwise no such
matching exists and ai should be left unmatched.
It has been shown in [4] how to find an optimal matching

in a convex bipartite graph using the above algorithm. A bi-
partite graph is convex if it satisfies Property 1. [4] showed
that in convex bipartite graphs the optimal matching can be
found in O(n(m+ n)) time, where n is the number of left
side vertices andm is the number of right side vertices. The
task of findingMi alternating paths can be greatly simplified
by using the interval property of adjacent sets. This algorith-
m can be directly applied to finding optimal scheduling in
our request graph as well. However, since there can be up to
Nk vertices on the right and (B+1)k vertices on the left, the
running time will be O(k2B2+ k2BN), which may be too
long and not suitable for a WDM switch. Next we will give a
simpler and faster algorithm by using some special properties
of the request graph.

B. Scan and Swap Algorithm

In the problem we are considering, it may be the case that
more than one left side vertices are of the same weight. This
is because the weight corresponds to the length of the ODL
and there may be more than one available channels on the
same ODL. As a result, these vertices will be of the same
weight. Thus, if we can consider these vertices together at a
time instead of checking them one by one, the total amount
of work can be reduced. This observation leads to our Scan
and Swap Algorithm.
Given the set of weighted left side vertices, we partition

them into different groups according to their weights. The
vertices in the same group are of the same weight. There are
W groups, where W = B+1. For any optimal matching M
of the request graph, let mi be the number of vertices cov-
ered byM of weight i, 1≤ i≤W . We say the matroid greedy
algorithm has “finished stage i” when it has checked all the
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TABLE 2
SCAN AND SWAP ALGORITHM

Scan and Swap Algorithm
Set all the right side vertices unmarked.
List←∅.i← 1
for i= 1 to n

Find the first adjacent right side vertex
to ai that has not been marked.
if there is such a vertex

List← List∪ {ai}
Mark this right side vertex.

else
if ai is a compulsory vertex

List← List∪ {ai}
Let at be the nearest non-compulsory
vertex to ai in the list
List← List− {at}

end if
end if

end for

vertices of weight W − i+ 1 (weight W will be check first
at stage 1). After finishing stage i, it should have found a
matching that covers maximum number of vertices of weight
W − i+1 while keeping all previously selected vertices with
weight more than W − i+1 covered. Otherwise we can find
another matching M 0 which covers more vertices of weight
W − i+1, and as a result the matching found by the ma-
troid greedy algorithm will not be lexicographically maxi-
mum. Furthermore, note that the order by which the matroid
greedy algorithm checks the vertices within a group of the
same weight does not change the total weight of the optimal
matching, or more precisely, the number of covered vertices
within each group. Thus, if we can find the maximum num-
ber of vertices of weight W − i+1 that can be covered by
a matching along with all previously selected vertices in any
stage i (not by the matroid greedy algorithm but by some oth-
er algorithms), we have done an equivalent job as the matroid
greedy algorithm.
From now on, we will focus on finding such an algorithm.

Let the original graph be G0. The input to this algorithm
is: (1) A set of compulsory vertices which is a subset of the
left side vertices in G0 that we know can be covered by a
matching. (2) A set of non-compulsory vertices which is also
a subset of the left side vertices inG0. The algorithm should
find the maximum number of non-compulsory vertices that
can be covered by a matching under the constraint that all the
compulsory vertices are still covered. The algorithm is called
the Scan and Swap Algorithm and is described in Table 2.
The output of the algorithm is stored in List.
We now explain how to use this algorithm for finding an

optimal matching in the original graph G0. We will need to
run this algorithmW times, one for each stage (each weight).
In stage i, the set of input compulsory vertices to this al-
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Fig. 4. Outputs of the Scan and Swap Algorithm when applied to the request
graph in Fig. 3 at stages 1, 2 and 3. (a) Stage 1. (b) Stage 2. (c) Stage 3.

gorithm is those left side vertices with weight higher than
W − i+1 that have been selected previously. We express the
compulsory vertices at stage i as CMP (i− 1). At stage 1
there is no compulsory vertex and CMP (0) is empty. The
set of non-compulsory vertices at stage i is those left side
vertices with weight W − i+ 1. (It is interesting to notice
that when there is no compulsory vertex, the Scan and Swap
Algorithm is equivalent to the First Available Algorithm and
will find the maximum number of vertices that can be cov-
ered by a matching.) When stage i terminates the output List
contains the compulsory vertices for the next stage. The pro-
cess is continued until i = W . If this algorithm is correct
(which will soon be proved), at each stage, say, stage i, when
the algorithm finishes, it finds the maximum number of ver-
tices with weightW − i+1 that can be covered by a match-
ing along with all the compulsory vertices (vertices selected
in the previous stages). Thus when we finish stageW we find
an optimal matching of G0.

Fig. 4 shows the outputs of the Scan and Swap Algorithm
when applied to the request graph in Fig. 3 at stages 1, 2 and
3. The black left side vertices are in the list. The black right
side vertices are marked. The dashed lines in (a) and (b) in-
dicate that there can be a perfect matching between the black
left and right side vertices, but they are subject to change in
the following stages. The solid lines in (c) are the final selec-
tions.

Fig. 5 shows step 3 and step 4 in stage 3 of the Scan and
Swap Algorithm when applied to the request graph in Fig.
3. We can see that after step 3, vertex λ21 was in the list.
However, it is swapped out at step 4, since compulsory vertex
λ02 finds all its adjacent vertices marked, and λ21 is the nearest
non-compulsory vertex in the list.
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Fig. 5. Step 3 and step 4 in stage 3 of the Scan and Swap Algorithm when
applied to the request graph in Fig. 3. (a) After step 3. (b) After step 4.

C. Correctness Proof of the Scan and Swap Algorithm

We now prove that the Scan and Swap Algorithm is cor-
rect, i.e., it indeed finds the maximum number of non-
compulsory vertices that can be covered along with all the
compulsory vertices. We claim that at any step i of the al-
gorithm, the following three invariants hold for the left side
vertices added to the list and the marked right side vertices:
1. There is a perfect matching between the vertices in the
list and the marked vertices.

2. The list contains all the compulsory vertices scanned
from a1 to ai and the maximum number of non-
compulsory vertices from a1 to ai that can be covered
by a matching along with these compulsory vertices.

3. Let bu be the marked vertex with the largest index. For
any other matching M 0 that covers all the compulso-
ry vertices from a1 to ai and the same number of non-
compulsory vertices from a1 to ai (not necessarily the
same vertices), let bu0 be the right side vertex covered
byM 0 with the largest index. We have u≤ u0.

Note that if the first left side vertex cannot be added to the
list, it is an isolated vertex. We can remove it from G until
we find a non-isolated vertex. Hence from now on we only
work on request graphs where the first left side vertex is not
isolated.
We introduce some notions here. Let G be the subgraph

of the request graph G0, with left side vertices being al-
l the compulsory vertices and the non-compulsory vertices
and the right side vertices being all the right side vertices
of G0. The list at step h is denoted by List(h). At step h
there are p(h) left side vertices in the list and p(h) marked
right side vertices (the numbers are the same, which will be
proved later). Let the set of marked right side vertices be
Marked(h). Let Gh be the subgraph of G with vertex set
of List(h)∪Marked(h). Let L(h) be the number of non-

compulsory vertices in List(h). For a left side vertex a, we
refer to the first right side vertex adjacent to a as the “begin
vertex” of a and the last right side vertex adjacent to a as the
“end vertex” of a.
We now prove the first Invariant.
Lemma 1: The first invariant of the Scan and Swap Algo-

rithm is true.
Proof. By induction. Consider the first step. Since a right
side vertex adjacent to the first left side vertex, a1, can be
found, a1 can be added to the list and it will mark exactly
one right side vertex adjacent to it. Thus the claim is true
when h= 1.
Suppose it is true for all the steps before h+1. When ah+1

is checked, if it can be added to the list, then there is a right
side vertex adjacent to it, and it marks exactly one new right
side vertex. Hence the claim is still true. Now if the adjacent
vertices to ah+1 are all marked, if ah+1 is a non-compulsory
vertex, it will not be added to the list, and the there is still a
perfect matching from the vertices in the list to the marked
vertices on the left side. Thus we only need to consider the
case that ah+1 is a compulsory vertex and all its adjacent
vertices are marked.
Consider when we have finished the hth step. By the in-

duction hypothesis,Gh has a perfect (also maximum) match-
ing. By Property 4 of the request graph, there is a maximum
matchingMh that has no crossing edges, that is, the ith left
side vertex is matched to the ith right side vertex (in Gh).
Let ay be the vertex in List(h) with the largest index that is
matched to its begin vertex. (The begin vertex is still defined
inG and not inGh, i.e., y is still the index inG). There must
be such a vertex since the first vertex in the list will always
be matched to its begin vertex. We define the end-segment of
Gh, Gh−es, as follows. Gh−es is a subgraph of Gh that con-
tains vertex ay, all the left side vertices inList(h)with larger
indexes than ay, and all the right side vertices inMarked(h)
that are matched to them inMh. We have the following claim
regarding Gh−es:
Claim: The right side vertices in Gh−es are an interval

in G. In other words, there is no such a right side vertex bu
which is in G but not inGh−es while there exist two vertices
bw and bv in Gh−es and w < u< v.
Proof of the Claim. By contradiction. If the right side ver-
tices in Gh−es are not an interval in G, we can find a vertex
bu in G but not in Gh−es and two other vertices bw and bv
in Gh−es such that w < u < v. Let bv , u < v, be the first
such right side vertex (with the smallest index) in Gh−es. It
is shown in Fig. 6(a). Consider the case that bv was first
marked by some vertex at. We claim that at must have a
begin value of v. Since if it is not the case, begin[at] < v.
Since all the vertices between bu and bv−1 are not marked,
and since we do not unmark any marked vertices, they must
be also unmarked when the algorithm checks at. Then there
must be a vertex adjacent to at and unmarked with a smaller
index than bv. Then at would not have marked bv .
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Fig. 6. Auxiliary figures for proving Lemma 1. (a) End-segment ofGh. (b)
ah+1 can be matched by finding anMh-alternating path starting at ah+1
and ending at the nearest non-compulsory vertex.

If we run the First Available Algorithm on Gh, bv will be
still matched to a vertex with a begin value of v. Consider the
case that bv was first marked. Suppose at step t, at marked
bv and was added to the list (it may be swapped out later).
Assume p(t− 1) vertices were marked before bv. From the
inductive hypothesis, at this step (the tth step), there is a per-
fect matching in Gt, and by Property 4 of the request graph,
the ith vertex in the list is matched to the ith marked ver-
tex. Thus there are exactly p(t− 1) vertices in the list before
at. Now consider running the First Available Algorithm on
Gh. The p(t− 1) first marked right side vertices will still be
matched to the first p(t− 1) vertices in the list, and bv will
be matched to the (p(t− 1)+1)th vertex in List(h). By the
Scan and Swap Algorithm, the index of the ((p(t−1)+1))th
vertex in List(h) is no less than that of the (p(t− 1)+ 1)th
vertex in List(t), since from step t+1 to step h we only add
a vertex with a larger index than t to the list. It follows that
bv will be matched to some vertex with an index no less than
t. By Property 2 of the request graph, bv will be matched
to a vertex with a begin value of v. Note that bv cannot be
matched to ay inMh, since otherwise bw will be matched to
some vertex with a larger index than ay and will cause edge
crossing. This contradicts with the assumption that ay is the
first vertex matched to its begin vertex. Thus the claim is
true. End of Proof for the Claim.
Now consider the (h+1)th step. ah+1 is a compulsory

vertex and cannot be added to the list directly. It must be the
case that all the vertices adjacent to it have been marked. Giv-
en the end-segmentGh−es, at step h, we add ah+1 to Gh−es
(also add all the edges) and call itG0h−es. We claim that there
must be at least one non-compulsory vertex in G0h−es. Since
the right side vertices in G0h−es are all the adjacent vertices
of the left side in G0h−es, as they form an interval that be-
gins with the begin value of the smallest left side vertex and
ends with the end value of the largest left side vertex. If all
the left side vertices are compulsory vertices, then a match-

ing that covers all of them cannot be found, since there is one
more vertex on the left than on the right. Let ar be the non-
compulsory vertex with the largest index (closest to ah+1).
In Mh, we know that the next vertex in the list, say, as, is
not matched to its begin vertex. We also know that its begin
vertex is matched to some left side vertex with a smaller in-
dex. Then as must be adjacent to the vertex matched to ar.
For the same reason, the next vertex to as, say, at, is adjacent
to the right side vertex matched to as. This argument can be
carried on till the last vertex in List(h). All of them are ad-
jacent to the right side vertex matched to the previous one in
the list. Now we can draw anMh-alternating path that begins
at ah+1 and ends at ar, as shown in Fig. 6(b). It follows that
by removing ar, ah+1 can be matched, and all other vertices
in the list are still matched.
Next we show that the Invariants 2 and 3 are also true.
Lemma 2: Invariants 2 and 3 of the Scan and Swap Algo-

rithm are also true.
Proof. By induction. The claim is obviously true in the first
step. Now suppose it is true in all the steps before h+1. We
first show that Invariant 2 is true in the (h+1)th step. Con-
sider the case that in the (h+1)th step, ah+1 can be added
to the list. If ah+1 is a non-compulsory vertex, Invariant 2 is
true, since otherwise we can find another matching that cov-
ers more than L(h)+ 1 non-compulsory vertices from a1 to
ah+1, where L(h) is the number of non-compulsory vertices
in List(h). It follows that this matching covers more than
L(h) non-compulsory vertices from a1 to ah+1, regardless it
covers ah+1 or not. This is a contradiction to our inductive
hypothesis that Invariant 2 is true in the hth step.
If ah+1 is a compulsory vertex and can be added to the

list, Invariant 2 is obviously true. This is because otherwise
Invariant 2 is not true in the hth step, since there must be a
matching covering more than L(h) non-compulsory vertices
from a1 to ah and all the compulsory vertices. Now con-
sider the case that ah+1 cannot be directly added to the list.
If it is a non-compulsory vertex and Invariant 2 is not true,
then there exists a matching M 0 that covers all compulsory
vertices from a1 to ah+1 and covers more than L(h) non-
compulsory vertices from a1 to ah+1. If it dose not cover
ah+1, then Invariant 2 is not true in the hth step. Hence it
covers ah+1. Consider the subgraph of G that contains all
the vertices covered byM 0 from a1 to ah+1 and all the right
side vertices from b1 to bu where bu is the end vertex of ah+1.
Call this graph G0. All edges in M 0 covering vertices from
a1 to ah+1 are in the edge set of G0.
If ah+1 is not matched to bu in M 0, we can transform

M 0 to M 00 where ah+1 is matched to bu, since the request
graph has Property 3. Thus, all the other left side vertices
are matched to right vertices with smaller indexes than bu,
since they cannot access larger indexed vertices by Proper-
ty 2 of the request graph. It follows that M 00 covers no less
than L(h) non-compulsory vertices and all the compulsory
vertices. Moreover, the most recently used right side vertex
has a smaller index than bu, which contradicts with our as-
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sumption that Invariant 3 is true in the hth step. Finally, if
this vertex is a compulsory vertex and Invariant 2 is not true,
then following the same argument, there is a matching where
ah+1 is matched to its end vertex bu while all the compul-
sory vertices from a1 to ah are covered and at least L(h)
non-compulsory vertices are covered. This again contradicts
with the assumption that Invariant 3 is true in step h. Thus,
Invariant 2 is true in the (h+1)th step.

We now prove that Invariant 3 is true in the (h+ 1)th
step. We have seen that Invariant 2 is true in the (h+1)th
step. Thus the Scan and Swap Algorithm finds a matching
M that covers the maximum number of non-compulsory ver-
tices from a1 to ah+1 and all the compulsory vertices from
a1 to ah+1. Let bu be the highest indexed right side vertex
covered byM (inMarked(h+1)). Suppose another match-
ing M 0 also covers L(h+1) non-compulsory vertices from
a1 to ah+1 and all the compulsory vertices from a1 to ah+1.
Let the highest indexed right side vertex covered by M 0 be
bu0 and u0 < u.

Starting with the most recently marked vertex in
Marked(h+1), bu, we find bv such that all the vertices be-
tween bv and bu (in G) are marked but bv−1 is not marked.
We know that bv was first marked by a left side vertex at
whose begin value is v, as in the proof for Invariant 1. at is al-
so the first such a vertex. Since if not, there is at0 where t0 < t
also has begin value of v but at0 does not mark bv . When
checking at0 , bv is available since only in later steps when at
was checked would bv be marked by our assumption. This is
a contradiction. We claim that the vertices added to the list
prior to at will not be removed by later operations. (These
are the vertices in List(t− 1).) This is because that we only
swap out vertices in the same end-segment as a to-be-added
compulsory vertex, and at and bv form an end-segment. at
might later be removed, but bv will always be matched to
some vertex with begin value of v. After finishing execut-
ing the (h+1)th step, all vertices from bv to bu are marked
and thus can be matched to some left side vertex from at to
ah+1. Suppose there are X matched non-compulsory ver-
tices inM from at to ah+1, whereX = u−v. We know that
inM 0, from at to ah+1 there must be fewer thanX matched
non-compulsory vertices, asM 0 cannot use vertices with the
same or a larger index than bu and bv is the begin vertex of
at. Thus from at to ah+1 M 0 covers at most u− 1− v ver-
tices. It follows that from a1 to at−1 there are more vertices
covered byM 0 than byM . This contradicts with the fact that
after finishing executing the (t− 1)th step, List(t− 1) con-
tains the maximum number of non-compulsory vertices from
a1 to at−1 and they will not be removed from the list later.
That completes our proof.

Combining these two lemmas, we have

Theorem 2: The Scan and Swap Algorithm finds the max-
imum number of non-compulsory vertices that can be cov-
ered along with all the compulsory vertices in a request
graph.

D. Complexity and Implementation Issues

We now discuss the complexity and implementation of the
Scan and Swap Algorithm. In the algorithm, left side vertices
are scanned exactly once. For a left side vertex ai, we need to
check if we can find an unmarked right side vertex adjacent
to it, and if yes, mark the first (with the smallest index) such
a vertex. This can be done in constant time by maintaining
a pointer current which points to the right side vertex that
immediately follows the most recently marked right side ver-
tex.
If the adjacency set of this vertex is all marked, if it is non-

compulsory we can simply move on to next vertex, otherwise
we need to swap out the nearest non-compulsory vertex. We
can use a stack structure to store the non-compulsory vertices
added to the list, with the newly added non-compulsory ver-
tex at the top of the stack. Once a non-compulsory vertex
needs to be swapped out, we can perform a “pop” operation
on the stack which can be done in constant time. Thus, the
overall complexity of the Scan and Swap Algorithm is O(n)
where n is the number of left side vertices.
As mentioned earlier, we would need to run the Scan and

Swap AlgorithmW times, whereW is the number of weight-
s. If there are Ai vertices with weight i, 0≤ i≤W − 1, then
in the worst case, all the vertices can be matched and the
number of left side vertices to be scanned in stage j will be
O(
PW−1

i=j Ai). Thus, to find the optimal matching we need
O(
PW−1

i=0 iAi) time.
In our applications there are B +1 weights and for each

weight there are up to k vertices. Thus, when using the Scan
and Swap Algorithm for finding the optimal matching, we
need O(kB2) time, where B is the longest delay line length
and k is the number of wavelengths per fiber, as compared to
the existing algorithm for weighted general convex bipartite
graphs with O(k2B2+k2BN) time complexity in [4].

VI. SIMULATION RESULTS
We implemented Scan and Swap Algorithm in software

and conducted simulations. The network in simulations has
16 input fibers and 16 output fibers with 16 wavelengths on
each fiber. The arrivals of connection requests at input chan-
nels are bursty: an input channel alternates between two s-
tates, the “busy” state and the “idle” state. When it is in the
“busy” state it continuously receives packets and all the pack-
ets go to the same destination; otherwise the input channel is
in “idle” state and does not receive any packets. The length of
the busy and idle periods follows geometric distribution. The
network performance is measured by the packet loss prob-
ability which is defined as the ratio of the total number of
successfully transmitted packets over the total number of ar-
rived packets. The durations of the packets are all one time
slot and for each experiment the simulation program is run
for 100,000 time slots.
In Fig. 7 we show the packet loss probability of the net-

work as a function of number of fiber delay lines. The traffic
is bursty. In Fig. 7(a) the average burst length is 5 time s-
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lots and the average idle period is 1.25 time slots. In Fig.
7(b) the average burst length is 40 time slots and the average
idle period is 10 time slots. In both cases the traffic load is
ρ= 0.8. As expected, packet loss probability decreases as the
number of delay lines increases. For example, in Fig. 7(a),
when the conversion distance d= 2, whenB = 0 (no buffer),
the packet loss probability is about 10−1.3. However, when
B = 4, it is reduced to about 10−3. As the traffic becomes
more bursty, i.e., as the average burst length increases, the
packet loss probability decreases much more slowly, as can
be observed in Fig. 7(b) where the curves are almost flat.
This is because that the burst is too long and always exceeds
the buffer capacity.
We can also notice that with the same buffer length, a

larger conversion distance always results in a smaller packet
loss probability. Also, when the burst is too long, increasing
buffer length does not yield much benefit, while increasing
conversion distance always does. For example, in Fig. 7(b),
when d= 1, increasing buffer length does not decrease much
of the packet loss probability, but when we increase d to 2,
the packet loss probability almost drops by 10−0.4. This sug-
gests that wavelength conversion ability is more important
than buffering in a WDM switching network. However, we
can observe that only a relatively small conversion distance is
needed to achieve good performances. As can be seen in Fig.
7, the packet loss probability for d = 3 is already very close
to that for d= 16 (full range conversion). This is exactly the
reason to use limited range wavelength converters instead of
full range wavelength converters.
In Fig. 8 we show the average delay of a packet as a func-

tion of number of fiber delay lines. The traffic are the same
as in Fig. 7. We can see that as the buffer length increases
the average packet delay also increases, since fewer packet-
s are dropped and thus more are directed to a buffer before
being actually transmitted. For the same buffer size, a larger
conversion distance results in a shorter average delay. As in
Fig. 8(a), when B = 4, the average delay for d = 1 is about
0.9 time slots and the average delay for d = 3 is only about
0.3 time slots.

VII. CONCLUSIONS

In this paper we have studied optimal scheduling in
buffered WDM optical switching networks with arbitrary
wavelength conversion ability. We formalized the problem
as a weighted bipartite graph matching problem and showed
that maximum network throughput and minimum delay can
be found by finding an optimal matching of the bipartite
graph. We utilized the fact that there are many vertices of
the same weight in this special bipartite graph and present-
ed the Scan and Swap Algorithm for finding the optimal
matching in O(kB2) time, where k is the number of wave-
lengths per fiber and B is the buffer length, as compared to
O(k2B2+ k2BN) time by directly adopting other existing
algorithms for more general weighted bipartite graphs where
N is the number of input fibers.
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Fig. 7. Packet loss probability of the WDM switching network under bursty
traffic. The load is ρ = 0.8. (a) Average burst length is 5 time slots. (b)
Average burst length is 40 time slots.
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