
Pipelining Packet Scheduling in a Low Latency Optical Packet Switch

Lin Liu

Dept. Electrical & Computer Engineering

Stony Brook University

Stony Brook, NY 11794, USA

Zhenghao Zhang

Computer Science Department

Florida State University

Tallahassee, FL 30306, USA

Yuanyuan Yang

Dept. Electrical & Computer Engineering

Stony Brook University

Stony Brook, NY 11794, USA

ABSTRACT

Optical switching architectures with electronic buffers have
been proposed to tackle the lack of optical Random Access
Memories (RAM). Out of these architectures, the OpCut switch
[1] achieves low latency and minimizes optical-electronic-
optical (O/E/O) conversions by allowing packets to cut-through
the switch. In an OpCut switch, a packet is converted and sent
to the electronic buffers only if it cannot be directly routed to
the switch output. As the length of a time slot shrinks with the
increase of the line card rate in such a high-speed system, it may
become too stringent to calculate a schedule in each single time
slot. In such a case, pipelining scheduling can be adopted to re-
lax the time constraint. In this paper, we present a novel mech-
anism to pipeline the packet scheduling in the OpCut switch
by adopting multiple “sub-schedulers.” The computation of a
complete schedule for each time slot is done under the collabo-
ration of sub-schedulers and spans multiple time slots, while at
any time schedules for different time slots are being calculated
simultaneously. We present the implementation details when
two sub-schedulers are adopted, and show that in this case our
pipelining mechanism eliminates duplicate scheduling which is
a common problem in a pipelined environment. With an arbi-
trary number of sub-schedulers, the duplicate scheduling prob-
lem becomes very difficult to eliminate due to the increased
scheduling complexity. Nevertheless, we propose several ap-
proaches to reducing it. Finally, to minimize the extra delay
introduced by pipelining as well as the overall average packet
delay under all traffic intensities, we further propose an adap-
tive pipelining scheme. Our simulation results show that the
pipelining mechanism effectively reduces scheduler complexity
while maintaining good system performance.
Index Terms: Optical switches, packet scheduling, pipelined
algorithm.

I. INTRODUCTION

In recent years, switching networks draw increasingly more
attentions due to the fact that they tend to become a bottleneck
at all levels: intra-chip, chip-to-chip, board level, and computer
networks. There are many requirements posed on a switching
fabric, such as low latency, high throughput, low error rate, low
power consumption, as well as scalability. Finding a solution
that can satisfy all these needs is a non-trivial task.

Optical fibers, featured with high bandwidth and low error
rate, are widely recognized as the ideal media for the switch-
ing fabric. Some optical switch prototypes have been built and
exhibited, for example, the recent PERCS (Productive, Easy-to-
use, Reliable Computing System) project [13] and OSMOSIS

Research supported by US National Science Foundation under grant numbers
CCF-0915823 and CCF-0915495.

(Optical Shared Memory Supercomputer Interconnect System)
project [3][4][5] at IBM. It has gradually become consensus that
future high speed switches should exploit as many advantages
optics can provide as possible.

One of the major problems with current optical technology is
the absence of a component equivalent to the electronic random
access memory, or optical RAM. Currently the most common
approach to buffering in optical domain is by letting the signal
go through an extra segment of fiber, namely, the “fiber delay
line” (FDL). An FDL generates a fixed buffering delay for any
optical signal, which is in fact the propagation delay for the sig-
nal to transfer over the FDL. To provide flexible delays, FDLs
have to be combined with switches. Extensive research has been
devoted to the realization of large, powerful all-optical buffers
[8] [9] [10], but the random accessibility is still absent.

Alternatively, there are emerging techniques that aim at slow-
ing the light down, for example, [6][7]. While these researches
present interesting results towards implementing optical buffers
with continuous delay, so far it is still unclear whether slow light
can provide sufficiently large bandwidth and buffering capacity
for it to be used in practical systems. Therefore, currently elec-
tronic buffer seems to be the only feasible option to provide
practical buffering capacities.

A low latency optical switching architecture that combines
optical switching with electronic buffer was recently proposed
in [1]. In the following, we simply refer to it as the OpCut (Op-
tical Cut-through) switch. Fig. 1(a) shows a high-level view
of the switch. The OpCut switch is equipped with recirculating
electronic buffers, but an optical packet that arrives at the switch
input is converted into electronics and sent to the electronic
buffers if and only if it cannot be directly routed to the switch
output. Packets that are electronically buffered can be converted
back to optics and sent to the switch output later. By allowing
packets to “cut-through” the switch, the packets experience low
latency, and the number of O/E/O conversions is minimized. A
core component of this switch is the packet scheduler, which
takes care of scheduling of packets from the input directly to
the output, from the input to the electronic buffers, and from the
buffers to the output.

There has been a lot research on scheduling in packet
switches. One of the most extensively studied topics is packet
scheduling algorithms for the input-queued (IQ) switch. The
IQ switch is usually assumed to work in a time-slotted fash-
ion. Packets are buffered at each input port according to their
destined output port, or in virtual output queues (VOQ). The
scheduling problem for a time slot is formalized as a bipartite
matching problem between the input ports and the output ports
of the switch. Existing scheduling algorithms for IQ switches
can be divided into two categories: maximum weighted match-

......

Packets
Optical

Packets
Optical

Fabric

Switching

Optical

Electronic
Buffer

Transmitters Receivers

(a)

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

: Splitter

: SOA gate

.

.

.

... ...

...

...

...

1 : Amplifier

: Coupler

: Receiver

: Transmitter

1

N N

1

N

(b)

Fig. 1. (a) A high level view of the OpCut switch. (b) A possible implementa-
tion of the OpCut switch.

ing based optimal algorithms and maximal sized matching based
fast algorithms. The first category includes algorithms such
as Longest Queue First (LQF) and Oldest Cell First (OCF)
[11]. These algorithms have impractically high computing com-
plexity, but are of theoretical importance as they deliver 100%
throughput under virtually any admissible traffic. The second
category includes, for example, Round Robin Greedy Schedul-
ing (RRGS) [16], Parallel Iterative Matching (PIM) [14] and
iSLIP [15]. These algorithms only look for a maximal match-
ing in each time slot hence have practical time complexity. They
are therefore preferred in real systems, although they can only
give sub-optimal schedules.

However, in a high speed or ultra high speed system, even
these maximal matching scheduling algorithms may become a
potential problem. As the length of a time slot shrinks with the
increase in line card rate, it may become too stringent to calcu-
late a schedule in each single time slot. In such a case, pipelin-
ing scheduling can be adopted to relax the time constraint. In
[16] a pipelined version of the RRGS algorithm was reported,
in which each input port is assigned a scheduler. The sched-
uler of an input port selects an idle output port, and passes
the result to the next input port. The process goes on until
all input ports have been visited. However, this approach in-
troduces an extra delay equal to the switch size. In [17] the
pipelined maximal-sized matching algorithm (PMM) was pro-
posed, which employs multiple identical schedulers. Each of
these schedulers independently works towards a schedule for
a future time slot. As pointed out in [18], PMM is “more a
parallelization than a pipeline” since there is no information ex-
change between schedulers. [18] further proposed to pipeline
the iterations of iterative matching algorithms such as PIM and
iSLIP by adopting multiple sub-schedulers, each of which tak-
ing care of a single iteration and passing the intermediate result

to the next sub-scheduler in the pipeline. One problem with this
approach is that it may generate grants for transmission to an
empty VOQ since at any time a sub-scheduler has no idea about
the progress at other sub-schedulers and may try to schedule a
packet that has already been scheduled by other sub-schedulers.
As a result, the service a VOQ receives may exceed its actual
needs and is wasted.

In this paper, we will provide a mechanism to pipeline the
packet scheduling in the OpCut switch. The rest of this pa-
per is organized as follows. Section II briefly introduces the
OpCut switch architecture and the basic packet scheduler in
this switch. Section III presents the pipelining mechanism for
packet scheduling in the OpCut switch. Section IV describes
an adaptive pipelined packet scheduling scheme. Section V
presents the simulation results. Finally, Section VI concludes
the paper.

II. THE OPCUT SWITCH

In this section we introduce the OpCut switch [1]. We will
give a brief description of the switch architecture, followed by
the discussion on its basic packet scheduler.

A. Switch Architecture

The OpCut switch works in time slots. Packets are of fixed
length and fit in exactly a time slot. The length of a time slot
is about 50 ns, similar to that in the OSMOSIS switch [2], [5].
In this paper, we follow the same assumptions as other optical
switch designs that transmissions are synchronized and pack-
ets arrive at the switch at the beginning of time slots. In each
time slot, up to one packet may arrive in optics at each input
port. We define a flow as the stream of packets from the same
input port and destined for the same output port. Whenever
possible, arrived packets are directly sent to their desired out-
put port, or, cut-through the switch. A packet that cannot cut-
through is picked up by one of the receivers and sent to the elec-
tronic buffer. Later when its destined output port is not busy, the
packet can be fetched from the electronic buffer, converted back
into optics, and scheduled to the switch output. Unlike other op-
tical switches with electronic buffers in which every packet goes
through the O/E/O conversions, in the OpCut switch packets are
converted between optics and electronics only when necessary.

The OpCut architecture may adopt any switching fabric that
provides non-blocking connections from the inputs to the out-
puts. One possible switching fabric is shown in Fig. 1(b). There
are N receivers, which equals the number of input/output ports.
The N receivers are necessary to avoid packet loss, since in the
worst case there may be N packet arrivals in a single time slot,
and none of them can cut-through the switch. In each time slot,
a receiver picks up at most one packet, and a transmitter sends
out at most one packet. In other words, there is no speedup
requirement.

The electronic buffers maintain no queues. Instead, packets
are indexed by their timestamp. Since in each time slot a re-
ceiver picks up at most one packet, it is possible to locate a
packet in a buffer in constant time given the timestamp of the
packet. As an implementation detail, the buffer can be used in
a wrap-around fashion thus does not need to have very large ca-
pacity. For instance, if the index is 8-bit long, then each buffer
stores up to 256 packets. Consequently, only the lower 8 bits

of the timestamp are needed to locate a packet in the buffer. A
conflict occurs only if a packet is routed to a receiver, and an-
other packet picked up by the same receiver at least 256 time
slots earlier is still in the buffer. When this is the case, it usually
indicates heavy congestion. Hence it is reasonable to discard
one of the packets.

B. Packet Scheduling in the OpCut Switch

The basic scheduler for the OpCut switch breaks a schedule
into three parts: a matching between switch input ports and out-
put ports for cutting-through the newly arrived packets, a match-
ing between switch inputs and the receivers for picking up the
packets that cannot cut-through, and a matching between the
electronic buffers and the switch output ports for the transmis-
sion of buffered packets. Here we adopt a simple strategy to
maintain packet order, which is generally desired for switches
[20], [12]. Basically, the scheduler allows a packet to be sent to
an output only if this packet is a head-of-flow packet. That is,
if the packet has the oldest timestamp among all packets from
the same flow that are currently waiting for transmission to the
switch output. In each time slot, the basic scheduler sends the
maximum number of packets to the switch output without vio-
lating packet order.

At the beginning of a scheduling cycle, cut-through operation
is first executed. If an input port has a newly arrived packet, it
may send a scheduling request to the desired output port. To
ensure packet order, such a request can be sent if and only if no
packet belonging to the same flow as the newly arrived packet
is now being stored in the electronic buffers. Since at most one
packet can arrive at an input port during one time slot, each
input port sends at most one request. Hence, it takes only one
iteration of an iterative matching algorithm, such as iSLIP, to
handle all those requests.

If there are packets that fail to cut-through, they will be
picked up by receivers according to the following rule:

r = [(i + t) mod N] + 1 (1)

where r is the receiver index, i is the input index of the packet, t
is current time slot, and N is the switch size. Instead of a fixed
one-to-one connection, the inputs are connected to the receivers
in a round-robin fashion for better load balancing. As an ex-
ample, according to our simulation, in an 8 × 8 OpCut switch,
when there is a fully-loaded input port, the overall throughput
is around 0.85 if the inputs are round-robinly connected to the
receivers, versus 0.70 with fixed connection.

At the same time, the scheduling is computed for the pack-
ets from the buffers to the output ports that are not occupied by
cut-through packets. Again, to maintain packet order, only the
head-of-flow packets are eligible for being scheduled. For each
output port, the scheduler of the OpCut switch keeps the infor-
mation of the packets that are in the buffer and are destined to
the output port in a “virtual input queue” (VIQ) style. Basically,
for output Oj , the scheduler maintains N queues denoted as Fij

for 1 ≤ i ≤ N . For each packet arrived at Ii destined for Oj and
currently being buffered, Fij maintains its timestamp, as well as
the index of the buffer the packet is in. Note that Fij does not
hold the actual packets. With the VIQs, the scheduler can adopt

any bipartite matching algorithm, for example, the iSLIP algo-
rithm, to determine the matching between the electronic buffers
to the switch output.

III. PIPELINING PACKET SCHEDULING

Our simulation results show that the basic scheduling algo-
rithm introduced above can achieve satisfactory average packet
delay. However, in a high speed or ultra high speed environ-
ment, it may become difficult for the scheduler to compute a
schedule in each single time slot. In such a case, we can pipeline
the packet scheduling to relax the time constraint. In this section
we present such a pipeline mechanism.

A. Background and Basic Idea

With pipelining, the computing of a schedule is distributed to
multiple sub-schedulers and the computing of multiple sched-
ules can be overlapped. Thus, the computing of a single sched-
ule can span more than one time slot and the time constraint can
be relaxed. Another consideration here is related to fairness. By
adopting the iSLIP algorithm in the third step (i.e., determining
the matching between electronic buffers and switch outputs),
the basic scheduling algorithm ensures that no connection be-
tween buffers and outputs is starved. However, there is no such
guarantee at the flow level. In addition, as mentioned earlier, a
packet that resides in the switch for too long may lead to packet
dropping. To address this problem and achieve better fairness, it
is generally a good idea to give certain priority to “older” pack-
ets during scheduling.

Combining the above two aspects, the basic idea of our
pipelining mechanism can be described as follows. We la-
bel each flow based on the oldness of its head-of-flow packet.
Among all flows destined to the same output, a flow whose
head-of-flow packet has the oldest timestamp is called the old-
est flow of that output. Note that there may be more than one
oldest flow for an output. Similarly, the flows with the ith oldest
head-of-flow packets are called the ith oldest flows. Instead of
taking all flows into consideration, we consider only up to the
kth oldest flows for each output when scheduling packets from
the electronic buffer to the switch output. This may sound a lit-
tle surprising but later we will see that the system can achieve
good performance even when k is as small as 2. Then the pro-
cedure of determining a schedule is decomposed into k steps,
with step i handling the scheduling of the ith oldest flows. By
employing k sub-schedulers, the k steps can be pipelined. Like
the basic scheduling algorithm, the pipelined algorithm main-
tains packet order since only head-of-flow packets are qualified
for being scheduled.

Next we will describe the pipeline mechanism in more detail.
Basically, like in prioritized-iSLIP [15], the flows are classi-
fied into different priorities. In our case the prioritization crite-
rion is the oldness of a flow. By pipelining at the priority level,
each sub-scheduler deals with only one priority level and does
not have to be aware of the prioritization. Furthermore, since
each sub-scheduler only works on a subset of all the schedul-
ing requests, on average it converges faster than a single central
scheduler. To explain how the mechanism works, we will start
with the simple case of k = 2, that is, using only the oldest flows
and second oldest flows when scheduling. We will also show
that when k = 2, a common problem in pipelined scheduling,

outputs announce

St is excecuted

calculates

calculates

buffer states

S1

S2

ss1

ss2

t

t
time slot t−1

time slot t−2

time slot t

time

cut through
new packets

FDL delay

Fig. 2. Timeline of calculating schedule St for time slot t.

called duplicate scheduling, can be eliminated in our mecha-
nism. Later we will extend the mechanism to allow an arbitrary
k, and discuss potential challenges and solutions.

B. Case of k = 2

With k = 2, two sub-schedulers, denoted as ss1 and ss2 are
needed to pipeline the packet scheduling. ss1 tries to match
buffers with the oldest flows to the output ports, while ss2 deals
with buffers with the second oldest flows. The timeline of cal-
culating the schedule to be executed in time slot t, denoted as
St, is shown in Fig. 2. The calculation takes two time slots
to finish, from the beginning of time slot t − 2 to the end of
time slot t− 1. When time slot t starts, St is ready and will be
physically executed during this time slot. In time slot t− 2, the
cut-through operation for t is performed and the result is sent to
the sub-schedulers, so that the sub-schedulers know in advance
which output ports will not be occupied by cut-through packets
at time t. To provide the delay necessary to realize pipelining, a
fiber delay line with fixed delay of two time slots are appended
to each input port. As a result, newly arrived packets are at-
tempted for cutting-through at the beginning of time slot t− 2,
but they do not physically cut-through and take up correspond-
ing output ports until time slot t. Later in Section IV we will
discuss how this extra delay introduced by pipelining may be
minimized. As mentioned in Section II-B, since the calculation
of cutting-through is very simple and can be done by iSLIP with
one iteration, or 1SLIP, there is no need to pipeline this step.

At the same time of cutting-through operation, each output
port checks the buffered packets from all flows and finds its
oldest and second oldest flows, as well as in which buffer these
flows are stored. The outputs then announce to each buffer its
state. The state of a buffer consists of two bits and has the fol-
lowing possible values: 0 if this buffer contains neither oldest
nor second oldest flow for the output; 2 if the buffer contains
one second oldest flow but no oldest flow; 1 otherwise. A buffer
is said to contain an ith flow of an output if it contains the head-
of-flow packet of that flow. Note that the state being 1 actually
includes two cases, i.e. the buffer has an oldest flow only, or has
both an oldest and a second oldest flow. The point here is that
we do not need to distinguish between these two cases. This is
due to the fact that in a time slot at most one packet can be trans-
mitted from a buffer to the switch output. Then if a buffer has
an oldest flow for an output and a packet is scheduled from this
buffer to the output, no more packets from other flows can be
scheduled in the same time slot; on the other hand, if no packet

from the oldest flow is scheduled to the output, no packet from
the second oldest flows can be scheduled either since otherwise
a packet from the oldest flow should have been scheduled in-
stead. Thus as long as a buffer contains an oldest flow for an
output, we do not need to know whether it contains a second
oldest flow for that output or not.

Fig. 3 provides a simple example with N = 3 that shows
how the announcing of oldest and second oldest flows works.
In this example, we focus on one tagged output and three flows
associated with it. As shown in the figure, packets p1 and p2

arrive in the same time slot but from different flows. p3 arrives
following p2. A few time slots later, p4 belonging to flow 3
arrives. We assume that some time later p1, p2 and p4 become
the head-of-flow packet for the three flows, respectively. It can
be seen that flows 1 and 2 are the oldest flows, and flow 3 is
the second oldest flow. As shown in the figure, assume that p1

and p2 are stored in buffers 1 and 2, respectively, and both p3

and p4 are in buffer 3. Then the tagged output will make the
announcement as “1” to buffers 1 and 2, and “2” to buffer 3,
which informs the sub-schedulers that buffers 1 and 2 have an
oldest flow for this output, and buffer 3 has a second oldest flow
but no oldest flow for this output.

2p
2p

p1

t

p
3

�
�
�

�
�
�

�
�
�

�
�
�

3p4p

�
�
�

�
�
�

1p

�
�
�

�
�
�

p
4

flow 1

flow 2

flow 3
2

1

1

buffer statuspacket arrivals announcement

Fig. 3. An example of how an output makes the announcement. The infor-
mation of all packets that are in the buffer and destined for the output port
is maintained for each output port. Based on that information, an output can
find the oldest and second oldest flows, and where the head-of-flow packets are
buffered. Then it can make the announcement accordingly.

After receiving the result of cutting-through operation and the
announcements from the outputs, sub-scheduler ss1 is now set
to work. Note that while the sub-schedulers work directly with
buffers, they essentially work with flows, in particular, head-of-
flow packets, since they are the only packets eligible for trans-
mission for the sake of maintaining packet order. Denote the set
of output ports that will not be occupied by cut-through packets
at time slot t as Ot. What ss1 does is to match the output ports in
Ot to the buffers containing an oldest flow of these output ports.
Theoretically, this process can be done by any bipartite match-
ing algorithm. For simplicity, the iSLIP algorithm is adopted.
In each iteration of the iSLIP algorithm, if there is more than
one buffer requesting the same output port, ss1 decides which
of them the output should grant. Then, in case a buffer is granted
by multiple output ports, ss1 determines which grant the buffer
should accept. The decisions are made based on the round-robin
pointers maintained for each output port and buffer. The num-
ber of iterations to be executed depends on many factors, such
as performance requirement, switch size, traffic intensity, etc.
Nevertheless, as mentioned earlier, it can be expected that the
result will converge faster than that of a single central scheduler
since the sub-scheduler handles only a subset of all the schedul-
ing requests.

ss1 has one time slot to finish its job. At the beginning of
time slot t−1, ss1 sends its result to the output ports so that the

output ports can update the VIQs and announce the latest buffer
state. Meanwhile, ss1 relays the result to ss2. The functionality
of ss2 is exactly the same as ss1, i.e. matching output ports to
buffers according to some pre-chosen algorithm. The difference
is that, ss2 only works on output ports that are in Ot and are not
matched by ss1, and buffers that are announced with state 2 by
at least one of these output ports. When ss2 finishes the job
at the end of time slot t− 1, the matching based on which the
switch will be configured in time slot t is ready. Meanwhile the
packets that arrived at the beginning of time slot t−2 have gone
through the two-time-slot-delay FDLs and reached the switch
input. In time slot t, the buffers are notified which packet to
send, and the switch is configured accordingly. Packets are then
transmitted to the switch output, either directly from the switch
input or from the electronic buffer.

S2
2

...

...

...

...

...

...

...

...2
S

S S

S

S

SS

time slot 0 1 2 3 t t+1 t+2

ss

ss 2

1 1S
2

1S
3

1S
4

1S
5

2S
4

2S
3

3
Sschedule

t+2
1S

t+3
1

t+4
1
t+3
2

t+2
2

t+1
S

t+2
S

t

t+1
2

Fig. 4. The pipelined scheduling procedure for k = 2.

The complete picture of the pipeline packet scheduling for
k = 2 is shown in Fig. 4. As mentioned earlier, St is the sched-
ule executed in time slot t. St

i denotes the part of St that is
computed by sub-scheduler ssi during time slot t− i.

A potential problem with pipelined scheduling algorithms is
that it is possible for a packet to be included in multiple sched-
ules, or, being scheduled for more than once. This is called
duplicate scheduling. It could occur under two different con-
ditions: 1) in the same time slot, different schedulers may try
to include the same packet to their respective schedule, since
a scheduler is not aware of the progress at other schedulers in
the same time slot; 2) with pipelining, there is usually a delay
between a packet being included in a schedule and the schedule
being physically executed. During such an interval the packet
may be accessed by another scheduler that works on the sched-
ule for a different time slot. In other words, a scheduler may
try to schedule a packet that was already scheduled by another
scheduler but has not been physically transmitted yet.

Duplicate scheduling of a packet leads to waste of bandwidth
resources, which consequently causes underutilization of band-
width and limits throughput. In an input-queued switch, when a
packet p is granted for transmission more than once by different
sub-schedulers, extra grants may be used to transmit the packets
behind p in the same VOQ if the VOQ is backlogged. On the
other hand, if the VOQ is empty, all but one grants are wasted.
With the OpCut switch architecture, the consequence of dupli-
cate scheduling is even more serious, as the extra grants for a
packet cannot be used to transmit packets behind it in the same
buffer. This is due to the fact that in an OpCut switch packets
from the same flow may be distributed to different buffers, and
a buffer may contain packets from different flows.

Duplicate scheduling is apparently undesirable but is usually
difficult to avoid in pipelined algorithms. For example, the algo-
rithms in [16] [17] [18] all suffer from this problem, even with
only two-step pipelining. It was proposed in [18] to use pre-

filter and post-filter functions to reduce duplicate scheduling.
However, on one hand, these functions are quite complex, and
on the other hand, the problem cannot be eliminated even with
those functions. The difficulty roots in the nature of pipelining,
that schedulers may have to work with dated information, and
the progress at one scheduler is not transparent to other sched-
ulers. Fortunately, as will be seen next, when k = 2 our mecha-
nism manages to overcome this difficulty and completely elim-
inates duplicate scheduling.

First of all, it is worth noting that the “oldness” of a flow is
solely determined by the timestamp of its head-of-flow packet.
Thus we have the following simple but important lemma.

Lemma 1: Unless its head-of-flow packet departs, a flow
cannot become “younger.”

Next we deal with the first condition that may lead to dupli-
cate scheduling. That is, we show that in any time slot the two
sub-schedulers will not include the same packet in their respec-
tive schedule. In fact, we have an even stronger result here, as
shown by the following theorem:

Theorem 1: During any time slot, sub-scheduler ss1 and ss2

will not consider the same flow when computing their schedule.
In other words, if we denote F t

i as the set of flows that ssi takes
into consideration in time slot t, then F t

1 ∩F t
2 = ∅ for any t ≥ 0.

Proof: First note that for t = 0 there is no second oldest
flow, F t

2 = ∅, thus the theorem holds. Now assume for some
t > 0, the theorem held up to time slot t− 1 but not in time
slot t. In other words, there exists a flow f such that f ∈ F t

1 and
f ∈ F t

2 . Note that f ∈ F t
2 indicates that f was not an oldest flow

at time t− 1. Thus at t− 1 there existed at least one flow that
was older than f and destined to the same output as f . Denote
such an flow as f ′, then f ′ ∈ F t−1

1 since it was an oldest flow at
that time. Besides, it can be derived that no packet from f ′ was
scheduled by ss1 in time slot t− 1. Otherwise, the correspond-
ing output port should be matched, and at time t ss2 would not
consider any flow associated with that output, including f .

Furthermore, since f ′ ∈ F t−1
1 , it follows that f ′ /∈ F t−1

2 ,
given that the theorem held in time slot t− 1. Then neither ss1

nor ss2 could schedule any packet belonging to f ′ in time slot
t−1. According to Lemma 1, f ′ is still older than f at time slot
t. Consequently, f is not an oldest flow at t, and f ∈ F t

1 cannot
hold, which contradicts the assumption. This implies that the
theorem must hold for time slot t if it held for time slot t− 1.
That proves the theorem for t ≥ 0.

Next we consider condition 2. It is possible for condition 2
to occur between St

2 and St+1
2 due to the existence of a time

glitch: the buffer states based on which St+1
2 is calculated are

announced at the beginning of time slot t. At that time St
2 is not

calculated yet. Thus it is possible that a packet is included in
both St

2 and St+1
2 . In contrast, St

2 and St+1
1 can never overlap,

since the latter is calculated based on the information announced
after being updated with St

2. For the same reason, sub-schedules
St

i and St+x
j would never include the same packet for any t ≥

0, i, j ∈ {1,2}, as long as x > 1. Thus the task of eliminating
condition 2 reduces to making sure that St

2 and St+1
2 do not

overlap, which can be achieved as follows.
When an output makes its announcement, instead of three

possible states as introduced earlier in this section, each buffer
may be in the forth state denoted by value 3 (this is doable since

the state of a buffer is 2-bit long), which means that this buffer
contains a third oldest flow and no oldest or second oldest flow
for this output. Furthermore, we call a flow a solo flow if it is
the only ith oldest flow, and a buffer a solo buffer for an output
port if it contains a solo flow of that output port. Now suppose
ss2 matched an output port op to a buffer bf in St

2 based on
the announcements in time slot t− 2. Then when St+1

2 is being
computed, bf is excluded from St+1

2 if op again announced bf
as a state-2 buffer. On one hand, if there exists at least one buffer
other than bf that was announced with state 2 by op in time slot
t−1, ss2 will work with these buffers. On the other hand, if bf
was a solo buffer for op based on the announcement at time slot
t− 1, ss2 will work on state-3 buffers instead. Consequently,
we have the following theorem.

Theorem 2: The method introduced above ensures that St
2

and St+1
2 will not introduce duplicate scheduling of a packet.

Proof: First, St
2 and St+1

2 may include the same packet only
if ss2 matches a buffer to the same output port in both St

2 and
St+1

2 . Hence it is assumed that buffer bf is matched to output
port op in both time slots t−1 and t by ss2 (Recall that St

2 is cal-
culated in time slot t− 1 based on output announcements made
in time slot t− 2). For this to occur, the state of bf announced
at time slot t− 1 can only be 3 according to the above method.
Besides, bf cannot be a state-1 buffer of op for time slots t− 2
and t− 1, since otherwise bf should not be considered by ss2.
Then the states of bf announced by op at time slots t− 2 and
t− 1, based on which St

2 and St+1
2 are calculated respectively,

have only two possible combinations: 2 at time slot t− 2 and
3 at time slot t − 1 ({2, 3}), or 3 at time slot t − 2 and 3 at
time slot t− 1 ({3, 3}). We will show that under neither of the
combinations could duplicate scheduling occur.

• {2, 3}: In this case, by matching bf to op, St
2 actually

schedules to op the head-of-flow packet of some second
oldest flow announced by op at time slot t− 2. The head-
of-flow packet is buffered in bf . Similarly, St+1

2 sched-
ules to op the head-of-flow packet of a third oldest flow
announced at time slot t− 1. Denote the two head-of-flow
packets as pa and pb, and the two flows as fa and fb. On
one hand, if flow fa and flow fb are different, packet pa

and packet pb must be different. On the other hand, if flow
fa and flow fb are the same flow, packet pa and packet pb

are still different according to Lemma 1, since the flow be-
comes “younger” (second oldest at time slot t−2 and third
oldest at time slot t− 1).

• {3, 3}: Given that the state of bf is announced as 3 at time
slot t− 1 but ss2 takes it into consideration when comput-
ing St+1

2 , it must be true that in St
2 ss2 grants a buffer with

a second oldest flow of op announced at time slot t−2 and
that buffer is a solo buffer of op, which cannot be bf whose
state announced at time slot t−2 is 3. This contradicts with
the assumption that bf is matched to output port op in both
time slots by ss2.

Combining the two cases, the theorem is proved.
By now, duplicate scheduling is completely ruled out in our

mechanism.
C. Case of k > 2

We now extend our result for k = 2 to the case that k is an ar-
bitrary integer between 3 and N . The system performance can

...

1S
k+2

S
k+1
2

1S

2S
k

k+1
1S
k

...
...

...
...

...
...

...

S

1S
t+k+1

2S
t+k

kS
t+2

t+1

...

S

1S
t+k

2S

kS
t+1

t

t+k−1

time slot 0 k tk−1 t+1

ss1

ss2

ssk

21

k+1

2k−1

S
k
kS

2S

1S
2k2k−1

2k−2

k

1S

2S

S
k

schedule

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 5. Pipelined scheduling procedure for an arbitrary k.

be improved at the cost of extra subschedulers. While the basic
idea remains the same as k = 2, there are a few implementation
details that need to be addressed when k becomes large. Du-
plicate scheduling can no longer be eliminated with an arbitrary
k due to the increased scheduling complexity. Nevertheless we
will propose several approaches to reducing it.

The basic pipelined scheduling procedure is given in Fig. 5.
An FDL of length k is attached to each input port to provide the
necessary delay for computing the schedules. k identical sub-
schedulers, ss1, ss2, . . ., ssk are employed, ssi dealing with
buffers that contain an ith oldest flow of some output port. In-
termediate results are passed between adjacent sub-schedulers
and used to update the VIQ status. The computing of the sched-
ule to be executed in time slot t spans k time slots, from the
beginning of time slot t− k to the end of time slot t− 1. The
announcement of buffer states from an output port to the sub-
schedulers can be done exactly the same way as that for k = 2,
except that the state of a buffer for an output is now of length
log(k + 1) bits.

We have addressed the solo buffer problem for k = 2 to
eliminate duplicate scheduling. Namely, if sub-scheduler ss2

matched a buffer bf to an output port op in St
2, it will not con-

sider bf as a state-2 buffer for op when computing St+1
2 even

if it was announced so. In case bf is the solo buffer of op,
i.e. the buffer announced by op contains the only second old-
est flow of it, ss2 will work on state-3 buffers for op trying to
keep work conserving. For an arbitrary k, the rule is still kept,
that if ssi matched a buffer bf to an output port op in St

i , it
will not consider bf as a state-i buffer for op when computing
St+1

i . However, if bf is the solo buffer of op, ssi will not turn
to buffers with state i+1. The reason is that, while this method
involves only ss2 when k = 2, it may cause a chain effect when
k > 2: if ssi sets to work on buffers with state i + 1 at some
time, then ssi+1 needs to work on buffers with state i + 2 for
the same schedule. In case there is only a solo buffer with state
i+1 and is matched by ssi again, then in the next time slot, ssi

may have to work on buffers with state i + 2 and ssi+1 has to
work on buffers with state i + 3. The process could go on and
become too complicated to implement. Therefore, if an output
announced the same buffer as the solo buffer in two consecu-
tive time slots, say, t− 1 and t, and ssi matched this buffer to
the output in St+k−i

i , it will not try to match the output to any
buffer in St+k+1−i

i . In other words, we will let ssi be idle for
the output in time slot t + i in that case.

By allowing a sub-scheduler to be idle for some output
port in a certain time slot, we prevent the possibility that the
sub-scheduler schedules a packet that was already scheduled
and blocks other sub-schedulers behind it in the pipeline from

scheduling a packet to that output port. Unfortunately, the cost
is that Theorem 1 does not hold for k > 2. To see this, first note
that F t

i is essentially the set of the ith oldest flows of every out-
put port at the beginning of time slot t+1− i. For instance, F t

1

is the set of the oldest flows at time slot t and F t
3 is the set of the

third oldest flows at time slot t−2. If there is a flow f such that
f ∈ F t

i , then it is one of the ith oldest flows for some output
port at time slot t + 1− i. During the time interval, denoted as
T , from time slot t + 1− i to time slot t− j for some j < i, at
most i− j flows for that output can be scheduled. Therefore,
at time slot t + 1− j, f is at least the i− (i− j) = jth oldest
flow. If f is indeed the jth oldest flow, which can occur if and
only if i− j flows that are “younger” than f have been sched-
uled during T and all of them are solo flows, f ∈ F t

j holds.
In that case, f ∈ F t

i ∩ F t
j holds, and ssi and ssj may sched-

ule the same packet during time slot t. Nevertheless, as can be
seen, the possibility that F t

i overlaps with F t
j is rather small and

should not significantly affect the overall system performance.
In fact, if we let Pr denote the probability that an output port op
announces a buffer bf as the buffer which contains the solo sec-
ond oldest flow and bf is later matched to op by ss2 based on
the announcement, then according to our simulations for k = 4,
when the traffic intensity is as high as 0.9, Pr is less than 2%.
The probability for the case of multiple solo flows is roughly
exponential to Pr and thus is even smaller.

IV. ADAPTIVE PIPELINING

We have discussed the mechanism to pipeline packet schedul-
ing in the OpCut switch for any fixed k. In the following we will
enhance it by adding adaptivity. The motivation is that, in our
mechanism, the extra delay introduced by pipelining is equal to
the number of active sub-schedulers, or k. When traffic is light,
a small number of sub-schedulers may be sufficient to achieve
satisfactory performance, or pipeline is not necessary at all. In
this case, it is desirable to keep k as small as possible to min-
imize the extra delay . On the other hand, when the traffic be-
comes heavy, more sub-schedulers are activated. Although the
delay of pipelining increases, now more packets can be sched-
uled to the switch output since more packets are taken into con-
sideration for scheduling due to the additional sub-schedulers.

The first step towards making the pipelined mechanism adap-
tive is to introduce flexibility to the FDLs attached to the switch
output ports. Since k sub-schedulers working in pipeline require
a k time slot delay of the newly arrived packets, the FDL needs
to be able to provide integral delays between 0 and K time slots,
where K is the maximum number of sub-schedulers that can be
activated. Clearly, K ≤ N .

A possible implementation of such an FDL is shown in Fig.
6. The implementation adopts the logarithmic FDL structure
[21] and consists of �logK�+ 1 stages. A packet encounters
no delay or 2i time slot delay in stage i, depending on the input
port it arrives at the switch of stage i and the state of the switch.
Through different configurations of the switches, any integral
delay between 0 and K can be provided.

The number of packet arrivals in each time slot is recorded,
and the average over recent W time slots is calculated and
serves as the estimator of current traffic intensity. This aver-
age value can be efficiently calculated in a sliding window fash-

.
FDL

. .

Fig. 6. A possible implementation of an FDL that can provide flexible delays
to fit the needs of pipeline with different number of sub-schedulers. There are
�logK�+1 stages. The ith stage is able to provide either zero delay or 2i time
slot delay.

ss2

...

...

...

...

...

ss3

ss3 turned on

...

...

...

...

...

ss3 turned off

...

...

...

...

...

S

j
j+3

S1

j+1
S3

j

time slot

ss1

schedule

2

1S
i+3

S
i+2

2S
i+1

S
i+1

S
i

i i+1

i+5
S2

i+6
S1

i+3
S

i+3

i+4
S3

i+4
S2

i+5
S1

i+2
S

i+2

i+3
S

i+2
S1

3

2

1S
j+3

S
j+2 j+3

S2

j+4
S1

S
j+1 j+2

S

j+1 j+2

S
j−1

j−1

j+1
S2

j
S3

Fig. 7. An example of sub-schedulers being turned on and off.

ion: let Ai denote the number of packet arrivals in time slot
i, then at the end of time slot t, A is updated according to
A = A − (At−w+1 − At)/W . An arbitrator decides whether
a sub-scheduler needs to be turned on or off based on A. If dur-
ing certain consecutive time slots, A remains larger than a preset
threshold for the current value of k, an additional sub-scheduler
will be put into use. Similarly, if A drops below some threshold
and does not bounce back in a certain time interval, an active
sub-scheduler can be turned off.

The value of W can be adjusted to trade-off between sensi-
tivity and reliability: if W is large, the averaging of traffic in-
tensity is over a relatively long time period, and it is less likely
that a small jitter will trigger the activation of an additional sub-
scheduler. However, more time is needed for it to detect a sub-
stantial increase in traffic intensity, and vice versa.

An example of adaptive pipelining is given in Fig. 7. The
basic idea is the same for any k value, thus we only show the
process from two sub-schedulers to three sub-schedulers and
then back to two to keep it neat. The “×” state in the figure
indicates that the sub-scheduler is off, and a “Δ” means that the
sub-scheduler is on but will be idle in the time slot. The arrows
in the figure illustrate how the intermediate results are relayed
among sub-schedulers at transition points when a sub-scheduler
is being turned on or off.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the switch
under two widely used traffic models: the uniform Bernoulli
traffic and the non-uniform bursty traffic. Both models assume
that the arrival at an input port is independent of other input
ports. The uniform Bernoulli traffic assumes that the packet
arrival at an input port is a Bernoulli process and the destina-
tion of an arrived packet is uniformly distributed over all output
ports. The non-uniform bursty traffic assumes that an input port
alternates between the “on” state and the “off” state. In the on
state, a packet arrives at the input port every time slot. In the off
state, no packet arrives. The packets arrived during an on state
is called a burst and have the same destination. The average
burst length is 10 in our simulations. A packet arrived at Ii is
destined to Oi with probability µ+(1−µ)/N and is destined to

Oj with probability (1−µ)/N for j 	= i, where µ is the “unbal-
ance factor” and is set to be 0.5 which is the value that results in
the worst performance according to [19]. The evaluated OpCut
switch is of size 64× 64. We have done simulations on both
non-pipelined and pipelined schedulers. Each simulation was
run for 106 time slots.

We implemented two instances of the proposed pipelining
mechanism, denoted as p-k2-2SLIP and p-k4-2SLIP, respec-
tively. Both of them are built on sub-schedulers executing two
steps of iSLIP in each time slot. p-k2-2SLIP runs two such sub-
schedulers and covers up to the second oldest flows of each in-
put port, while p-k4-2SLIP runs four sub-schedulers and covers
up to the fourth oldest flows. For comparison purpose, we also
implemented the basic non-pipelined scheduler, as well as the
pipelined iSLIP that pipelines i sub-schedulers, each of which
executes one iteration of iSLIP in a time slot. It is the straight-
forward way to pipeline iterative-matching-based algorithms,
but is not aware of the duplicate scheduling problem.

A. Cut-Through Ratio

First we investigate the packet cut-through ratio, which indi-
cates how much portion of packets can cut-through the switch
without experiencing electronic buffering. Apparently, if only
a small portion of packets could cut-through, or packets could
cut-through only when the traffic intensity is light, the OpCut
switch would not be very promising. From Fig. 8, we can see
that when the load is light, the cut-through ratio is high with
all schedulers under both traffic models. However, For p-iSLIP
schedulers, the ratio drops sharply with the increment in traffic
intensity. For all other simulated schedulers, the ratio decreases
much slower, and stays above 60% under Bernoulli uniform
traffic and 30% under bursty non-uniform traffic even when the
load rises to 0.9.

B. Average Packet Delay

Fig. 9 shows the average packet delay of the OpCut switch
under different schedulers and traffic models. The ideal output-
queued (OQ) switch is implemented to provide the lower bound
on average packet delay. It can be seen that p-2SLIP and p-
8SLIP perform very poorly due to underutilization of band-
width caused by the duplicate scheduling problem. On the other
hand, as instances of the proposed pipelining mechanism, p-k2-
2SLIP and p-k4-2SLIP lead to substantially improved perfor-
mance. The maximum throughput p-k2-2SLIP can sustain is
about 0.94 under uniform Bernoulli traffic and 0.9 under non-
uniform bursty traffic, which outperforms np-2SLIP by about
5% and 15%, respectively. In other words, the system through-
put can be improved through pipelining. In fact, except for the
case under light uniform Bernoulli traffic where the extra de-
lay introduced by pipelining is comparatively significant, the
performance of p-k4-2SLIP is very close to that of np-8SLIP,
which is in turn very close to that of the OQ switch in terms
of average packet delay. That is, the non-pipelined scheduler
that executes 8 iterations of iSLIP in each time slot can be well
emulated by four schedulers working in pipeline, each of which
executes 2-iteration iSLIP only. The time constraint on com-
puting a schedule is relaxed by four times and the system per-
formance is hardly affected, which illustrates the effectiveness
of the proposed pipelining mechanism.

C. Adaptive Pipelining

Next we examine the effectiveness of adaptive pipelining. To
illustrate the point, we consider a simple synthetic traffic model
given in Fig. 10(a). The performance of adaptive pipelining is
obtained and compared with that of non-pipelining and pipelin-
ing with a fixed number of sub-schedulers, as Fig. 10(b) shows.
All schedulers, pipelined or not, are assumed to run 1SLIP. The
average packet delay is sampled every 100 time slots. It can
be seen that while non-pipelining and 2-subscheduler pipelin-
ing fail to sustain heavy traffic, and 3-subscheduler pipelining
suffers from the 3 time-slot pipelining delay , adaptive pipelin-
ing achieves both high throughput under heavy traffic and low
pipelining delay under light traffic by adjusting the number of
sub-schedulers according to the traffic load.

VI. CONCLUSIONS

In this paper, we have considered pipelining the packet
scheduling in the OpCut switch. The key feature of the Op-
Cut switch is that it allows packets to cut-through the switch
whenever possible, such that packets experience minimum de-
lay. Packets that cannot cut-through are received by receivers
and stored in the electronic buffer, and can be sent to the out-
put ports by the transmitters. We have provided a mechanism
to pipeline the packet scheduling in the OpCut switch by em-
ploying k sub-schedulers. The ith sub-scheduler handles the
scheduling of the ith oldest flows of the output ports. We have
respectively discussed the implementation details for k = 2 and
an arbitrary k. For the case of k = 2, we have shown that our
mechanism eliminates the duplicate scheduling problem. With
an arbitrary k, duplicate scheduling can no longer be eliminated,
but we have proposed approaches to reducing it. We have fur-
ther proposed an adaptive pipelining scheme to minimize the ex-
tra delay introduced by pipelining. Our simulation results illus-
trated that the pipelining mechanism effectively reduces sched-
uler complexity while maintaining good system performance.

REFERENCES

[1] Z. Zhang and Y. Yang, “Performance analysis of optical packet switches
enhanced with electronic buffering,” Proc. of the 23th IEEE International
Parallel and Distributed Processing Symposium, Rome, Italy, May 2009.

[2] I. Iliadis and C. Minkenberg, “Performance of a speculative transmission
scheme for scheduling-latency reduction,” IEEE/ACM Trans. Networking,
vol. 16, no. 1, pp. 182-195, Feb. 2008.

[3] R.R. Grzybowski, B.R. Hemenway, M. Sauer, C. Minkenberg, F. Abel,
P. Muller and R. Luijten “The OSMOSIS optical packet switch for su-
percomputers: Enabling technologies and measured performance,” Proc.
Photonics in Switching 2007, pp. 21-22, Aug. 2007.

[4] C. Minkenberg, et. al, “Designing a crossbar scheduler for HPC applica-
tions,” IEEE Micro, vol. 26, pp. 58-71, May 2006.

[5] R. Hemenway, R.R. Grzybowski, C. Minkenberg and R. Luijten, “Optical-
packet-switched interconnect for supercomputer applications,” Journal of
Optical Networking, vol. 3, no. 12, pp. 900-913, Dec. 2004.

[6] F. Xia, L. Sekaric and Y. Vlasov, “Ultracompact optical buffers on a sili-
con chip,”, Nature Photonics 1, 2007.

[7] Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J.
Gauthier, R.W. Boyd and A.L. Gaeta, “Tunable all-optical delays via Bril-
louin slow light in an optical fiber,” Phys. Rev. Lett., 94, 153902, 2005.

[8] T. Zhang, K. Lu and J.P. Jue, “Shared fiber delay line buffers in asyn-
chronous optical packet switches,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 4, pp. 118 - 127, April 2006.

[9] C.-S. Chang, Y.-T. Chen and D.-S. Lee, “Constructions of optical FIFO
queues,” IEEE/ACM Trans. Networking, vol. 14, pp. 2838-2843, 2006.

[10] A.D. Sarwate and V. Anantharam, “Exact emulation of a priority queue
with a switch and delay lines,” Queueing Systems: Theory and Applica-
tions, vol. 53, pp. 115-125, Jul. 2006.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

(a) (b)
Fig. 8. Packet cut-through ratio with non-pipelined and pipelined schedulers under different traffic models. p-iSLIP: pipelined iSLIP with i sub-schedulers, each
executing 1SLIP. np-iSLIP: non-pipelined scheduler executing iSLIP in each time slot. p-ki-2SLIP: pipelined scheduling that takes up to the ith oldest flows into
consideration, each sub-scheduler executing 2SLIP.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

(a) (b)
Fig. 9. Packet delay with non-pipelined and pipelined schedulers under different traffic models. The notations of schedulers are the same as in Fig. 8. OQ: ideal
output-queued switch.

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ffi
c

In
te

ns
ity

Time

Traffic intensity versus time

0 1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Time

Sampling of average packet delay over time

adaptive pipeline
non−pipeline
2−scheduler pipeline
3−scheduler pipeline

(a) (b)
Fig. 10. An example of adaptive pipeline. (a) The traffic model under which the traffic intensity changes with time. (b) Average packet delay over time under
different pipelining strategies.

[11] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans. Communica-
tions, vol. 47, no. 8, pp. 1260-1267, Aug. 1999.

[12] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” IEEE INFOCOM ’02, New York, June 2002.

[13] K.J. Barker, A. Benner, R. Hoare, A. Hoisie, A.K. Jones, D.J. Kerbyson,
D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. Stunkel and
P. Walker, “On the feasibility of optical circuit switching for high perfor-
mance computing systems,” Proc. ACM/IEEE Conference on Supercom-
puting (SC ’05), Seattle, WA, Nov. 2005.

[14] T. Anderson, S. Owicki, J. Saxe and C. Thacker, “High speed switch
scheduling for local area networks,” ACM Trans. Computer Systems, pp.
319-352, Nov. 1993.

[15] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, 1999.

[16] A. Smiljanic, R. Fan and G. Ramamurthy, “RRGS-round-robin greedy
scheduling for electronic/optical terabitswitches,” GLOBECOM 1999, pp.

1244-1250, 1999.
[17] E. Oki, R. Rojas-Cessa and H. Chao, “A pipeline-based approach for

maximal-sized matching scheduling in input-buffered switches,” IEEE
Communication Letters, vol. 5, pp. 263-265, Jun. 2001.

[18] C. Minkenberg, I. Iliadis and F. Abel, “Low-latency pipelined crossbar
arbitration,” Proc. IEEE GLOBECOM 2004, vol. 2, pp. 1174-1179, 2004.

[19] R. Rojas-Cessa, E. Oki, Z. Jing and H. Chao, “CIXB-1: Combined input-
one-cell-crosspoint buffered switch,” In Proc. 2001 IEEE Workshop on
High-Performance Switching and Routing (HPSR 2001), pp. 324-329,
Dallas, TX, May 2001.

[20] C.-S. Chang, D.-S. Lee, Y.-J. Shih and C.-L Yu, “Mailbox switch: a scal-
able two-stage switch architecture for conflict resolution of ordered pack-
ets,”IEEE Trans. Communications, vol. 56, no. 1, pp. 136-149, Jan. 2008.

[21] D.K. Hunter, D. Cotter, R.B. Ahmad, W.D. Cornwell, T.H. Gilfedder, P.J.
Legg and I. Andonovic, “Buffered switch fabrics for traffic routing, merg-
ing, and shaping in photonic cell networks,” Journal of Lightwave Tech-
nology, vol. 15, pp. 86-101, Jan. 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

