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Abstract—In this paper, we propose L2Relay, a novel packet
relay protocol for Wi-Fi networks that can improve the perfor-
mance and extend the range of the network. A device running
L2Relay is referred to as a relayer, which overhears the packet
transmissions and retransmits a packet on behalf of the Access
Point (AP) or the node if no ACK is overheard. One important
feature of L2Relay is its ubiquitous compatibility, i.e., it is
compatible with any Wi-Fi devices, such that one or multiple
relayers can be installed in any network easily without any
modification to the AP or the nodes. L2Relay is a layer 2 solution
that exploits many layer 2 functionalities such as carrier sense.
It encompasses unique solutions to link quality measurement,
rate adaptation, and relayer selection. We implement L2Relay
in the OpenFWWF platform and compare it against the baseline
network without a relayer as well as a popular commercial Wi-Fi
range extender. Our results show that L2Relay achieves overall
better performance than both compared schemes.

I. INTRODUCTION

Wi-Fi has been widely adopted in homes, offices, and
public hot spots. One challenge that often arises is the range of
the network, because Wi-Fi operates under strict transmission
power limits, such that nodes on the edge of the network
often get degraded or even interrupted service. This problem
can be alleviated to a degree by range extenders such as
[1], which extend the range of the network by capturing and
rebroadcasting the packets. However, it is known that the range
extenders may reduce network speed because the node may be
close to the Access Point (AP) and can receive from the AP
directly such that rebroadcasting the packets is unnecessary.

In this paper, we design a layer 2 packet relay protocol,
called L2Relay, and implement it in the OpenFWWF open
source firmware [15]. Our motivation is that a relay device
should avoid relaying packets that have already been received;
even for a lost packet, the relay device should determine
whether or not to relay the packet based on channel conditions
instead of always relaying it, because sometimes the original
sender is in a better position to retransmit the packet. L2Relay
is a layer 2 solution because it is independent of the physical
layer while exploiting many layer 2 functionalities in wireless
networks such as carrier sense. We refer to the relay device
simply as relayer in the remaining of the paper.

We identify the following key requirements and challenges
in the design of L2Relay:

• Ubiquitous compatibility: The relayer should be com-
patible with all existing types of APs and nodes

requiring no modifications. Many problems can be
significantly simplified if the AP or the node can be
modified; however, the deployment of L2Relay will be
much limited if L2Relay can only work with certain
types of APs or nodes, or if device updates are needed
which may be technically challenging for common
users.

• Link quality estimation: The relayer should be able to
measure the quality of the links to determine whether
or not to relay for a node. For example, no relaying
is needed if the link between the node and the AP is
very good. The challenge is that the estimation should
be robust and introduce minimum overhead.

• Coping with multiple rates: Wi-Fi supports multiple
data rates with different communication ranges and
loss ratios, which leads to many practical challenges.
For example, the AP’s rate selection algorithm may
eventually adapt to the best rate to the relayer which
may or may not be the best rate to the node. Also,
the AP usually transmits at a subset of the rates such
that the channel statistics at other rates may not be
available, including the optimal rate.

• Distributed relayer coordination: As multiple relayers
may be installed in a network, the relayers should be
able to converge to the best relayer for any specific
node. The challenge is that the relayers should reach
an agreement without causing much overhead to the
network while they may not be able to communicate
with each other directly.

• Low complexity: The protocol should be simple and
implementable in firmware because it needs to have
access to the Medium Access Control (MAC) layer.

In this paper, we propose solutions to the above challenges.
We test L2Relay with our implementation in the OpenFWWF
platform in both emulated and real-world experiments. We
compare L2Relay against the baseline network without a relay
device as well as a popular commercial Wi-Fi range extender.
Our results show that L2Relay achieves better performance
than both compared schemes, which suggests that L2Relay
is capable of adapting to the wireless channel conditions and
taking appropriate actions.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the L2Relay
protocol. Section IV gives the experimental results. Section V
concludes the paper.978-1-4799-1270-4/13/$31.00 c⃝2013 IEEE



II. RELATED WORK

Packet relay in Wi-Fi networks based on node cooperation
has been studied extensively in recent years. The proposed
protocols include PRO [3], Soft-Repeater [2], RCMAC [4],
DAFMAC [5], rDCF [6], RAMA [7], and CoopMAC [8]. The
fundamental difference between L2Relay and the existing pro-
tocols is that L2Relay is designed for ubiquitous compatibility
without any modification to the nodes and the AP, while the
existing protocols require such modifications. As a result, an
L2Relay device can be easily installed in any Wi-Fi network
and bring immediate benefits, while the existing protocols can
only be installed in networks where a significant percentage
of the nodes and the AP are modified. In addition, due to
the different design requirements, L2Relay solves different and
often more challenging problems than the existing protocols.
For example, rate adaptation in L2Relay is very challenging
because the unmodified sender will not differentiate between
the ACKs from the relayer and the ACKs from the receiver.
Furthermore, L2Relay is implemented in the firmware and
field-tested, while existing protocols are either implemented
in the driver and do not have access to much of the useful
MAC layer information or are evaluated based on simulation.

Rate selection is a classic topic in wireless networks
[10], [11], [12], [9]. L2Relay also handles rate selection by
the sender and by the relayer. While existing rate selection
algorithms can be adopted for the link between the relayer
and the receiver, the rate selection between the sender and the
relayer is different and challenging because the relayer has to
select a rate for the sender when the sender is not even aware
of the relayer. As a result, the solution in L2Relay is new and
different from the existing algorithms.

Maranello [13] is also implemented on the OpenFWWF
platform with a different focus on partial packet recovery
instead of packet relaying.

III. L2RELAY DESIGN

We explain the L2Relay protocol in this section under a
simple scenario with one AP and one node and with only the
downlink traffic. We note that this is sufficient for describing
the protocol because: 1) the operations on the downlink and the
uplink are identical except reversing the roles of the AP and the
nodes, 2) although there may be multiple nodes in the network,
the operations to all node are identical, and 3) although a
relayer may serve multiple APs if there are multiple APs in the
network, the operations for each AP are identical. We note that
the L2Relay relayer can improve the network performance in
more complicated sceneries with more APs and more nodes,
because for each packet transmission, if the relayer intervenes,
it should usually reduce the air time consumption.

A. Notations

We in most cases use R to denote a relayer and N to denote
the node. R may or may not relay for N depending on the
channel conditions; if it does, we say R is the relayer of N or
is relaying for N . As illustrated in Fig. 1, we denote the link
from the AP to N as L1, the link from the AP to R as LR

2 ,
and the link from R to N as LR

3 . The reverse links are denoted
as L′

1, L′R
2 , and L′R

3 , respectively. The Packet Receive Ratio
(PRR) of a link is the fraction of packets that are received

R

N1L

L’R

LR

L’R2
LR

2 3

3

L’1
AP

Fig. 1. Notations of links.

correctly, which is denoted as µ, along with the data rate, as
PRR is related to the data rate. For example, the PRR of LR

2 at
rate ρ is denoted as µR

2 [ρ]. The PRR notation may be simplified
if the link and the rate are clear from the context. The relay
rank of R is denoted as KR and is calculated according to the
PRRs where a better relayer has a smaller rank value.

B. Overview of L2Relay

At initialization, R is manually supplied with the MAC
address of the AP it should serve. Then, R monitors the
channel and maintains PRR records for N ; the PRRs for
different rates are stored separately. Whenever possible, R
uses the overheard data packets and ACKs to estimate the
PRRs which is referred to as the passive measurements; it
may also use link probing to gather data for rates with no
passive measurements. R makes decisions based on the PRRs;
for example, if µ1[ρ] is much larger than µR

3 [ρ] at some rate
ρ, it should not relay for N . Suppose R is the relayer of N .
After the AP sends a packet to N , R transmits the packet
again if it does not detect the ACK from N . R runs a simple
rate selection algorithm to adapt to the best rate for link LR

3 .
R also periodically enters a rate exploration mode to force
the AP to sample certain data rates in order to discover better
data rates. To discover potential better relayers of N , R sends
queries periodically to other relayers with a technique called
ACK reflection. A better relayer Q may respond to the query
and subsequently become the relayer of N .

C. Packet Relay Procedure

The basic packet relay procedure is described as follows.

1) High Level Description: Suppose R is the relayer of N .
After the AP finishes sending a packet P to N , R will relay
P if R received P correctly but did not detect the ACK from
N for P. If R decides to relay P, it first sends an ACK to the
AP on behalf of N such that the AP will not retransmit P. R
then transmits P. After the transmission of P, if R receives
the ACK from N , it removes P from the buffer; otherwise, it
will attempt to retransmit P for up to another W − 1 times,
where W is set to be 3 in our current implementation, after
which it removes P from the buffer. Fig. 2 shows a typical
packet transmission procedure captured by the GNU Software
Defined Radio [18].

2) Details: We explain the details in the following.

Buffer management and packet transmission: For simplicity,
R buffers only one packet. R writes an overheard packet to
the buffer only if there is no packet in the buffer. The packet
will be removed if an ACK from N has been received, or
if the packet has been transmitted W times. When relaying
a packet P for the first time, R transmits P SIFS (10 µs in
802.11g) after its ACK to the AP. If P is still not received by
N , the retransmissions are subject to the same random backoff
procedure in 802.11 DCF.
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Fig. 2. A typical packet transmission procedure.

ACK detection: R needs to determine if an ACK has been sent
by N to determine whether or not to relay P. This may seem
straightforward because R may simply check if it has received
the ACK. However, this means that R will have to wait until
the ACK transmission will have been completed. We note that
this might have already been late because if N did not send
the ACK, by this time, the AP may have already scheduled
a retransmission, which basically defeats the purpose of using
R for the retransmissions of lost packets. Therefore, L2Relay
detects ACK by checking whether or not the medium is busy
when the ACK is supposed to be transmitted, which can be
carried out during the transmission of the ACK before the
completion of the entire ACK. This is because the ACK should
be sent SIFS after P while data packet transmission must wait
for at least DIFS (28 µs in 802.11g) after P; therefore, if
the medium is busy shortly after P, e.g., 15 µs after P, it
is due to the ACK with high probability. The exact amount
of time to wait before checking the medium depends on the
hardware platform. With our wireless card, we have to wait
until at least part of the Physical Layer Convergence Procedure
(PLCP) header of the ACK has been received, because our
wireless card performs carrier sensing by receiving the PLCP
header. We note that: 1) if R decides to be the relayer of N ,
it can detect the ACK reliably with very low false negative
ratio, because it must be able to communicate with N at a
non-trivial data rate while carrier sensing is much more robust
than data communication, and 2) false positive should also
be rare, most likely due to non-Wi-Fi devices or interferences
from other Wi-Fi networks; even when false positive occurs,
R will just miss a relay opportunity and may relay next time.
We have carried out experiments which show that as long as
R can at least communicate with N at the same rate N sends
ACKs to the AP, the false negative and false positive ratios are
very small, e.g., typically no more than 1-2%.

Relay frame modification: R relays every MAC frame byte,
except replacing the source address in the MAC header with
its own MAC address because it needs to receive ACK from
N to determine if a retransmission is needed.

3) Loss Events: We now discuss the robustness of the relay
procedure against packet loss.

We first consider when the AP sent a packet P and
R received P correctly. There are two cases depending on
whether N received P or not: 1) if not, N will not send ACK
and R will relay the packet, which is the designed behavior

of the protocol; 2) if yes, N will send ACK and if this ACK
is detected by R, R will be silent according to the protocol,
otherwise it will relay the packet, which is not necessary. We
can see that the only problematic case is when both N and
R received P correctly but R failed to detect the ACK from
N . We note that this is a rare event, because as explained
earlier, ACK should be detected reliably if R is a good relayer
of N . In addition, we note that the cost is bounded. When
R missed the ACK from N , it will first send ACK to the AP,
then attempt to relay P. The ACK from R will collide with the
ACK from N , and the AP may receive neither of the ACKs.
Therefore, the cost is no more than the AP’s retransmission of
P to N plus R’s transmission of P to N . The cost is bounded
because the AP and R have retransmission limits. Actually, the
AP and R may get ACK from N and stop before reaching their
retransmission limits, because their transmissions are unlikely
to collide due to the random backoff mechanism.

We next consider when the AP sent a packet P and but
R did not receive P correctly. We first note that this should
not happen very often because R should be able to receive
most packets from the AP if it can serve as a relayer of N .
Not having received P correctly, R will be silent after the
AP’s transmission, but can get involved in the next packet
transmission according to the protocol, either when the next
transmission is a new packet or is a retransmission of P.

Therefore, the protocol can function properly in the pres-
ence of packet loss. We also note that the relayer may introduce
packet duplications. However, packet duplication may occur
even without the relayer, e.g., due to the unnecessary retrans-
mission of the AP, and the upper layers are able to handle the
duplications.

D. Relayer Rate Selection

If R is the relayer of N , R should adapt to the best data rate
to N . Any good algorithm may be used; currently, L2Relay
uses the SampleRate algorithm [9]. Basically, R maintains a
current data rate, denoted as ρ∗,Rr , which is initially set to
the minimum rate. R measures µR

3 [ρ
∗,R
r ] and µ′R

3 [ρ∗,Rr ]. A rate
with smaller packet delivery time than ρ∗,Rr under ideal PRR is
called a candidate rate. Every 10 packets, R randomly selects a
candidate rate as the rate for the first transmission of the packet
to learn the PRR at this rate; the possible retransmissions are
at ρ∗,Rr . ρ∗,Rr is updated if a candidate rate is better.

E. Link Quality Estimation

One key aspect of L2Relay is the estimation of link
PRRs. R runs a link quality estimation module and keeps
the estimated PRRs in a table which can be queried by other
modules. Separate estimate is maintained for each data rate.
The estimation is based on the assumption that R can detect the
ACKs from N reliably; at the end of Section III-E, we explain
why this assumption will not lead to incorrect behaviors of the
protocol.

1) Estimation with Passive Observations: R can passively
observe the link and obtain estimations without sending any
packet. In the following, we describe the estimations for one
generic data rate ρ because the estimation method is the
same for all data rates. For simplicity, we drop the rate and
superscript in the notation of PRR. R can estimate µ1, µ′

1,



µ2, and µ′
3 with passive observations; if it has no additional

information, it assumes µ′
2 = µ2 and µ3 = µ′

3.

Basically, R maintains a set of counters to track the
frequencies of certain events. When the AP transmits a fresh
packet P, the counters for the rate of P may be updated. The
counters are:

• ChP: incremented by 1 whenever R receives the PLCP
header of P correctly and the MAC header of P
indicates the packet is from the AP.

• CP: incremented by 1 whenever R receives P cor-
rectly.

• CPA: incremented by 1 whenever R receives P cor-
rectly and detects the subsequent ACK from N .

• CPAP: incremented by 1 whenever R receives P
correctly and detects the subsequent ACK from N ,
then receives P again with the same sequence number.
The second transmission need not be at the same data
rate as the first.

• CPA∧A: incremented by 1 whenever R receives P
correctly and detects the subsequent ACK from N ,
but fails to receive the ACK correctly.

Every 1 second, R calculates the PRRs according to the
values of the counters, which are regarded as new samples
of the PRRs. The PRRs are then smoothed according to
the standard Exponential Weighted Moving Average (EWMA)
with a coefficient of 0.5 for the new sample. If a counter
serving as the denominator in an equation is too small, the
sample is not valid and the PRR is not updated. If no sample
is valid in the last 10 seconds, the PRR value is set to be
invalid. After the update, the counters are cleared.

R estimates µ1 by

µ1 =
CPA

CP
(1)

based on the definition of µ1. We note that this estimation is
accurate if R can detect the ACK from N reliably.

R estimates µ′
1 by

µ′
1 = 1− CPAP

CPA
, (2)

because CPAP is the number of events when the AP missed
the ACK given R has observed the ACK.

R estimates µ2 by

µ2 =
CP

ChP
. (3)

We note that this would be an accurate estimate of µ2 if R
can detect all packets from the AP and include them in ChP.
However, there are packets with corrupted PLCP headers and
MAC headers which will not be counted in ChP; therefore,
µ2 may be overestimated. We still use this estimation method
because the amount of overestimation is likely to be small for
operative links.

R estimates µ′
3 by

µ′
3 = 1− CPA∧A

CPA
. (4)

We note that it is easier to detect the ACK than to receive
the ACK. The above equation determines µ′

3 based on the
probability of not receiving the ACK correctly given an ACK
has been detected.

One important feature of the passive estimation is that the
equations above are valid even when another relayer, denoted
as Q, is relaying for N . This is because the estimation of
µ1 and µ′

3 depend only on the packet transmission from the
AP and the subsequent ACK from N before any possible
involvement from Q. We note that R will not misinterpret
an ACK from Q as an ACK from N based on the timing; the
former is sent with some delay after SIFS while the latter is
sent immediately after SIFS. The estimation of µ′

1 depends on
CPAP; still, Q should be able to detect the ACK from N and
will not relay this packet.

2) Probing: R may also send probes to learn the qualities
of LR

2 and LR
3 , because the passive observations can be

insufficient in certain cases. For example, if µ1[ρ] is very
small, R will not be able to estimate µ′R

3 [ρ] according to Eq. 4
because few ACKs from N can be observed at rate ρ. R has
to rely on the passive observations to estimate the quality of
L1; on the other hand, it can be more actively involved in
estimating the links it shares with N and the AP, because
correct choices of rates are critical to the network performance.
As the probing process is the same to N and to the AP, in the
following, we explain only the probing to N .

For simplicity, the purpose of the probing is to discover
the optimal data rate for LR

3 , defined as the highest rate
such that the PRR is above a threshold β, which is set as
0.8 in our current implementation. To limit the overhead, R
should send probes infrequently, which is one beacon interval
every 100 beacon intervals in our current implementation.
During the probing beacon interval, R sends η dummy packets
at each selected rate to N , where η is 20 in our current
implementation. The dummy packets are of minimum size and
are not retransmitted if no ACK is received. In our current
implementation, the optimal rate is found by a binary search
based on the assumption that the PRR is a non-increasing
function of the data rate. To be more specific, the search starts
by probing a rate in the middle. If its PRR is above β, all
rates below the probed rate are marked off; otherwise, all rates
above. The search then resumes on the remaining rates, until
both PRRs above β and PRRs below β have been found. The
passive observations can also be used to reduce the search
space. That is, if the passive observations indicate low PRR at
a certain rate, all higher rates can be marked off; similarly, if
the passive observations indicate high PRR at a certain rate,
all lower rates can be marked off.

R uses the following counters for each rate where we again
drop the superscript and the rate in the notation for simplicity:

• CrP: incremented by 1 whenever R sends a dummy
packet.

• CrPA: incremented by 1 whenever R sends a dummy
packet and detects the subsequent ACK from N .

• CrPA∧A: incremented by 1 whenever R sends a
dummy packet and detects the subsequent ACK from
N , but fails to receive the ACK correctly.



R estimates µ3 by

µ3 =
CrPA

CrP
. (5)

R estimates µ′
3 by

µ′
3 = 1− CrPA∧A

CrPA
. (6)

When R receives the next beacon packet from the AP, it
calculates the PRR values for the rates with measurements
collected from link probing, and replaces the old PRR values
of such rates, after which it clears the counters. This is because
the PRRs calculated with link probing are mostly for the rates
with no passive observations and the old PRRs are most likely
collected at least 100 beacon intervals earlier.

3) Estimation when Relaying for N : When R is actively
relaying for N , it can get more frequent observations. For
simplicity, we describe the operations for one generic data rate
ρ and drop the rate and the superscript in the notation. R can
estimate µ3 and µ′

3 in a similar manner as in link probing. In
addition, it can get more accurate estimate for µ′

2. It maintains
counters:

• CrA: incremented by 1 whenever R sends an ACK.

• CrAPrx: incremented by 1 whenever R receives a
retransmitted packet from the AP after sending an
ACK.

It calculates
µ′
2 = 1− CrAPrx

CrA
. (7)

R updates µ′
2, µ3, and µ′

3 every second according to
EWMA with a coefficient of 0.5 for the new sample. The
counters are then cleared. No update is made if the new sample
is not valid. A PRR is cleared if no sample is received in 10
seconds.

4) If R Cannot Detect the ACK from N : As mentioned
earlier, the estimation of PRR is based on the assumption that
R can detect the ACKs from N reliably. If this is not true,
certain PRR values will be incorrect. For example, CPA will be
smaller than the actual number of packets received by N such
that µ1 will be underestimated according to Eq. 1. Fortunately,
in this case, the channel between R and N must be very poor
such that the estimated µ3 and µ′

3 for any rate will be either
invalid or very small. As a result, R will never consider itself
a good relayer of N and the incorrect estimations of PRRs
will not matter.

F. Expected Delivery Time Calculation

If the PRRs of all links are given, R can calculate Tρa,ρr
,

which is the expected delivery time of a packet P of unit size
when the AP and R transmit at rate ρa and ρr, respectively.
Tρa,ρr can be found based on a recursive relation. As we have
to implement the calculation module in firmware, we limit the
complexity of the module by making the following simplifying
assumptions:

• If R receives P from the AP and sends an ACK, this
ACK will be received by the AP. We note that in

practice, given that R just received P from the AP
correctly, the channel is likely in a good condition
such that the ACK will likely be received by the AP.

• The receptions of other packets and ACKs are inde-
pendent.

• R can always detect the ACK from N .

• The AP and R will keep retransmitting P until an
ACK is received.

Tρa,ρr can be derived according to a case analysis:

• Case 1: If neither N nor R receives P, the process is
repeated.

• Case 2: If N receives P, N will send ACK. Regard-
less of whether or not R receives P correctly, if R can
always detect the ACK from N , it will not attempt to
relay P. Depending on if the ACK is received by the
AP:

◦ If yes, one transmission is needed.
◦ If not, the AP will retransmit P and the process

is repeated.

• Case 3: If P is not received by N but by R, R
will send the ACK and transmit P. According to our
assumption, the ACK from R will be received by the
AP and one transmission is needed by the AP and

1
µ3[ρr]µ′

3[ρr]
transmissions are needed in expectation by

R.

Therefore,

Tρa,ρr
≈ (1− µ1[ρa])(1− µ2[ρa])(

1

ρa
+ Tρa,ρr

)

+
µ1[ρa]µ

′
1[ρa]

ρa
+ µ1[ρa](1− µ′

1[ρa])(
1

ρa
+ Tρa,ρr

)

+ (1− µ1[ρa])µ2[ρa](
1

ρa
+

1

µ3[ρr]µ′
3[ρr]ρr

)

which can be simplified into Eq. 8:

Tρa,ρr ≈
1
ρa

+ (1−µ1[ρa])µ2[ρa]
µ3[ρr]µ′

3[ρr]ρr

µ2[ρa] + µ1[ρa]µ′
1[ρa]− µ1[ρa]µ2[ρa]

. (8)

G. Relayer Rank Calculation

R should know if it is a good relayer for N . The rank of
R is denoted as KR and is basically the minimum expected
air time used such that the AP can send a unit size packet to
N with the help of R, where the minimization is taken over
the possible data rates. R calculates its rank based on Eq. 8
by plugging in different rates. A simplification can be made
because R should always use ρ∗,Rr , the best rate to N , as ρr
in Eq. 8. Therefore, the search is only over the possible rates
the AP may use. R will not consider itself a candidate relayer
if its rank is larger than the minimum packet delivery time for
the AP without the help of R.

H. Rate Selection for the AP

Introducing a relayer to the network can affect the rate
selection algorithm by the AP. For example, if R relays every
packet of the AP, the AP will see a very good link and will



continue to increase the data rate. As a result, N may not be
able to receive any packet from the AP directly, such that the
link degrades into a two-hop path. The two-hop path may or
may not be better than a single hop link that works partially.
After much thought, we believe that if R acts as the relayer, it
has to make efforts to lead the AP to the better rates, because
rate selection is critical to the network performance and only
R has the full knowledge about the links.

1) Rate Exploration: Let ρ̂∗,Ra be the best rate of the AP
known to R, which is calculated by R based on its PRR
tables according to Eq. 8. R has two modes, namely the
operating mode and the exploration mode. It is in the operating
mode by default but will also periodically enter the exploration
mode, set to be 1 second in every 10 seconds in our current
implementation. The packet relay policies are:

• Operating mode: Only relay packets at rates no higher
than ρ̂∗,Ra .

• Exploration mode: Only relay retransmitted packets at
rates no higher than ρ̂∗,Ra µR

2 [ρ̂
∗,R
a ]µ′R

2 [ρ̂∗,Ra ].

We note that R does not relay packets at rates higher than
ρ̂∗,Ra in the operating mode because this will lead the AP to
selecting ρ̂∗,Ra . The exploration mode is introduced to help
R discover ρ∗,Ra , the actual optimal rate. We note that if the
PRRs at all rates for all links are available, ρ∗,Ra must be ρ̂∗,Ra .
However, R may only have measurements for a subset of the
rates, especially for the link from the AP to N , because the AP
will most likely transmit at only a subset of the rates, while this
subset may not include ρ∗,Ra . Clearly, the key is to trigger the
AP to probe as many rates as possible to get samples at more
rates. We note that a rate selection algorithm will typically
sample rates higher than its primary data rate; therefore, the
challenge is mainly how to get samples at lower data rates.
In the exploration mode, as only retransmitted packets are
relayed, the AP may see significant losses at all rates higher
than the rate at which it can directly communicate with N ;
therefore, it may drop the rate and visit many data rates.
This policy is simple to implement because R may just check
the retransmission flag in the 802.11 header and the rate to
determine whether or not to relay a packet. It will not lead to a
disastrous performance drop because the retransmitted packets
are still relayed.

2) Analysis: We give an approximate analysis on AP rate
selection. We define the performance ratio with respect to AP
rate selection as the largest possible ratio of the calculated
rank of R based on its available PRR values over the actual
rank of R when the PRRs of all rates are available. Clearly,
the ideal performance ratio is 1; however, it may be larger
than 1 because R has knowledge only about a subset of rates.
To avoid highly complicated analysis, we make the following
simplifications that are usually true in practice to reveal the
high-level performance picture: 1) the AP’s rate selection
algorithm will not probe a rate if its ideal throughput is lower
than some other rate with measured throughput value, but will
probe it otherwise, 2) µR

2 [ρ̂
∗,R
a ] and µ′R

2 [ρ̂∗,Ra ] are both close
to 1 and can be approximated as 1, 3) if ρ∗,Ra is not probed
and is lower than any probed rate, the PRR from the AP to
N at any probed rate is very small and can be approximated
as 0, and 4) the links between R and N are better than those
between the AP and N .

Remark 1: The approximate performance ratio with re-
spect to AP rate selection is 3

2 .

Explanation: We note that if the AP has probed ρ∗,Ra , R should
have set ρ̂∗,Ra to be ρ∗,Ra . Therefore we consider when the
AP has not probed ρ∗,Ra . We note that ρ∗,Ra is unlikely to be
higher than ρ̂∗,Ra , because the AP’s rate selection algorithm
should probe rates higher than ρ̂∗,Ra given that it sees good
performance at ρ̂∗,Ra , and R should have samples at higher
rates and find that higher rates lead to better performance.
Therefore, ρ∗,Ra must be one of the lower data rates.

We denote the packet delivery time from the AP to N
at rate ρ∗,Ra with the help of R as Ψ. According to our
assumption, the packet delivery time from R to N should be
no more than Ψ. We also claim that the packet delivery time
from the AP to R should be no more than Ψ

2 . This is because
according to our policy, only retransmitted packets are relayed,
such that the AP will probe rates as low as ρ̂∗,R

a

2 ; as a result,
the optimal rate is no higher than ρ̂∗,R

a

2 . The ratio is therefore
3
2 .

I. Relayer Selection

In case multiple relayers are deployed in the same network,
the best relayer should act as the relayer of N . We explain in
the following how the relayers coordinate between each other
to achieve this.

1) High Level Description: The high level idea of relayer
selection is very simple. We denote the relayer of N as R. In
our current implementation, every 1 second, R announces a
query message containing its rank. If another relayer Q finds
it has a better rank than R in the last 3 announcements, it will
respond the query with its own rank. After a timeout, if R finds
that it has received one or multiple responses to its query, it
will find the best rank in the responses which, without loss of
generality, supposedly is from Q. R will announce a message
to let Q be the new relayer.

2) Reliable Communication with ACK-Reflection: The ma-
jor challenge in relayer selection is to ensure that the control
messages such as the query and the query response are received
reliably, even when the relayers may not be able to commu-
nicate with each other directly. This is achieved by a trick we
call ACK reflection, which is based on the fact that if R and
Q are both potential relayers of N , they should at least be
able to communicate with N reliably. As the same procedure
is followed by all relayers, we explain ACK reflection in the
following when R is sending the message.

Basically, R will send two very small dummy data packets
back to back to N at the lowest rate and the information is
announced by modifying the source MAC addresses in the
packets. According to 802.11, N will send an ACK after it
has received any data packet correctly, echoing the source
MAC address in the data packet. Therefore, when Q receives
the ACKs, it can decode the information based on the MAC
addresses in the ACKs. This approach is very reliable because
the dummy packets are sent at the lowest rate and the triggered
ACKs are also likely at the lowest rate. The overhead is small
because the dummy packets are small.

With two packets, the MAC address field carries a total
of 12 bytes, among which 6 bytes are used to specify the



MAC address of N , 4 bytes the MAC address of R, and the
remaining 2 bytes the message type and the rank of the relayer.
The message types include query and query response, as well
as relayer status announcement, which is used by a relayer to
announce who is the relayer of N . We note that 4 bytes are
sufficient to specify the MAC address of the relayer because
the relayers are likely made by the same manufacturer sharing
at least two bytes in their MAC addresses. The duration field
in the dummy packets is set to a special value such that the
duration field of the ACK is also a special value to simplify
the detection of the ACK reflection messages.

3) Learning the Existence of N : We argue that it is unlikely
that R is completely unaware of N while R is actually the
best relayer. We note that R cannot receive any packet with
the MAC address of N only if all such packets are at data rates
too high to be received by R. If N does not have a relayer, i.e.,
communicates with the AP directly, R is not a good relayer. If
N has a relayer Q, Q should enter rate exploration periodically
and some downlink packets to N might be sent at lower data
rates. If R cannot receive any such packets, the link between
R and the AP is much worse than that between Q and the AP.
In this case, if R is the better relayer, the link between R and
N must be better than that between Q and N . However, N
will transmit some uplink packets at least occasionally, and R
should have learned about N from such packets.

4) Analysis: We give an approximate analysis on relayer
selection. One potential problem in relayer selection, which
arises because of the existence of multiple data rates, is that the
AP may be “hijacked” by a relayer R such that it only transmits
at rates preferred by R which do not include ρ∗,Qa which is
the optimal rate preferred by a better relayer Q. As a result, Q
may never realize that it is actually a better relayer. We define
the performance ratio with respect to relayer selection as the
largest possible KR

KQ
, i.e., the ratio of the actual rank of R

over that of Q, where Q is the optimal relayer. We make the
following simplifying assumptions which are usually true in
practice to avoid highly complicated analysis: 1) by probing,
Q has learned Λ and Υ which are the delivery time of a unit
size packet between the AP and itself at ρ∗,Qa and between
Q and N at an optimal rate, respectively, 2) µQ

2 [ρ
∗,Q
a ] = 1

if µ1[ρ
∗,Q
a ] > 1

2 , 3) KQ = Λ + Υ − µ1[ρ
∗,Q
a ]Υ, 4) ACK can

always be received if the preceding packet has been received,
and 5) the links between potential relayers of N and N are
better than those between the AP and N .

Remark 2: The approximate performance ratio with re-
spect to relayer selection is 2.

Explanation: We note that if µ1[ρ
∗,Q
a ] ≤ 1

2 , KQ ≥ Λ + Υ
2 .

On the other hand, Q must have evaluated Λ+Υ as an upper
bound of its rank and found it larger than the announced rank
of R, which is no less than KR. Therefore,

KR

KQ
≤ Λ +Υ

Λ+ Υ
2

≤ Λ +Υ
Λ
2 + Υ

2

= 2.

If µ1[ρ
∗,Q
a ] > 1

2 ,

KR

KQ
≤ Λ +Υ

Λ+Υ− µ1[ρ
∗,Q
a ]Υ

= 1 +
µ1[ρ

∗,Q
a ]Υ

Λ + Υ− µ1[ρ
∗,Q
a ]Υ

.

According to our assumption, 1

ρ∗,Q
a µ1[ρ

∗,Q
a ]

≥ Υ. Also, as we

assume µQ
2 [ρ

∗,Q
a ] = 1 when µ1[ρ

∗,Q
a ] > 1

2 , Λ = 1

ρ∗,Q
a

≥

µ1[ρ
∗,Q
a ]Υ. Therefore,

KR

KQ
≤ 1 +

µ1[ρ
∗,Q
a ]Υ

µ1[ρ
∗,Q
a ]Υ + Υ− µ1[ρ

∗,Q
a ]Υ

= 1 + µ1[ρ
∗,Q
a ] ≤ 2

because µ1[ρ
∗,Q
a ] ≤ 1.

IV. EVALUATIONS

We implement the proposed L2Relay protocol on the
OpenFWWF platform [15] in firmware. We conduct our eval-
uation in emulated wireless channel conditions as well as in
real-world wireless channel conditions comparing against a
commercial range extender.

A. Implementation

In the OpenFWWF platform, programs are written in
assembly language and are loaded into the microprocessor in
the BCM4306 card as the firmware. The program has control
over carrier sense, microsecond level timing, and the access to
many physical layer parameters. We added about 2,000 lines
of code to the original firmware. Our current implementation
is a complete implementation of the L2Relay protocol with all
features. The only limitation is due to the limited memory size
of the microprocessor which cannot store many PRR tables;
our current implementation supports only the 802.11g rates
and each relayer can support up to 4 nodes.

B. Evaluation in Emulated Environments

Our first set of evaluations is based on emulated wireless
channels. We install a packet dropping module which drops
the packets and ACKs according to the emulated channel
conditions. The advantage of emulation-based evaluation is
that the channel is repeatable and theoretically predictable.
Real wireless channels are subject to random changes caused
by interference and fading, such that it is often difficult to
validate the internal designs of the protocol.

1) The Emulated Channel: In the emulation, we set the
AP, the node, and the relayers to be physically very close
to each other such that natural packet losses are rare and
most losses are introduced by the dropping module. The PRRs
of the links are determined by the emulated Signal to Noise
Ratio (SNR) and the SNR to PRR table of the BCM4306 card
available at [17]. The SNR is determined by the distance in the
emulated environment between the sender and the receiver; to
be specific, if the distance is d measured in meters, the received
signal strength is assumed to be −31−30 log10 d measured in
dBm according to the path loss model at [16].

2) Compared Schemes: We compare L2Relay with two
other schemes: 1) “Baseline,” which has only the AP and
the node, and 2) “Emulated Range Extender (EmuRExt),” in
which an emulated range extender is deployed in addition to
the AP and the node. EmuRExt is also implemented in the
OpenFWWF platform and emulates the behavior of typical
range extenders which repeat every packet. That is, whenever
EmuRExt receives a packet from the AP, it sends an ACK to
the AP and relays the packet SIFS after the ACK. We hack
the firmware of the node such that it never sends ACK to the
AP when running EmuRExt experiments. EmuRExt uses the
same algorithm as L2Relay for rate selection to the node.
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Fig. 3. Scatter plot of the throughput in the “one-hop” case.

3) The Experiment Setup: All our experiments involve one
AP, one node, and one or three relayers on 802.11g channel
3. The AP, the node, and the relayers are Dell 610 laptop
computers with the BCM4306 card. The AP and the node run
the unmodified b43 driver with auto-rate enabled and slightly
modified OpenFWWF firmware with the additional packet
dropping module as described earlier. The relayer functions
in the firmware level and need driver no support; the L2Relay
firmware or the EmuRExt firmware is loaded to turn it into
a L2Relay relayer or an EmuRExt relayer, along with the
additional packet dropping module. The AP is always at the
center of the emulated environment. The locations of the
relayers and the node are randomly selected within 20 to 150
meters to the AP under certain addition constraint; to be more
specific, random locations are selected first but the selections
may be rejected and the process repeated until the constraint is
satisfied. A separate machine is used as a sniffer to collect log
files with TCPDump. The iperf [14] tool is used to generate
UDP traffic as well as reporting the link throughput values.
All experiments run for 40 seconds and the data is collected
from 10 second to 40 second.

4) Performance Comparison: We first compare the perfor-
mance of the schemes when there is only one EmuRExt or
L2Relay relayer. In the experiments, the AP is at the center
of the emulated environment, while the relayer and the node
are at random locations under certain additional constraints
depending on the experiment.

The first type of experiments is referred to as “one-hop,”
i.e., when there is no need to relay. The relayer and node
locations are randomly chosen under the constraint that the
node will not see improved performance with the addition
of the L2Relay relayer. Fig. 3 shows the scatter plot of the
throughput collected in 30 experiments. In the scatter plot, the
x and y coordinates of a marker are the throughput values
of L2Relay and the compared scheme in one experiment,
respectively. We can see that L2Relay achieves almost identical
performance as Baseline, which is the desired behavior because
there is no need to relay packets in this case. EmuRExt suffers
much worse performance because it mechanically rebroadcasts
every packet; in some cases, it uses a much lower rate than
the rate of the AP and significantly reduces the throughput.

The second type of experiments is referred to as “two-
hop,” i.e., when relay is absolutely needed, by choosing
random relayer and node locations under the constraint that
the node cannot communicate with the AP even at the lowest
data rate. Fig. 4 shows the scatter plot of the throughput
collected in 30 experiments. We can see that L2Relay achieves
almost identical performance as EmuRExt, which is the desired
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Fig. 4. Scatter plot of the throughput in the “two-hop” case.
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Fig. 5. The “middle-ground” case. (a) CDF of the throughput. (b). CDF of
the packet air time.

behavior because EmuRExt is optimal in the two-hop setting.
Clearly, Baseline will report a throughput of 0.

The third type of experiments is referred to as “middle-
ground,” i.e., the relayer and node locations are chosen under
the constraint that the AP can communicate with the node
directly while adding an L2Relay relayer will theoretically
improve the throughput. Fig. 5(a) shows the Cumulative
Density Function (CDF) of the throughput collected in 90
experiments. We can see that L2Relay achieves noticeable
throughput gains than the other two schemes. For example,
the median throughput gain of L2Relay over Baseline and
EmuRExt are 10% and 45%, respectively. The reasons of
the throughput gain in middle-ground experiments are not as
obvious as the other two cases. It may be because the AP may
not need to retransmit a packet as the retransmission is handled
more efficiently by the relayer which shares a better link with
the node. It may also be because the AP may use higher data
rates. We measure the average air time consumption to deliver
a packet based on the log file, including the transmissions from
both the AP and the relayer, and show the CDF in Fig. 5(b).
We can see that it cross verifies with Fig. 5(a) which confirms
that the throughput gain is achieved by more efficient packet
forwarding.
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5) Rate Selection: A key issue in L2Relay is the rate
selection of the AP because the relayer should assist the AP to
settle at a good rate even when the AP is completely unaware
of the relayer. We denote rate i as ρi where 1 ≤ i ≤ 8 because
there are 8 rates in 802.11g. We define the rate distance as∑8

i=1 wi|i − j|, where wi is the fraction of packets sent at
rate ρi and ρj is the optimal rate calculated according to the
PRRs in the emulated environment. Clearly, the rate distance
is a metric of the rate selection; for example, a rate distance
of 1 may mean that all packets are sent at a rate next to the
optimal rate, and a rate distance of 0.5 may mean that half of
the packets are sent at the optimal rate while the other half at
a rate next to the optimal rate. Fig 6 shows the CDF of the
rate distance in the middle-ground case, where we can see that
rate distance is typically small with a median of around 0.15,
which means that the AP uses the optimal rate or rates close
to the optimal rate in the majority of the cases.

6) Relayer Selection: We conduct separate experiments to
test relayer selection which is also a key aspect of L2Relay.
As before, the AP is at the center of the emulated envi-
ronment. Three L2Relay relayers are randomly located on
two circles corresponding to maximum communication speeds
at 36 Mbps and 24 Mbps, respectively. The location of the
node is randomly selected under the constraint that at least
one of the relayers may act as the relayer of the node. A
total of 50 sets of experiments are conducted, where each set
contains two types of experiments, referred to as “L2Relay”
and “Optimal.” In L2Relay, all 3 relayers are turned on; in
Optimal, only the optimal relayer calculated according to the
PRRs in the emulated environment is turned on. To evaluate
the speed the optimal relayer captures the relayer role, in
the L2Relay case, the optimal relayer is turned on 5 seconds
after other relayers. Fig. 7(a) shows the scatter plot of the
throughput, where we can see that the throughputs of L2Relay
and Optimal are almost identical, which confirms that L2Relay
is capable of converging to a good relayer in most cases. In
all our experiments, we find that the optimal relayer eventually
becomes the relayer of the node and stays as the relayer of the
node afterwards till the end of the experiment. Fig. 7(b) shows
the CDF of the activation time of the optimal relayer, defined
as the time since the optimal relayer is turned on to the time it
becomes the relayer of the node. We can see that the activation
time is reasonably fast with a median of around 4 seconds.

C. Evaluation in Real-world Environments

We also conduct experiments in real-world environments
comparing head-to-head with the Netgear extender [1]. A
total of 15 network topologies are experimented, where each
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Fig. 7. Relayer selection. (a). Scatter plot of throughput. (b). CDF of the
activation time of the optimal relayer.

topology has one AP, 4 nodes, 3 L2Relay relayers, and one
Netgear extender. In each topology, there are both nodes close
to the AP and far from the AP; the L2Relay relayers and the
Netgear extender are typically in the middle range. Only one
Netgear extender is used because only one can be deployed in
a network.

For each topology, we conduct the “one-to-one” exper-
iments in which the AP runs only one iperf session and
transmits to only one node, as well as the “one-to-many” ex-
periments in which the AP runs 4 iperf sessions and transmits
to all 4 nodes. We use “Baseline” to refer to experiments where
only the AP and the node(s) are turned on. We use “Netgear”
to refer to the experiments in which the Netgear extender is
turned on in addition to the AP and the node(s). To be fair,
we actually try 3 times, placing the Netgear extender at the
same location as each of the L2Relay relayers. For one-to-
one experiments, the node throughput is simply the highest
among the three attempts. For one-to-many experiments, the
node throughput is the one from the attempt with the highest
aggregate throughput. We use “L2Relay” to refer to the ex-
periments in which all 3 L2Relay relayers are turned on in
addition to the AP and the node(s).

Fig. 8(a) shows the scatter plot of the throughput in the
one-to-one experiments. We note that the comparison between
L2Relay and Netgear may actually be biased against L2Relay,
because the Netgear extender has better hardware such as
stronger antenna. Still, L2Relay achieves higher throughput
than both Baseline and Netgear in most cases, which confirms
that L2Relay is effective in real-world environments. The
throughput of Baseline is higher than Netgear in many cases
when the nodes are close to the AP and do not need any
packet repeating. The Netgear extender almost delivers the
same throughput regardless of the location of the nodes, which
is due to its static behavior of repeating every packet, as well
as its strong hardware capable of supporting similarly high
data rates to all nodes in the experiments.
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Fig. 8. Scatter plot of throughput in the real-world experiments. (a) One-to-
one. (b). One-to-many.

Fig. 8(b) shows the scatter plot of the throughput in
the one-to-many experiments. We can see that L2Relay still
outperforms both Baseline and Netgear in most cases, which
confirms that L2Relay is capable of supporting multiple nodes
effectively. The gain over Netgear is not as impressive as
in the one-to-one case because of the fate sharing in 802.11
networks; that is, a slow node may consume much of the air
time with its traffic thus dragging down the performance of
all other nodes. As explained earlier, the Netgear extender can
deliver almost the same performance to all nodes, thus there
are practically no slow nodes with Netgear. On the other hand,
some nodes will be slower with L2Relay than with Netgear due
to the better hardware of Netgear, which will negatively impact
the performance of all nodes. Also due to the fate sharing,
Baseline sees a much weaker performance, because a slow
node becomes even slower when deprived of the help from
any relaying devices. Finally, we note that the main purpose of
the one-to-many experiments is to confirm the effectiveness of
L2Relay in supporting multiple nodes; the fate sharing problem
should be solved by better link bandwidth sharing algorithms
which are out of the scope of this paper.

V. CONCLUSION

In this paper, we propose a novel layer 2 packet relay proto-
col for Wi-Fi called L2Relay. An L2Relay relayer overhears a
lost packet and retransmits the packet on behalf of the original
sender if it is in a good position to relay the packet. L2Relay is
designed to be ubiquitously compatible, i.e., one or multiple
relayers can be easily installed in any network without any
modification to the AP or the nodes. We solve problems such as
link quality estimation with passive and active measurements,
relayer rank calculation, rate adaptation for the sender node,
and distributed relayer selection. Our solutions exploit many
layer 2 functionalities such as carrier sense and microsecond
level timing. We implement L2Relay in the OpenFWWF
platform and compare it against the baseline without a relayer

as well as a commercial Wi-Fi range extender. Our results
show that L2Relay outperforms both compared schemes.
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