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Abstract—Optical WDM networks are attracting more and more atten-
tions because of its huge bandwidth to meet the ever increasing demand
of modern networking applications. In this paper we study supporting
multicast in WDM switching networks. Multicast is the operation to send
information from one source to multiple destinations. In WDM switch-
ing networks, contention occurs when one output fiber is the destinations
of more than k inputs, where k is the number of wavelengths on each
fiber. In this paper, we study scheduling algorithms which can select a
group of multicast connection requests that are contention-free. We first
prove that the problem of scheduling the maximum number of such con-
nection requests through the network simultaneously is NP-hard. On the
other hand, lack of optical buffers in WDM switching networks requires
a very fast scheduling algorithm. We then turn to develop approxima-
tion scheduling algorithms that can provide sub-optimal solutions. We
present four polynomial approximation scheduling algorithms and study
their performance through simulations. We also discuss their perfor-
mance ratio to the optimal algorithm. Our results demonstrate that one
of the simple algorithms (the fastest one) yields throughput close to other
three more complex algorithms, thus could be a good candidate for mul-
ticast scheduling in WDM switching networks.

I. INTRODUCTION

Many networking applications, such as video conferencing,
video on demand, E-commerce and image distributing, require
very high network bandwidth often far beyond that today’s
high-speed networks can offer. Optical networking is a promis-
ing solution to this problem because of the huge bandwidth
of optics: a single fiber has a bandwidth of nearly 50 THz
[1]. To fully utilize the bandwidth, a fiber is divided into a
number of independent channels, with each channel having a
different wavelength and carrying its own data. This is called
wavelength-division-multiplexing (WDM). It has been reported
that on a single fiber there can be up to 1,022 channels [16]. It
is believed that optical WDM networks will serve as the back-
bone networks in the near future.

Multicast is the operation that sends information from one
source to multiple destinations. The applications mentioned
earlier typically require multicast operations for efficiency pur-
pose. In this paper we study supporting multicast in WDM
switching networks (also called WDM switches in some lit-
erature). The network we consider is an m×m network, i.e.,
there are m fibers on the network input side and m fibers on the
network output side. On each fiber there are k wavelengths that
carry independent data. Thus, there are a total of mk inputs in
the network. Each wavelength on each input fiber may be con-
nected to any wavelength on any output fiber. The change in
wavelength can be achieved by using wavelength converters.
Moreover, we assume that the network is multicast-capable,
which means that an input wavelength may be connected to
more than one output wavelengths at the same time, with the
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restriction that an input wavelength cannot be connected to
more than one output wavelengths on the same output fiber.
[1] showed how to construct such a switching network in a
nonblocking manner.

Future WDM switching networks will most likely be oper-
ated in a synchronous mode [15], in which connection requests
or optical packets arrive at a switching network at the begin-
ning of time slots. We consider the case where each connection
holds for the same time length and is of the same priority. In a
k-wavelength WDM switching network, output contention oc-
curs if an output fiber is the destination of more than k connec-
tion requests arrived during a time slot. Thus, a general scheme
for resolving such contentions needs to be studied. Figure 1 il-
lustrates an example of multicast connections with contentions
in a 3×3 WDM switching network with 4 wavelengths on each
fiber. The nodes on the left side represent input wavelengths of
the network and the circles on the right side represent output
fibers. Input wavelengths are also associated with a number ac-
cording to their fiber and wavelength indexes, as shown in the
figure. We draw a link between input x and output y if y is one
of the destinations of the connection originated from x. Since
there are only four wavelengths on each fiber in this example,
when more than four connections share a destination fiber, con-
tention occurs. We can see that in Figure 1, contention occurs
on output fibers 1 and 3. In this case, we need to select some
of the connection requests to transmit while reject or buffer
others. As optical buffers are currently made of fiber delay
lines and are still very expensive [4], we consider unbuffered
WDM switching networks in this paper. Connection requests
that cannot be realized are dropped. Lack of optical buffers
also means that we cannot split a multicast connection and re-
alize only a portion of it each time. In other words, we consider
the situation that a multicast connection from the same source
is either fully realized in the network or blocked. This is re-
ferred to as “one-shot” in the literature [8]. In Figure 1, we
can drop the connection originated from λ3 on input fiber 1
(input 3) and realize the others. Alternatively, we can drop the
connections originated from inputs 9 and 12 on input fiber 3
and realize the others. However, fewer connection requests are
realized in the latter case.

In general, we model an m × m WDM multicast switch-
ing network with k wavelengths per fiber equipped with wave-
length converters as a network with mk inputs and m outputs,
where each output can be involved in up to k connections si-
multaneously. For any 1 ≤ i ≤ m and 1 ≤ j ≤ k, the input
corresponding to λj on input fiber i is represented by num-
ber (i− 1) × k+ j. At a certain time slot, up to mk multicast
requests may arrive at the network inputs. If the connection re-
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Fig. 1. Multicast connections in a 3 × 3 WDM switching net-
work with 4 wavelengths per fiber.

quests do not have any contention, they can be realized simul-
taneously. If they do have contention, a scheduling algorithm
can be used to select some of them to transmit and drop other
unselected connection requests, as in the example discussed
above. To maximize the network throughput, we need to find
the largest group of connection requests that are contention (or
blocking) free. In the example in Figure 1, the largest group of
connection requests that can be transmitted simultaneously is
{1,4,5,6,9,11,12}.

Extensive research has been conducted on scheduling algo-
rithms for electronic switching networks in the literature. For
example, [10] and [11] considered scheduling algorithms in
input-buffered electronic switching networks for unicast traf-
fic, and [12] and [9] proposed scheduling algorithms for the
same type of networks for multicast traffic, in which request-
splitting was allowed to achieve higher throughput. However,
due to the reasons mentioned earlier, in WDM switching net-
works, we need to consider one-shot scheduling algorithms in
which request-splitting is not allowed. Scheduling algorithms
have also been proposed for multicast traffic in WDM single-
hop networks, where nodes are connected in a star topology
by a passive coupler, see, for example, [13]-[14], for a survey.
In this type of network, an input node chooses one wavelength
(channel) and broadcast its information to all output nodes by
the passive coupler. If an output node is its destination it should
”tune in” this wavelength. At any time only one wavelength is
carrying data, either on the fiber of the input side or the output
side in a time-division manner. On the other hand, a WDM
switching network allows each wavelength on each fiber to
be utilized simultaneously in a space-division manner. To the
best of our knowledge, no research has been reported on how
to schedule multicast requests to resolve output contentions in
WDM switching networks. In Section 2, we will formalize the
problem of finding the largest group of contention-free mul-
ticast requests as connection request packing problem (CRP).
We will show that this problem is not only NP-hard but also
hard to approximate. Another issue is that a good schedul-
ing algorithm for a WDM switching network should be very
fast, since in a time slotted scheme, a cell or an optical packet
must be transmitted in a single time slot. Thus, the decision
on whether a cell can be transmitted or not must be made real
time within a time slot, which is in the order of µs if ATM cells
are transmitted [4]. Therefore, we are facing a very challeng-

ing problem: approximating a NP-hard problem within a very
limited amount of time.

II. PRELIMINARIES

In this section we give the definitions and terms we are going
to use in this paper.

Definition 1: The multicast connection requests arrived at
an m×m WDM switching network with k wavelengths dur-
ing a time slot can be represented by an m×mk binary matrix,
called request matrix and denoted as R, in which each row rep-
resents an output fiber and each column represents a multicast
connection request from an input. Entry ri,j is 1 if and only if
output fiber i is one of the destinations of connection request
from input j.

For example, the request matrix for the example in Figure 1
is:

R =




101101001000
100000001010
001110000011





In the following discussions, we will also call the connection
requests columns.

Definition 2: We define the row degree of a row in the re-
quest matrix as the number of 1’s in the row, and the column
degree of a column as the number of 1’s in the column. Fur-
thermore, for a subset of the columns in the request matrix,
written as P , if a row has t ’1’s in P , we say this row has
degree t in P .

Definition 3: Connection request packing problem: Given
an m×mk binary matrix, find the largest group of columns
such that no any row has more than k 1’s in these columns. In
this paper we will also refer to it as the CRP problem.

Definition 4: We give a measure for the performance of ap-
proximation algorithms. For a request matrix R, let the num-
ber of columns selected by the optimal algorithm be Nopt. Let
Napp be that of an approximation algorithm. The performance
ratio of this approximation algorithm is defined as the largest
value of Nopt/Napp among all possible request matrices for a
given network size. Thus, the ratio indicates how much the
optimal algorithm outperforms the approximation algorithm in
the worst case. The smaller the ratio, the better the approxi-
mation algorithm. We also say that an algorithm approximates
the CRP problem within β if it has a performance ratio β.

III. NP-HARDNESS OF THE CONNECTION REQUEST

PACKING PROBLEM

In this section, we study some useful properties of the CRP
problem defined in the last section. We will prove that the CRP
problem is not only NP-hard but also hard to approximate. We
first show that the CRP problem is NP-hard when k = 1. We
then prove the general case by induction.

Lemma 1: Unless NP = ZPP, i.e., NP-hard problems can
be solved in expected polynomial time by a probabilistic algo-
rithm that never makes mistakes [5], the connection request
packing problem cannot be approximated within m1/2−ε in
polynomial time for any ε > 0 when k = 1.
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Proof. We can use an undirected graph G with v ver-
tices to describe the CRP problem as follows. Let m = v,
and let U be the vertices of G numbered from 1 to m, i.e.,
U = {1,2, . . . ,m}. Suppose M is the adjacency matrix of G.
Thus, M is an m×m binary matrix. M can be used as the
request matrix for an m×m k-wavelength WDM switching
network when k = 1. It is not difficult to see that the solution
to the CRP problem is also the solution to the maximum in-
dependent set problem for G. It is well known that the latter
is NP-hard. By using the results in [5], no efficient m1/2−ε

approximation algorithm exists for the problem unless NP =
ZPP. Thus, the lemma follows.

The result of Lemma 1 can be applied to a k-wavelength
WDM switching network with no wavelength conversion. This
is because that an m×m k-wavelength WDM switching net-
work with no wavelength conversion can be viewed as the ag-
gregation of k independent m×m 1-wavelength networks. We
now give the proof for a WDM switching network with full
wavelength conversion.

Theorem 1: Unless NP = ZPP, the connection request pack-
ing problem cannot be approximated within m1/2−ε in polyno-
mial time for any ε > 0 and for any positive integer k.

Proof. We prove the theorem by induction. By Lemma
1, when k = 1, the theorem is true. Now suppose the theorem
holds for k = l. For any given instance for k = l, we append an
m×m identity matrix I to the right of the request matrix. For
example, we can append a 3 × 3 identity matrix to the request
matrix of the example in Figure 1 as follows:

R =




101101001000|100
100000001010|010
001110000011|001





We then have an instance for k = l + 1. Now if there ex-
ists an efficient m1/2−ε algorithm for k = l + 1, we can ap-
ply this algorithm to this instance. Suppose S is the solution,
where S is a group of columns in the request matrix. The first
thing to notice is that if S contains the identity matrix I we ap-
pended, then after removing the identity matrix, the remaining
columns, written as T , are the solution to the original instance
of k = l. This is true because by definition, if S is the solu-
tion to the CRP problem, then S is the maximum number of
columns such that no row has more than l+ 1 1’s in S. If T
is not the solution to the original instance, there exists another
group of columns T ′ which also satisfies the constraint that no
row has more than l 1’s, but with more columns. Now no row
has more than l+1 1’s in T ′ and I . But there are more columns
in T ′ and I than in S, which contradicts the assumption that S
is the solution to the instance of l+ 1. We conclude that if S
contains I , we can obtain the solution to the original instance
easily.

Now suppose I is not within S completely. Without loss of
generality, suppose columns e1, e2, . . . , ep are not in S, where
ej is the jth column in I . We can apply a swapping proce-
dure to transform S into S′ which is also a solution to the CRP
problem but with I in S′. Starting with e1, we can find a col-
umn in S that has a 1 entry in row 1. This is true because if

Algorithm 1
Step 0: P ← ∅;

let S = {S1,S2, . . . ,Sn} be the columns in
matrix A;

Step 1: Select the column in S with the smallest index,
say, Sj ; remove Sj from S,
P ← P ∪{Sj};

Step 2: Remove from S the columns that have at least
one 1 entry in at least one of the
rows that have degree k in P .
if S = ∅ stop and output P else goto Step 1.

Algorithm 2
Step 0: P ← ∅;

let S = {S1,S2, . . . ,Sn} be the columns in
matrix A;

sort the columns according to their degrees in an
ascending order;

Step 1: Select the column in S with the smallest index,
say, Sj ; remove Sj from S,
P ← P ∪{Sj};

Step 2: Remove from S the columns that have at least
one 1 entry in at least one of the
rows that have degree k in P .
if S = ∅ stop and output P else goto Step 1.

we cannot find such a column in S, we can simply add col-
umn e1 to S which results in more columns than S while not
violating the constraint. We then swap this column with e1.
The same procedure can be applied to e2, e3, . . . , ep. In each
step, we can always find a column in S with 1 entry in the
desired row. Notice that this procedure can be done in polyno-
mial time. Thus, there is a m1/2−ε polynomial time algorithm
for k = l+1, and there is also a m1/2−ε polynomial time algo-
rithm for k = l. This contradicts with the assumption. Hence,
the theorem follows.

The results of Theorem 1 indicate that: (1) the CRP prob-
lem is NP-hard; (2) it is hard to find an approximation algo-
rithm that guarantees a good performance ratio. Since m1/2

grows very fast with m, for a relatively large network, we can-
not expect the solution of heuristic to be close to the optimal
algorithm in the worst case.

IV. SCHEDULING ALGORITHMS

In this section we study scheduling algorithms that give sub-
optimal solutions. For presentational convenience, for a given
request matrix at a time slot, we remove the columns with all 0
entries because these columns represent those idle inputs and
need not to be considered in scheduling. Let the simplified
matrix be A. Suppose there are n columns left. Thus, A is an
m×n binary matrix. Entry ai,j is 1 when output i is one of the
destinations of input j, otherwise ai,j is 0. In the following, the
input to a scheduling algorithm is the simplified request matrix
A. The output is P , the set of the columns selected.

We will start with a very simple algorithm shown in Table
Algorithm 1. What this algorithm does can be viewed as a se-
quential search. If the connection requests arrive at random,
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Algorithm 3
Step 0: P ← ∅; u ← 0;

set the threshold α ← m/2;
divide the columns of the request matrix into

two classes, one with degrees less than α
denoted by T1 and the other denoted by T2;
columns within one class are in an arbitrary order.

Step 1: u ← u+1;
if u > 2, stop and output P else goto Step 2;

Step 2: Select the column in Tu with the smallest index,
say, Sj , remove Sj from Tu;
P ← P ∪{Sj};

Step 3: Remove the columns in Ti, u ≤ i ≤ 2,
that have at least one 1 entry in at least
one of the rows that have degree k in P .

if Tu = ∅ goto Step 1 else goto Step 2.

Algorithm 4
Step 0: P ← {1,2, . . . ,n};
Step 1: If no row in the request matrix has more than k 1’s

stop and output P else goto Step 2;
Step 2: Find the row with the maximum degree;

among the columns that have a 1 entry in this row,
find the column with the maximum degree; say, lth;
P ← P −{l};

remove this column from the request matrix;
goto Step 1.

it is equivalent to a random picking algorithm. Since Steps 1
and 2 may be executed at most n times, this algorithm has a
complexity of O(n). The actual time could be much less, as in
Step 2 we may remove several columns in each iteration. No-
tice that we do not require any sort of ordering in the columns
in this algorithm. Thus, we can simply let them in the same
order as the inputs. The solution yielded by Algorithm 1 con-
tains at least k columns. The optimal solution, on the other
hand, can have at most mk columns. Hence, we have the fol-
lowing result.

Theorem 2: The number of columns in the optimal solution
is no more than m times that in Algorithm 1, or the perfor-
mance ratio of Algorithm 1 is m.

Note that in this algorithm lower-indexed connection re-
quests are more likely to be selected because they are tested
first. To ensure the fairness to each input, we can implement
Algorithm 1 in a round-robin manner. Suppose at some time
slot Algorithm 1 starts from input i. Then in the next time slot,
it will move to input (i+ k) mod mk, (the first k columns
are guaranteed in P by the algorithm). Due to its simplicity,
Algorithm 1 can be easily implemented in hardware.

Algorithm 2 is shown in Table Algorithm 2. The only dif-
ference between Algorithm 2 and Algorithm 1 is that Algo-
rithm 2 sorts the columns according to their degrees so that
columns with fewer number of 1’s are picked first. Intuitively,
it will yield better solutions than Algorithm 1. However, the
penalty is the additional time required to sort the columns or
perform equivalent operations. Generally, a sorting algorithm

has a complexity of O(n logn), so does Algorithm 2.
Algorithm 3 shown in Table Algorithm 3 is a simplified ver-

sion of Algorithm 2. The columns are divided into only 2
classes (instead of m classes in Algorithm 2) based on their
degrees. Columns in the small degree class are tested first.
This algorithm can also be easily implemented in hardware.
Steps 2 and 3 may be repeated up to n times. Thus, it is also an
O(n) algorithm. However, it may provide a higher throughput
than Algorithm 1. Threshold α should be adjusted according
to the fanout distribution of multicast connections. We can
also divide the columns into more than 2 classes but this will
increase the hardware cost.

Algorithm 4 is described in Table Algorithm 4. In Algorithm
4, we first find the maximum degree row, then delete the max-
imum degree column that has a 1 entry in this row. By doing
this we guarantee that while maximum row degree is reduced
by one each time, we reduce the degrees of maximum number
of columns. The algorithm keeps doing this until no row has
a degree more than k. No sorting is needed in this algorithm,
but we need to search for the maximum degree row and col-
umn in each iteration. Thus, the complexity of this algorithm
is O(mn).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section we study network throughput of the algo-
rithms presented in the previous section through simulations.
In our simulations we consider a time slotted m×m WDM
multicast switching network with k wavelengths per fiber. We
assume optical packet switching in the network. The general
assumptions are: (1). The length of an optical packet is 1 time
slot. (2). For a packet, the probability that an output fiber is one
of its destinations is θ and independent of other output fibers.
Thus the fanout of a packet may range from 0 to m and follows
Binomial distribution (m,θ). We define network throughput
as the ratio of realized multicast connection requests over ar-
rived multicast connection requests. We conducted simulations
under two types of traffic, the Bernoulli traffic and the bursty
traffic. In Bernoulli traffic, at each time slot, for each input,
the probability that there is an arriving packet is b and inde-
pendent of other inputs. The arrival probability for each time
slot is also independent of other time slots. In bursty traffic,
we assume that each input independently alternates between
the “active” state and the “idle” state. In an active state, pack-
ets arrive continuously and go to the same destinations. In an
idle state, no packet arrives. The duration of active and idle
states follows geometric distribution with parameter p and q,
respectively. The expected duration of the active and idle state
is 1/p and 1/q, respectively.

We conducted simulations on networks of different sizes and
wavelengths. Each simulation runs for 2000 instances. The
results are shown in Figures 2(a) - 2(b). In Figure 2(a), we
plot the throughput under Bernoulli traffic for different arrival
probability b, where θ which controls multicast fanout is set to
be 0.5 so that the average fanout is m/2. Two network sizes are
considered, m = k = 16 and m = k = 32. In Figure 2(b), we
plot the throughput under bursty traffic for different average
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Fig. 2. Network throughput. (a) Bernoulli traffic, average
multicast fanout = m/2 (θ = 0.5). (b) Bursty traffic, aver-
age multicast fanout = m/2 (θ = 0.5), average idle state
duration = 10 (q = 0.1).

burst lengths, where the expected idle period is set to be 10
(q = 0.1) for convenience. Again θ = 0.5, and the networks
considered are of size m = k = 16 and m = k = 32. From
these two figures we can observe that: (1) The throughput of
Algorithm 4 is the highest, then Algorithm 2, Algorithm 3, and
finally Algorithm 1; (2) The performance of these algorithms,
measured by network throughput, is very close. For example,
in Figure 2(a), the simulation results show that under Bernoulli
traffic, for m = k = 32 the throughput of Algorithm 1 is no less
than 75% of Algorithm 4. The same fact can also be observed
in Figure 2(b) for bursty traffic. Form = k = 16, the difference
is slightly larger. The worst case is in Figure 2(a) when b = 1.0,
Algorithm 1 is about 66% of Algorithm 4.

From the simulation results we can see that the performance
of these algorithms are quite close. We now make some fur-
ther comparisons of them. First we compare the complexity.
Algorithms 2 and 4 have higher complexity than the other two.
The complexity of Algorithm 3 is higher than Algorithm 1.
Algorithms 1 and 3 can be implemented in hardware while Al-
gorithms 2 and 4 have to be implemented in software. Next we
consider fairness. When we design scheduling algorithms for
multicast traffic, we always face a dilemma: on one hand, to
maximize network throughput, we should select multicast con-
nection requests with smaller fanouts; on the other hand, if all
requests are of the same priority, requests with larger fanouts
should be treated equally, or have the same chance being se-
lected. Since Algorithms 2, 3 and 4 all are greedy algorithms,
they favor columns with small degrees. Thus, larger degree
columns have a higher probability of being rejected. Algorithm
1 is fairer to the requests with large fanouts, because the first

picked k columns will always be selected regardless of their
fanouts. Overall, we believe that Algorithm 1 is more practi-
cal. Although other three algorithms provide higher through-
put, they have some drawbacks such as high time complexity
or hardware complexity and possible starvation to multicast
connection requests with large fanouts.

VI. CONCLUSIONS

In this paper we have studied the problem of scheduling a
group of contention-free connection requests in WDM multi-
cast switching network. We have proved that finding the max-
imum number of such requests is NP-hard. We then presented
four scheduling algorithms and discussed their performance ra-
tio to the optimal algorithm. We also studied their performance
through simulations. The simulation results show that although
varying greatly in complexity, the four scheduling algorithms
have similar performance under the testing conditions. Thus
we recommend Algorithm 1 which is faster, easier to imple-
ment and also fairer to multicast connection requests with large
fanouts.
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