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Abstract—In a Wi-Fi network, partial packets often exist which
are packets with some errors. Recent works show that much
better efficiency can be achieved by repairing such packets instead
of retransmitting such packets. In this paper, we propose a rate
selection scheme for the repair packets, refereed to as ReSel.
ReSel is developed under the Maranello partial packet recovery
framework and is motivated by two observations. First, the repair
packet is sent shortly after the original packet and will likely
experience similar channel conditions as the original packet.
Therefore, given the recent failure on the original packet, a
lower data rate should be used for the repair packet. Second, a
Maranello receiver will send a NACK packet to the sender, which
can be used to carry important information for the selection of
the data rate. We build a rate selection table for ReSel with
experimental data. We implement ReSel in the firmware and
our experiments show that ReSel significantly improves the link
throughput and reduces packet jitter. We also find that the repair
packet is transmitted only once in the majority of the cases and
hence ReSel is capable of selecting the appropriate data rate.

I. INTRODUCTION

In a Wi-Fi network, partial packets often exist which
are packets with some errors. The default 802.11 protocol
retransmits such packets; however, recent works show that
much better efficiency can be achieved by repairing instead
of retransmitting such packets. Among the repair methods,
block-retransmission has the lowest complexity, with which a
packet is divided into blocks and only the corrupted blocks are
retransmitted in a repair packet. Block-retransmission has been
implemented in the firmware of commodity wireless cards
such as the Broadcom 4306 card in Maranello [6].

In this paper, we study partial packet recovery under the
Maranello framework and propose ReSel for the rate selection
for the repair packet. Wi-Fi supports multiple data rates and
lower data rates are typically more resilient to noise than
higher rates. In the current Maranello, the repair packet is
first transmitted at the same data rate as the original packet
which we refer to as the the default rate. This strategy may be
suboptimal because the default data rate has been attempted
and failed on the original packet transmission. The repair
packet is most likely transmitted within several milliseconds
of the original packet such that it will likely experience similar
channel conditions as the original packet. Given a failure in the
recent past, the probability for a failure significantly increases.
A new rate selection algorithm is therefore needed.

Rate selection has been studied extensively [1], [2], [3],
[4], [5]. Typically, the rate selection algorithm runs in the
device driver and determines the rate based on statistics

such as transmission successes or failures and packet delivery
time. The key difference between ReSel and the existing
rate selection algorithms is that ReSel selects rate based
on the instantaneous channel conditions while existing rate
selection algorithms select rates based on the average channel
conditions. As mentioned earlier, the repair packet is expected
to be transmitted shortly after the original packet. On the
other hand, other rate selection algorithms have to assign a
rate to a packet which may be handed down by the upper
layer at any time when the channel state information may
not be available; the best rate in this case should be the rate
that best matches the average channel condition to minimize
packet loss. Therefore, ReSel and the existing algorithms solve
different problems.

The main challenge in the design of ReSel is the unavail-
ability of the channel state information (CSI). Ideally, if the
CSI is available, ReSel can adopt a similar approach as in [1]
by selecting a rate with a reasonably low loss ratio according
to the CSI. However, most commodity wireless cards do not
report the CSI to the firmware except the RSSI which is
the average signal to noise ratio. While RSSI is usful, it is
well-known that it is insufficient for determining the data
rate because the packet loss is also determined by the fading
condition, i.e., whether the fading is flat or non-flat. A non-
flat fading channel results in uneven signal strengths across
the OFDM subcarriers and higher packet loss ratio than a flat
fading channel with the same RSSI.

Fortunately, we note that it is possible to extract additional
information for rate selection under the Maranello framework
because the sender actually knows the number of corrupted
blocks in a packet. Intuitively, the more the corrupted blocks,
the worse the channel conditions. For example, under the same
RSSI, more corrupted blocks means a more non-flat fading
channel for which a lower data rate may be needed. Therefore,
ReSel takes two numbers as input, namely the RSSI and the
number of corrupted blocks of the original packet. We design
the rate selection strategy based on extensive experimental data
and implement ReSel as an extension to Maranello. Because
the same approach can be used for all data rates, we explain
our approach using 36 Mbps as an example. Our experiments
show that ReSel can achieve significant performance gain
comparing to the original Maranello by selecting the appro-
priate data rate for the repair packet, because the repair packet
is transmitted only once in the majority of the cases.

The rest of the paper is organized as follows. Section II



discusses the related works. Section III briefly introduces
Maranello. Section IV describes ReSel. Section V gives the
experimental results. Section VI concludes the paper.

II. RELATED WORK

Rate selection is a classic topic for wireless networks [1],
[2], [3], [4], [5]. As mentioned earlier, comparing to existing
works, ReSel solves a different problem, focusing on the rate
selection upon a loss event for the repair packet. The solutions
in ReSel is also different because ReSel exploits information
only available in the Maranello framework.

Partial packet recovery has also been studied extensively in
recent years [6], [7], [9], [10], [8]. The existing approaches
include using error correction codes [7], retransmitting the
corrupted parts [6], [9], [10], or both [8]. We focus on
the Maranello framework in this paper because it can be
implemented in the firmware level without any involvement
of the upper layers, and has several key advantages such as
minimum disturbance to packet delay. To the best of our
knowledge, the rate selection for the repair packet has not
been studied before in existing works.

III. A BRIEF INTRODUCTION TO MARANELLO

Maranello is implemented on the OpenFWWF platform [12]
which is an open source firmware that enables programmable
MAC on the Broadcom 4306 wireless card. In Maranello,
packets are divided into blocks. On the first attempt, the sender
transmits the original packet. If the receiver receives the packet
correctly, it sends an 802.11 ACK. If the receiver receives
a partial packet, it calculates the checksums of the blocks,
and sends the checksums in a NACK packet to the sender.
When the sender receives the NACK packet, it compares the
locally computed checksums based on the original packet and
the checksums in the NACK packet to find the corrupted
blocks, and retransmits such blocks in the repair packet. In
the current implementation, the repair packet is transmitted at
the same rate as the original packet up to two times before
being transmitted at other data rates.

IV. RESEL

ReSel is a simple modification to the original Marannello.
At the receiver side, we modify the firmware to piggyback the
measured RSSI of the original packet in the NACK packet. At
the sender side, we modify the firmware to read the RSSI value
and learn the number of corrupted blocks, which are used as
input in a simple table lookup to determine the rate of the
repair packet. The core of ReSel, clearly, is this rate table,
which we build with experimental data and is explained in
this section.

A. Clustering Cases into Bins
We denote the RSSI value as α and the number of corrupted

blocks as β. Ideally, for each (α, β), we may run experiments
and attempt all possible rates to find the best rate. The
technical challenge is that the memory size in the wireless
card processor is very limited and cannot hold much data for

β range 1 β range 2 β range 3 β range 4
α < 20 [1,2] [3,5] [6,8] [9,14]
20 ≤ α ≤ 26 [1,2] [3,4] [5,7] [8,14]
α > 26 1 [2,3] [4,6] [7,14]

TABLE 1
RANGE TABLE

36 24 18 12 6
α < 20, β ∈ [1, 2] 0.919 0.983 0.983 0.982 0.980
α < 20, β ∈ [3, 5] 0.788 0.970 0.974 0.975 0.972
α < 20, β ∈ [6, 8] 0.550 0.935 0.959 0.959 0.963
α < 20, β ∈ [9, 14] 0.288 0.829 0.962 0.964 0.953
20 ≤ α ≤ 26, β ∈ [1, 2] 0.836 0.928 0.940 0.936 0.931
20 ≤ α ≤ 26, β ∈ [3, 4] 0.693 0.907 0.922 0.937 0.928
20 ≤ α ≤ 26, β ∈ [5, 7] 0.481 0.852 0.929 0.921 0.913
20 ≤ α ≤ 26, β ∈ [8, 14] 0.378 0.779 0.905 0.929 0.935
α > 26, β = 1 0.875 0.956 0.952 0.954 0.956
α > 26, β ∈ [2, 3] 0.787 0.951 0.954 0.958 0.955
α > 26, β ∈ [4, 6] 0.627 0.938 0.952 0.958 0.946
α > 26, β ∈ [7, 14] 0.539 0.904 0.962 0.959 0.945

TABLE 2
PACKET RECEIVING RATIO TABLE

data collection. We therefore create bins for α and β values
and collect data for each bin. We first divide the RSSI into
three ranges: less than 20 dB, within 20 and 26 dB, and
greater than 26 dB. Marannello repairs packets with up to 14
corrupted blocks. We further divide the number of corrupted
blocks into 4 ranges. In total, we create 12 bins, which is
within the capabilities of the processor. The range table is
shown in Table 1.

The RSSI range is selected because we find that they
represent bad channel, functional channel, and good channel
in typical indoor environments, respectively. The β range is
also determined based on measurements. We show in Fig. 1
the number of corrupted blocks in different α ranges collected
in 10 experiments. We can see that the distributions of β are
different for different α ranges. We basically attempt to cluster
β with similar values into the same group.

B. Packet Receiving Ratio (PRR) Measurements
We conduct a measurement campaign to determine the best

data rate for each bin. Basically, the sender tries the data rates
in a round-robin manner and records the Packet Receiving
Ratio (PRR) for each rate. To be more specific, when the
sender receives a NACK packet, it finds the values of α and β,
and finds the bin they belong to. The sender keeps a round-
robin pointer for each bin and uses the rate pointed by the
pointer as the rate for the repair packet. After the repair packet
is sent, the pointer is updated. The set of rates include five
802.11g rates that are not higher than 36 Mbps, because the
repair packet should not be transmitted at rate higher than the
rate for the original packet. We record the PRR for each rate
in each bin. Table 2 shows raw measurement results.

C. Determining the Rate Table
The PRR measurements contain interesting information. For

example, it can be seen that within the same RSSI range,
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Fig. 1. The distribution of the corrupted block number. (a). α < 20. (b).
20 ≤ α ≤ 26. (c). α > 26.

the PRRs vary significantly for different number of corrupted
blocks. We suspect that this is because the channel fading
conditions are different; channels with more subcarriers in
deep fading tend to result in more corrupted blocks as well
as lower PRRs. The clear correlation between PRR and the
number of corrupted blocks confirms that the number of
corrupted blocks is a useful input to the system.

We can also see that for the same RSSI range and corrupted
block number range, the PRRs do not exhibit significant
differences for rates 18 Mbps or lower; in fact the PRRs for
such rates are all very high. Therefore, the lowest data rate we
need to use for the retransmission is 18 Mbps. On the other
hand, the PRRs for 36 Mbps are usually lower than desired.
Therefore, we basically need to choose between 24 Mbps and

α < 20, β ∈ [1, 2] 24
α < 20, β ∈ [3, 5] 24
α < 20, β ∈ [6, 8] 24
α < 20, β ∈ [9, 14] 18
20 ≤ α ≤ 26, β ∈ [1, 2] 24
20 ≤ α ≤ 26, β ∈ [3, 4] 24
20 ≤ α ≤ 26, β ∈ [5, 7] 18
20 ≤ α ≤ 26, β ∈ [8, 14] 18
α > 26, β = 1 24
α > 26, β ∈ [2, 3] 24
α > 26, β ∈ [4, 6] 24
α > 26, β ∈ [7, 14] 18

TABLE 3
RATE TABLE

18 Mbps. We use 24 Mbps if the difference between the PRRs
for the two rates is very small; otherwise we use 18 Mbps.
The rate table is shown in Table 3.

The rate table in Table 3 determines the rate when a NACK
is received. If no NACK is received after the original packet
transmission, the rate table cannot be applied because there
is no feedback from the receiver. In this case, ReSel always
uses 18 Mbps for the retransmission of the packet. This is
because if no NACK is received, the channel is likely in a
poor condition such that low data rates should be used.

V. EVALUATION

We evaluate ReSel with experiments. We set up one com-
puter as the sender and one computer as the receiver, and run
the iperf software [11] to collect the link throughput and jitter.
We use the firmware to collect statistics such as erasure ratio
and partial ratio, defined as the fraction of erasure packets
and partial packets, as well as the retry number, defined as the
number of transmissions of the repair packet. The experiments
are repeated 150 times at randomly selected locations on
802.11 b/g channel 3. We fix the data rate to be 36 Mbps.

A. The Channels in the Experiments
We show in Fig. 2 the channel conditions in our experi-

ments, represented by the Cumulative Distribution Function
(CDF) of the RSSI, the partial ratio, and the erasure ratio. We
can see that our experiments include a wide variety of RSSIs
and partial ratios. The erasure ratios tend to be small numbers
because the link cannot be set up between the sender and the
receiver if the erasure ratio is too high.

B. Throughput Comparison
Fig. 3(a) shows the CDF of the link throughput of the

original Maranello and ReSel. We can see that ReSel achieves
significant gain over the original Maranello. The median
throughput of ReSel and the original Maranello are 9.73 Mbps
and 7.41 Mbps, respectively, with a gain of 31%. Fig. 3(b)
shows the scattered plot of the original Maranello and ReSel.
In the scattered plot, a point on the 45-degree line represents a
link in which two compared schemes have the same through-
put. We can see that ReSel outperforms the original Maranello
in most of the links. This is remarkable in the sense that the
gain is achieved by a very simple modification to the firmware.
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Fig. 2. Channel statistics. (a). RSSI. (b). Partial ratio. (c). Erasure ratio.

C. Jitter Comparison
Fig. 4(a) shows the CDF of the jitter of the original

Maranello and ReSel. We can see that the jitter of ReSel
is much less than the original Maranello. The median jitter
of ReSel and the original Maranello are 3.28 ms and 4.24
ms, respectively, with a reduction of 23%. Fig. 3(b) shows
the scattered plot of the original Maranello and ReSel, where
we can see that ReSel achieves less jitters than the original
Maranello in most of the links.

D. Retry Number Comparison
The gain of ReSel over the original Maranello is due to

the better selection of the data rates to reduce the number of
retransmissions. Fig. 5(a) shows the CDF of the retry number
of the original Maranello and ReSel. We can see that the retry
number of ReSel is almost always very close to 1 while the
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Fig. 3. (a). CDF of the throughput. (b). Scattered plot of the throughput.

retry number of the original Maranello are much larger. The
median retry number of ReSel is 1.10 while the median retry
number of the original Maranello is 1.47. We note that the
minimum retry number is 1 because the repair packet must be
sent at least once. With ReSel, in over 92% of the experiments,
the retry number is below 1.2. In this sense, we have achieved
our goal of selecting a good data rate because most repair
packets are received in the first attempt in a wide variety of
channel conditions. Fig. 5(b) shows the scattered plot of the
original Maranello and ReSel, where we can see that ReSel
uses less retransmissions than the original Maranello in most
of the links.

E. Analyzing the Gain
To further analyze the gain, we show the throughput and

jitter ratios of ReSel over the original Maranello as functions
of the RSSI, the partial ratio, and the erasure ratio in Fig. 6,
Fig. 7, and Fig. 8, respectively. We need to mention that we
have added a small random perturbation within [0, 0.2] to the
RSSI values in Fig. 6, such that different experiments sharing
the same RSSI reading will not overlap in the figure.

We can see that there does not seem to be a strong cor-
relation between RSSI and the gains, because the throughput
and jitter ratios seem to be rather uniformly distributed over
all RSSI values. This confirms that RSSI alone is not a good
indicator of the channel and the gains. On the other hand,
the gains exhibit notable patterns with regarding to the partial
ratio and the erasure ratio. As the jitter ratio can be explained
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Fig. 4. (a). CDF of the jitter. (b). Scattered plot of the jitter.

similarly as the throughput ratio, we use the throughput ratio
as an example:

• The throughput ratio increases as the partial ratio in-
crease. This is not a surprise because the gain of ReSel is
due to exploiting partial packets; the more partial packets,
the higher the gain.

• The throughput ratio increases as the erasure ratio in-
creases when the erasure ratio is below 0.2, which is
likely because a higher erasure ratio leads to a higher
partial ratio when the erasure ratio is below 0.2. When
the erasure ratio is higher than 0.2, the throughput ratio
ceases to increase, which is likely because more packets
are lost due to erasure and cannot be repaired when the
erasure ratio is higher than 0.2.

F. Remarks
Our experiments are carried out at a single data rate because

we wish to compare the two schemes in a simple and well-
defined scenario. We must mention that the performance of the
original Maranello may be better if the rate is not fixed. This is
because when the rate is not fixed, the driver will run an auto-
rate algorithm and assign fallback rates for retransmissions
upon too many failures. On the other hand, in our experiments,
the rate is fixed at 36 Mbps and the diver does not provide
a fallback rate, hence the original Maranello will always
use 36 Mbps for retransmissions which may lead to more
retransmissions.

We note that according to [6], the fallback rate is not used
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Fig. 5. (a). CDF of the retry number. (b). Scattered plot of the retry number.

until the third transmission of the repair packet in the current
firmware implementation. On the other hand, we can see in
Fig. 5(a) that the original Maranello uses no more than two
transmissions for the repair packet for more than 80% of the
links. Fig. 3(b) shows that ReSel achieves notable throughput
gains in the majority of the links, including the links in which
original Maranello uses no more than two retransmissions. We
therefore suspect that ReSel can still achieve significant gains
over the original Maranello even when auto-rate is enabled.

VI. CONCLUSION

In this paper, we propose ReSel for selecting the rates for
the repair packets under the Maranello partial packet recovery
framework. ReSel is motivated by two observations. First,
the repair packet should use a different data rate from the
original packet because the original packet has been trans-
mitted and failed in the recent past which is likely within the
channel coherence time. Second, the NACK packet sent by the
Maranello receiver can be used to piggyback information such
as RSSI and can be used to infer the channel condition. We
build the rate selection table for ReSel with experimental data.
We implement ReSel in the firmware and our experiments
show that ReSel significantly improves the link throughput
and reduces packet jitter. ReSel achieves the throughput gain
and reduces the jitter because it is capable of selecting the
appropriate data rate such that the repair packet is transmitted
only once in the majority of the cases. Our future work
includes the study of repair data rate selection when the auto-
rate algorithm is enabled in the driver.
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Fig. 6. RSSI and performance. (a). Throughput. (b). Jitter.
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