
Employing Coded Relay in Multi-hop Wireless
Networks

Zhenghao Zhang, Wei Hu, and Jin Xie
Computer Science Department

Florida State University
Tallahassee, FL 32306, USA

Abstract—In this paper, we propose Coded Relay (Crelay) for
multi-hop wireless networks. Crelay exploits both the partial
packets and the overhearing capabilities of wireless nodes, and
uses an error correction code in packet forwarding. When a
node overhears a partial packet from an upstream node, it
estimates the number of errors in the packet and informs the
upstream node. The upstream node calculates the number of
parity bytes required to correct the errors and can usually send
only a small amount parity bytes instead of sending the complete
packet, hence improving the network efficiency. We propose
a novel protocol for packet forwarding with partial packets
and overhearing, which forwards individual packets and will
work seamlessly with upper layers. We also propose a practical
algorithm for finding the packet forwarding path. We implement
Crelay within the Click modular router and our experiments
show that it can significantly improve the performance of wireless
networks.

I. INTRODUCTION

In this paper, we propose Coded Relay, abbreviated as
Crelay, which is a packet forwarding protocol for multi-hop
wireless networks. Crelay is particularly suited for wireless
mesh networks where the nodes are mesh routers which are
not constrained in power and processing capabilities. Crelay
exploits two fundamental properties of transmissions over the
wireless medium, namely the partially correct packets and the
overhearing opportunities. That is, an erroneous packet often
has just a few errors [1], [2]; also, when a node transmits a
packet to second node, a third node may overhear this packet
because the medium is shared.

The core idea of Crelay is simple and can be explained
as follows. Basically, nodes relay coded messages to the next
hop node depending on the amount of information that has
already been overheard, where a coded message is constructed
according to an error correction code. As a simple example,
consider a path A → B → C, where node A wishes to send
a packet P to node C. Node A first transmits P, after which
node B gets P while node C gets a partial packet with some
errors. Node C estimates the number of errors using an error
estimator such as AMPS [18], and asks node B to send just
enough parity bytes to correct these errors, instead of sending
the entire packet. Thus, fewer bytes are transmitted and a better
efficiency is achieved.

Crelay is a novel opportunistic packet forwarding scheme
for wireless networks. The core difference between Crelay and
existing opportunistic routing protocols such as MIXIT [7],

MORE [6] and ExOR [8] is that Crelay forwards individual
packets while ExOR [8], MORE [6], and MIXIT [7] forward
batches of packets. As a result, Crelay works seamlessly with
the upper layers while protocols requiring packet batching
are not suitable for interactive traffic such as the TCP traffic
[9]. Crelay is related to cooperative relaying, which is an
active research area in the wireless communication community
[3], [4]. Existing research on cooperative relaying focuses on
deriving the theoretical channel capacity; we focus on the
design and implementation of practical systems.

In this paper, we design a protocol which allows the
upstream nodes to obtain the receive status of a packet at
the downstream nodes, such that the nodes can make good
forwarding decisions, i.e., who should send the packet, how
many parity bytes should be sent, etc. The challenge is that the
coordination must be achieved in a timely manner at low cost.
Our protocol is designed based on the fact that packets usually
experience queuing delays, especially under high load when
the throughput should be optimized. When a node receives
a packet, with a non-empty queue, it does not have to take
an immediate action for the packet because it has to serve
other packets first, which allows extra time for coordination.
In Crelay, when a node overhears a new packet, it sends
control messages about the packet piggybacked with other
packets that must be sent first. After several transmissions,
nodes are usually able to make informed decisions about the
new packet before taking actions for the packet. The control
overhead is low because of the piggybacking. We also propose
a practical routing algorithm for Crelay. We implement Crelay
and our experiments show that it can significantly improve the
performance of wireless networks.

The rest of the paper is organized as follows. Section II
describes the Crelay protocol. Section III discusses routing
in Crelay. Section IV describes our implementation. Section
V gives experimental evaluations. Section VI concludes the
paper.

II. THE CRELAY PROTOCOL

A. Overview
Crelay is a link state protocol with which nodes learn and

propagate the quality of the links. A link is measured by two
values, namely the erasure ratio and the error ratio, which are
the fraction of the lost frames and the fraction of the erroneous
bytes in a received frame, respectively. A path is an ordered list



of nodes that participate in relaying the packet. Given a path,
with respect to a node on the path, all nodes appear earlier
on the path are the upstream nodes and all nodes appear later
are the downstream nodes. The path is found by a common
routing algorithm based on the link states; every node should
install the same path for a source and destination pair. With
overhearing, Crelay’s path is not a path in the traditional sense
and is similar to the concept of forwarder list in [6]. A node
is a better forwarder than its upstream nodes.

All Crelay packets are broadcast to enable overhearing. All
control messages, including the ACK and the packet receive
status, are sent in the same link layer frames as the data
packets. Whenever possible, they are piggybacked with the
data packets, not necessarily with the packets in the same flow.
Crelay packet header includes the source and destination IDs,
with which a node can look up its routing table and determine
the path for the packet as well as the upstream and downstream
relations with other nodes.

A node may keep the overheard packets in its buffer
and may announce the receive status about the packets. An
upstream node determines the data to be transmitted depending
on packet receive status of its downstream nodes. The trans-
mitted data may be the original data or may be the parity bytes.
A node combines all overheard data for a packet, which may
include the original data and several pieces of parity bytes, to
decode a packet. A node sends an ACK if a packet has been
decoded. A node may also send an ACK even when it has not
decoded the packet, for example, when one of its downstream
nodes has decoded the packet.

B. Preliminaries
1) Error Correction Code: Crelay may use any error cor-

rection code supporting incremental redundancy. The Reed-
Solomon (RS) code is used in our current implementation
because of its strong error correction capability and the avail-
ability of software implementations [13]. A codeword with
the RS code is basically the data bytes followed by the parity
bytes [10]. If there are e erroneous bytes in the received bytes
belonging to a codeword, with any additional 2e bytes in the
codeword, all errors can be corrected.

2) Error Estimator: One crucial aspect of Crelay is to re-
quest just enough number of parity bytes to correct the errors.
This requires the receiver to have an estimate of the number
of errors in a received packet. As the standard checksum test
can only detect the existence of errors, an error estimator is
needed. Crelay may adopt any error estimator with acceptable
performance. Our current implementation adopts the AMPS
estimator explained in details in the technical report at [18].
Here, we give a brief explanation of AMPS. With AMPS,
the sender randomly samples K data bytes in the packet and
computes their parity bit as a sample. Multiple samples are
calculated in this manner which are transmitted along with
the packet. When the packet is received, the receiver calculates
local samples based on the received data bytes, which may be
different from the received samples because some bytes may
have been corrupted. AMPS estimates the number of corrupted

bytes based on the number of mismatching samples according
to the Maximum A Posteriori (MAP) criteria. AMPS has a
very low overhead of 8 bytes for every transmitted frame.
We find in our earlier works [17], [18] that AMPS has a
good performance, e.g., for more than 78.2% of the times,
its estimation error is no more than 40 bytes among no less
than 1500 transmitted bytes.

3) Interleaving: Errors in the packets may occur in bursts.
This may result in an uneven distribution of errors in the
frame which challenges the error correction code. To cope
with this, Crelay adopts interleaving. Basically, before trans-
mission, the data bytes in a frame are mapped to random
locations according to a random permutation. When a packet
is received, the reverse of the random permutation is applied
before processing. The effect of this is that errors are relocated
to random locations and spread evenly in the frame.

C. Protocol Basics
1) Definitions: We give the definitions of terms to be used:
• Block: A data packet from the upper layer is divided into

blocks of equal size, padded if necessary.
• Codeword: A block is encoded according to the RS

code into a codeword, which is basically the data bytes
followed by the generated parity bytes.

• Segment: A continuous segment of bytes in a codeword,
represented by two integers as the start and end locations
of the segment.

• Record: The received segment(s) in a codeword. The
segment(s) may be scattered in the codeword and usually
do not overlap. If they overlap, for the overlapping part,
the one with less estimated errors is used.

We say a record is decodable if the original data block can
be recovered from it. If a block has been recovered from
the record, we say the block has been decoded. If all blocks
in a packet have been decoded, we say the packet has been
decoded.

2) Choice of Block Size: The block size should be selected
such that a sufficient number of parity bytes are available for
error correction. For example, in our current implementation,
each block is 150 bytes and is encoded according to the
(255, 150) RS code with 105 parity bytes. We note that
although the number of parity bytes is large, not all parity
bytes are transmitted in the majority of the cases, because
Crelay estimates the number of errors and sends just enough
number of parity bytes.

3) Receiving a Packet: A node always monitors the chan-
nel. When it receives a packet, it checks if the packet is
relevant, i.e., if it is on the path of the packet and is on
the downstream of the sender. If the packet is relevant but
has been decoded, it sends an ACK; if the packet is relevant
but has not been decoded, it adds the received segments to
its records of this packet. The node then runs AMPS to
estimate the number of errors in the received segments to
determine if the records are decodable. If the records are
not decodable, when the node gets access to the medium, it
announces the receive status of the packet, which includes the

2



Original packet:

Original packet into 2 blocks:

Encoded into 2 codewords:

receives segment (0, 7):

receives segment (8, 9):

C

C

Fig. 1. An example. Light gray: data bytes. Dark gray: parity bytes.

start location, the end location, and the estimated number of
errors of each received segment. If the records are decodable,
the node attempts to decode. If the decoding is successful, it
sends an ACK; otherwise it announces the new receive status
and waits for additional segments until all records are decoded
or until a timeout. It could happen that the decoding fails only
at certain blocks; in this case the node announces a mask of
the decoded blocks, and the upstream node will transmit data
only for the undecoded blocks. A node delivers a decoded
packet to the upper layer if it is the destination. When a node
receives an ACK from any downstream node, it deletes the
corresponding packet.

4) Sending a Packet: A node maintains a queue for each
neighbor. A packet is in the queue for neighbor A if its next
hop node is A. The queues are served according to round-
robin; packets in the same queue are first-come-first-served.

A packet may be in three states, S0, S1, and S2. In state
S0, some information has been overheard but the packet is
not decodable. In state S1, the packet has been successfully
decoded, but the receive status at the next hop is unknown. In
state S2, either the packet has been decoded and the receive
status at the next hop is known, or the packet has been in
state S1 for longer than a threshold. To enable efficient packet
forwarding, only packets in state S2 can be sent. As a special
case, at the source node, a packet from the upper layer is
automatically set to be in state S2.

A packet may have many blocks encoded into many code-
words. When sending a packet, a node transmits the same
segment in all codewords because the errors are evenly dis-
tributed after interleaving and deinterleaving. A node chooses
a minimum size segment such that the next hop node should be
able to decode the packet; the receive status of nodes further
downstream are not considered for simplicity. To be specific,
the node runs a linear search on a set of candidate locations as
the start location of the segment to be sent, and picks the one
that results in the minimum size segment. The list of locations
includes 1) the first byte of the codeword, 2) the start location
of each segment that has been overheard by the next hop, and
3) the byte immediately following the end location of each
segment that has been overheard by the next hop.

D. A Simplified Example
Fig. 1 illustrates the main concepts related to packet for-

warding in Crelay, continuing with the example in Section I

where a packet is to be sent along path A→ B → C. The data
packet is assumed to be 16 bytes divided into 2 blocks. Each
block is encoded into a codeword with 4 parity bytes. The
packet forwarding process involves the following sequence of
events:

1) Node A receives a packet from the upper layer and sets
it in state S2. It transmits segment (0,7), i.e., the data
bytes, for both blocks.

2) Node B receives the packet correctly, sets it in state S1,
and sends ACK. Node A receives the ACK and deletes
the packet. Node C overhears a partial packet with 1
error byte in the transmitted segment for block 0, and
sets the packet in state S0.

3) Node C estimates the number of errors in each segment
to be 1, and announces (0,7,1) as its receive status, which
means that it overhears segment (0,7) and estimates that
there is 1 error. Note that this announcement may be
piggybacked with another data packet node C may have
to send, for example, to node B.

4) Node B receives the announcement from node C, and
promotes the packet to state S2. Seeing that there is 1
error, node B transmits segment (8,9), because the 2
parity bytes should correct 1 error.

5) Node C receives the segments transmitted by node B.
The channel actually corrupts 1 byte in the transmitted
segment for block 1. Node C estimates that there is
no error in the new transmission, which is an incorrect
estimation, and believes that it has two segments in its
record: (0,7,1) and (8,9,0). As 2 parity bytes should
correct 1 error, it attempts to decode and luckily decodes
both records. Node C sends ACK and node B deletes
the packet.

E. Optimizations
1) ACK Triggered Record: Consider a node A and suppose

its next hop is node B. As mentioned earlier, node A must
wait for the receive status of a packet at node B before sending
the packet. If node B overhears the packet, it should be able
to announce the receive status when it gets access to the
medium. The challenge is that node B may never overhear
the packet hence never announces the receive status, and node
A may hold the packet in state S1 for a long time, increasing
the packet delay. Crelay solves this problem with a simple
trick called “ACK triggered record.” That is, Crelay let node
B create an empty record of a packet once it overhears an
ACK for this packet, even when no data has been overheard.
The empty record will prompt node B to announce an empty
receive status, which will allow node A to promote the packet
to state S2. Note that node A should send an ACK after
it decodes the packet, and most likely, this ACK can be
overheard by node B because they are neighbors on the path
who should share a relatively good link. Therefore, node B is
usually able to create a record for any packet node A decodes.
As the MAC protocol should be fair, after node A sends the
ACK, node B will likely get the medium and be able to
announce the receive status.

3



A
1

1
0.5

11
0.9

B
D E

C

Fig. 2. Routing example with Crelay.

2) ACK Propagation: Crelay should also reduce duplicate
transmissions. That is, a node should not transmit a packet P

if at least one of its downstream nodes has already received
P correctly. The main challenge is that the upstream node
needs to know that the downstream node has got P, but it
may not be able to hear the ACK from the downstream node
directly. For example, they may not be adjacent on the path
and the link between them may be poor. To solve this problem,
Crelay exploits the fact mentioned earlier, i.e., the upstream
node usually has to send other packets first before sending P

due to queuing delay, which allows extra time for the ACK
from the downstream node to be propagated to the upstream
node. Basically, in Crelay, a node is called a bypassed node
with respect to a packet P, if it has not decoded P while at
least one of its downstream nodes has decoded P. A node
finds that it has been bypassed if it hears an ACK for P or
hears P itself from a downstream node. In such cases, the
bypassed node sends an ACK for P, which, in essence, is
to propagate the ACK from the downstream to the upstream.
Once a bypassed node sends such an ACK, it considers itself
decoded the packet and will not send such ACKs again.

III. ROUTING WITH CRELAY

In this section, we discuss the routing problem in Crelay.
Routing in Crelay is interesting because a sub-path of an
optimal path may no longer be optimal. For example, consider
the simple network shown in Fig. 2. The number besides a
link is the receiving ratio, defined as the number of bytes that
can be decoded if the sender sends one byte. It represents
the quality of the link and is determined by the error ratio
and the FEC code adopted. The best path from A to D is
clearly A → B → D, but the best path from A to E is
A→ C → D → E, due to the overhearing link from C to E.

A. Path Metric
We use the Expected Transmission Byte (ETB) as the metric

of a path, which is the expected number of bytes sent in total
such that the destination can receive one byte of data. It can
be calculated based on the erasure ratio and error ratio of the
links on the path.

To be more specific, denote a path as P = v0 → v1...→ vn.
Let L[vi] denote the expected load of vi, defined as the
expected number of bytes vi should send. The metric of path P

is clearly M [P ] =
∑n−1

i=0 L[vi]. ETB captures the overhearing
capabilities by considering the amount of bytes that vi+1 has
overheard from (v0, v1, ..., vi−1) when determining L[vi];
the more vi+1 has overheard, the less vi has to send. Let
the erasure ratio and error ratio of link vi → vj be ei,j

and qi,j , respectively. With the RS code, the receiving ratio

defined earlier is di,j = (1 − ei,j)(1 − 2qi,j). We maintain
the expected number of bytes that have been overheard at
each node, denoted as H [vi] for node vi, which is initially
0. Assuming the transmissions are independent of each other,
L[vi] can be computed iteratively, starting from v0, shown in
Algorithm 1. Note that line 3 calculates the expected number
of bytes vi should send to vi+1 where 1 − H [vi+1] is the
number of bytes still missing at vi+1; the reverse link quality
di+1,i is considered because vi will be expecting the ACK
from vi+1 and will transmit again if the ACK is lost. The
check in line 5 makes sure that the path is valid, because if
the condition is true, the path does not have to visit vi+1;
otherwise, H [vj ] is increased by L[vi]di,j due to overhearing.
With two levels of loops, Algorithm 1’s complexity is O(n2)
where n is the number of nodes on the path.

Algorithm 1 Path Metric Calculation
1: Set H [vi]← 0 and L[vi]← 0 for all 0 ≤ i ≤ n.
2: for i = 0 to n− 1 do
3: L[vi]←

1−H[vi+1]
di,i+1di+1,i

4: for j = i + 2 to n do
5: if H [vj ] + L[vi]di,jdj,i > 1 then
6: return INVALID
7: end if
8: H [vj ]← H [vj ] + L[vi]di,j

9: end for
10: end for
11: return ∑n−1

i=0 L[vi]

B. Routing Algorithm
We adopt a greedy routing algorithm inspired by the Dijk-

stra’s algorithm described in Algorithm 2. Same as Dijkstra,
a set π is maintained which keeps the nodes whose paths to
the source node have been determined. In each iteration, a
node not in π is selected and added to π, if its best path to the
source node is the shortest among all nodes not in π. Different
from Dijkstra, each node has up to w candidate paths. In each
iteration, the candidate paths are updated when a new node
is added to π by checking if better paths can be found by
going through this new node. The algorithm returns the best
candidate path for each node when terminates. The source
node is denoted as v0 and the kth candidate path from v0 to
vi is denoted as Pk(vi) where 0 ≤ k < w. The complexity is
O(N2w) where N is the number of nodes in the network.

IV. IMPLEMENTATION

The Crelay protocol discussed earlier is independent of
implementation. We implement a Crelay prototype in software
within the Click modular router [15] due to the relative
simplicity over the hardware implementation. The prototype
consists of around 5,000 lines of C++ code.
A. Frame Format

The Crelay frame format is shown in Fig. 3. After the MAC
header, a Crelay frame consists of three main sections, the
header, the announcements, and the data packets:

4



Algorithm 2 A Greedy Routing Algorithm
1: π ← {v0}.
2: P0(vi) ← (v0, vi) for all vi where i > 0. All other

candidate paths set to be empty.
3: while there are nodes not in π do
4: Let vu be the node not in π with the best candidate

path.
5: π ← π ∪ {vu}
6: for all vj not in π do
7: for k = 0 to w − 1 do
8: P ← (Pk(vu), vj).
9: Let Pt(vj) be the candidate path of vj with

the largest metric. Replace Pt(vj) with P if
M [Pt(vj)] > M [P ].

10: end for
11: end for
12: end while

• The header is fixed 28 bytes, containing information such
as the frame sequence number, the sender’s ID, AMPS
samples, etc., and is protected by an FEC code.

• The announcements section is variable length, containing
ACKs, packet receive status, and headers of the data
packets in this frame, also protected by an FEC code.

– The ACK contains simply the source and destination
IDs and the packet sequence number.

– The packet receive status contains the source and
destination IDs, the packet sequence number, the
number of blocks in the packet, the mask of decoded
blocks, and the information of the received segments.

– The data packet header contains the source and desti-
nation IDs, the packet sequence number, the number
of blocks, and the information of the transmitted
segment.

• The data packets section contains the data. A frame may
have multiple data packets, because one may be a fresh
packet and the other may be the parity bytes for another
packet.

B. Optimizations in the Implementation
In addition to the core of the Crelay protocol discussed

earlier, we also incorporated several further optimizations in
the implementation to better cope with the wireless channel.
First, to cope with hidden terminals, we allow a node A to poll
another node B, if node A has not heard any message from
node B for longer than a threshold while having many packets
to node B. After hearing the message, node B transmits while
others backoff for a time. The reason is that node B’s packets
may be lost in collisions due to hidden terminals; the RTS/CTS
mechanism can alleviate the hidden terminal problem but
cannot be used for broadcast frames in 802.11. Second, we
allow nodes to send a small amount of parity bytes along with
the data bytes in the first transmission attempt if the link error
ratio q > 0, such that packets with a small number of errors

.

..

.

..

PKT_SRC
PKT_SEQ#
PKT_DST

SEGbgn
SEGend

BLK#

.

..

.

..

.

..

 

NUMS
ACK_SRC
ACK_SEQ#
ACK_DST

BLK# SEG#
DECODED

MASK

SEG 1

SEG 2

SEGend
GoodB#

SEGbgn

MAC HEADER

FRAME ID

:
:
:

AMPS SAMPLE 

CRC 

CRC 

CRC 

STAT_SRC
STAT_SEQ#
STAT_DST

DATA PKT 1

DATA PKT 2

DATA PKT n

CRELAY
HEADER

PKT HEAERS

ACKS, 
ANNOUNCE: 

ANNOUNCE LEN 

PKT RCV STAT,

SENDER ID 

CRC 
PARITY BYTES 

PARITY BYTES
CRC 

DATA PKT LEN 
ACK# 

PKT#
STAT#

Fig. 3. Crelay frame format. The shaded fields are mandatory, others are
optional.

can be recovered immediately without incurring the feedback
overhead. In our current implementation, a node transmits
bytes that can correct min{0.05, max{0.02, q}} fraction of
errors for the bytes it sends. Such parity bytes cannot imme-
diately recover packets with more errors but are still useful,
i.e., they can be combined with the parity bytes transmitted
later to correct errors. Third, in AMPS, we set the minimum
number of estimated errors in a segment to be 3, as this
does not increase much data transmission time but reduces the
underestimation probability. Fourth, if AMPS underestimates
the number of errors in a record, found by a decoding failure,
we reduce the estimated number of correct bytes in each
segment by 20 or set it to be 0 if it becomes negative. Fifth,
we adopt a simple congestion control mechanism with which
nodes check their buffers roughly every 100 ms and consider
a flow congested if the number of buffered packets for this
flow is above a threshold and not congested otherwise. If
the flow is congested, a node sets a bit in the header for all
transmitted packets of this flow and an upstream node will
hold the transmission of packets of this flow once it overhears
this bit. For each flow, this requires maintaining only a 1-bit
state.

C. Limitation
Our current software implementation has one limitation: it

runs at low data rates such as 1 Mbps because decoding the
RS code in software can be time consuming [17]. However,
the prototype enables us to evaluate the main features of
Crelay such as packet forwarding and routing with over-the-air
wireless transmissions. The future Crelay routers may add a
dedicated decoding circuit to speedup the decoding; note that
this does not require changing the wireless transceiver.

5



Fig. 4. The setup of the testbed.

V. EVALUATION

We evaluate the performance of Crelay with our prototype
implementation. We compare with: 1) MORE [6], the bench-
mark opportunistic routing protocol, and 2) Srcr [11], the
benchmark traditional routing protocol, where nodes use the
shortest path according to the ETX metric to forward packet
hop-by-hop without exploiting partial packets and overhearing.
We use the original implementation at [16] for MORE and use
our own implementation for Srcr. We cannot compare with
MIXIT [7] because it needs to modify the wireless transceiver.

A. Testbed and Experiment Setup
Our testbed has 11 nodes, where the wireless nodes are

laptop computers with the Cisco Aironet cardbus adapter. The
802.11b/g channel 3 is used when there is little external traffic
during the experiments. Packets are transmitted in broadcast
frames, same as MORE [16]. The Madwifi [12] driver runs in
the monitor mode. The MTU is 2200 bytes. The transmission
power is 1dBm. The data rate is 1Mbps. The testbed setup, as
well as two of machines used in the experiments, are shown in
Fig. 4. With this set up, there are 33 links where we consider
a link exists if the erasure ratios of both directions are lower
than 0.9. Among the links, the average RSSI is 10.6dB, the
average erasure ratio is 0.138, and the average error ratio is
2%. The numbers of 2-hop, 3-hop, and 4-hop paths found
by Crelay are around 30, 26, and 6 respectively which may
change slightly due to channel fluctuations.

In each experiment, nodes first learn the link states by send-
ing Hello packets in the first 9 seconds at random intervals,
where a node sends around 50 packets in total. In the next 9
seconds, similar to MORE [16], the link state is propagated
with the help of a central node using wired links. At time 18
second, the topology learning phase ends and nodes begin to
send data packets of size 1500 bytes and the experiment runs
for another 10 seconds.

B. Flow Analysis
We select 62 pairs of nodes in the network, between which

Crelay always finds the path to be more than one hop. Each
pair is a flow. We run the experiment with only one active
flow where the source node generates a packet every 10ms.

We note that two flows may be selected between one pair of
nodes, one flow in each direction, because the link quality may

0 20 40 60 800

0.5

1

Throughput (pkt/sec)

Cu
m

ul
at

ive
 F

ra
ct

io
n

 

 

Srcr
MORE
Crelay

Fig. 5. The CDF of the flow throughput.

be asymmetrical such that the forward flow and backward flow
may use different paths. We only consider the multi-hop paths
because Crelay is protocol for multi-hop networks and we
wish to highlight performance of Crelay and other protocols
on multi-hop paths. We note that a single-hop path is simply
a link. MORE and Srcr will have similar performances on
a single link because opportunistic routing relies on packet
overhearing at multiple nodes and does not have any gain
on a single link. Crelay should have better performance than
MORE and Srcr on a single link due to efficient partial packet
recovery; the gain of partial packet recovery on a single link
has been demonstrated in earlier works such as [2], [17].

1) Throughput Comparison: We first show in Fig. 5 the
CDF of the throughput of Crelay, MORE, and Srcr measured
in the number of received packets by the destination per
second. We can see that Crelay’s throughput is significantly
higher than both MORE and Srcr. Fig. 6 shows the scattered
plots of Crelay v.s. MORE and Crelay v.s. Srcr for each
flow. In the scattered plot, a point on the 45-degree line
represents a flow in which two compared schemes have the
same throughput. We can see that Crelay outperforms MORE
in most flows and outperforms Srcr in almost all the flows.

2) Throughput Gain Analysis: We note that MORE is an
efficient opportunistic routing protocol capable of exploiting
overhearing with random network coding. Crelay is also
capable of exploiting overhearing with its control message
exchange mechanism; in addition, Crelay can recover the
partial packets efficiently. The gain of Crelay over MORE is
more likely to be due to the exploitation of partial packets.
This is confirmed by Fig. 7 which shows the throughput gain
of Crelay over MORE and the partial packet ratio of each
flow; we can see that there is a positive correlation between
the gain and the partial packet ratio. The gain of Crelay over
Srcr is due to both overhearing and partial packet recovery.

3) Avoiding Duplicate Transmissions: We define the dupli-
cate data as the data transmitted by an upstream node for
a packet when at least one of the downstream nodes has
already received the packet correctly. An opportunistic routing
protocol can be measured by the duplicate percentage, i.e.,
the percentage of data bytes in the duplicate packets over all
transmitted data bytes. We collect the duplicate percentage
of Crelay for each tested flow and show the CDF in Fig. 8.
We can see that the median is only 1.52%, therefore Crelay
effectively avoids duplicate transmissions.

6



0 20 40 600

20

40

60

MORE Throughput [pkt/s]

Cr
el

ay
 T

hr
ou

gh
pu

t [
pk

t/s
]

0 20 40 600

20

40

60

Srcr Throughput [pkt/s]

Cr
el

ay
 T

hr
ou

gh
pu

t [
pk

t/s
]

Fig. 6. The scattered plot of the flow throughput.

0 0.1 0.2 0.3 0.4 0.5

0

1

2

Fraction of Partial Pkts

Th
ro

ug
pu

t G
ai

n

Fig. 7. The gain and the fraction of partial packets.

4) Protocol Overhead: We also collect the percentage of
Crelay overhead for each tested flow, which is defined as
the percentage of bytes sent in the Crelay header and the
announcement section among all network layer bytes. Fig. 9
shows the CDF of overhead percentage, where we can see the
median is 7.67%.

VI. CONCLUSION

In this paper, we propose Coded Relay (Crelay) for multi-
hop wireless networks. With Crelay, nodes exploit partial
packets and overhearing for packet forwarding. To recover a
partial packet, Crelay nodes can often send parity bytes to

0 2 4 6 8 100

0.5

1

Duplicate (%)

Cu
m

ul
at

ive
 F

ra
ct

io
n

Fig. 8. Crelay duplicate percentage.

4 6 8 100

0.5

1

Overhead (%)

Cu
m

ul
at

ive
 F

ra
ct

io
n

Fig. 9. Crelay overhead percentage.

the next hop with size significantly smaller than the size of
the packet itself. Our study includes the protocol design and
a practical routing algorithm. We test Crelay on an 11-node
testbed, and the results show that Crelay achieves significant
gain over the compared protocols.

REFERENCES

[1] B. Han, A, Schulman, F. Gringoli, N. Spring, B. Bhattacharjee,
L. Nava, L. Ji, S. Lee, and R. Miller, “Maranello: Practical
partial packet recovery for 802.11,” in NSDI, 2010.

[2] K. Lin, N. Kushman, and D. Katabi, “ZipTx: Harnessing partial
packets in 802.11 networks,” in ACM Mobicom, 2008.

[3] P. Razaghi and W. Yu, “Bilayer low-density parity-check codes
for decode-and-forward in relay channels,” IEEE Trans. Inform.
Theory, vol. 53, no. 10, pp. 3723-3739, Oct. 2007.

[4] S. Avestimehr, S. Diggavi and D. Tse, “Wireless network
information flow: a deterministic approach,” arXiv:0906.5394v6,
Dec., 2010.

[5] V. Venkatkumar, T. Wirth, T. Haustein, and E. Schulz, “Relaying
in long term evolution: indoor full frequency reuse,” in European
Wireless, Aarlborg, Denmark, May 2009.

[6] S. Chachulski, M. Jennings, S. Katti and D. Katabi, “Trading
structure for randomness in wireless opportunistic routing,” in
ACM Sigcomm, 2007.

[7] S. Katti, D. Katabi, H. Balakrishnan and M. Medard, “Symbol-
level network coding for wireless mesh networks,” in ACM
Sigcomm, 2008.

[8] S. Biswas and R. Morris, “Opportunistic routing in multi-hop
wireless networks,” in ACM Sigcomm, 2005.

[9] T. Li, D. Leith, and L. Qiu, “Opportunistic routing for interactive
traffic in wireless networks,” in ICDCS, 2010.

[10] S. B. Wicker, Error Control Coding for Digital Communication
and Storage, Prentice-Hall, NJ, 1995.

[11] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture
and evaluation of an unplanned 802.11b mesh network,” in ACM
Mobicom, 2005.

[12] The MadWifi Project, http://madwifi-project.org/.
[13] http://www.ka9q.net/code/fec/
[14] Cisco Aironet 802.11a/b/g wireless cardbus adapter,

http://www.cisco.com/.
[15] The Click Modular Router, http://read.cs.ucla.edu/click/.
[16] http://people.csail.mit.edu/szym/more/README.html.
[17] J. Xie, W. Hu, and Z. Zhang, “Revisiting partial packet recovery

in 802.11 wireless LANs,” in ACM Mobisys, 2011.
[18] Z.Zhang, W. Hu, and J. Xie, “Employing coded re-

lay in multi-hop wireless networks,” in arXiv:1012.4136v1,
http://arxiv.org/abs/1012.4136.

7


