
A New Bound on the Performance of the
Bandwidth Puzzle

Zhenghao Zhang
Computer Science Department

Florida State University
Tallahassee, FL 30306, USA

zzhang@cs.fsu.edu

c©2011 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

Abstract—A bandwidth puzzle was recently proposed to defend
against colluding adversaries in peer-to-peer networks. The
colluding adversaries do not do actual work but claim to have
uploaded contents for each other to gain free credits from the
system. The bandwidth puzzle guarantees that if the adversaries
can solve the puzzles, they must have spent substantial band-
width, the size of which is comparable to the size of the contents
they claim to have uploaded for each other. Therefore, the puzzle
discourages the collusion. In this paper, we study the performance
of the bandwidth puzzle and give a lower bound on theaverage
number of bits the adversaries must receive to be able to solve
the puzzles with a certain probability. We show that our bound
is tight in the sense that there exists a strategy to approachthis
lower bound asymptotically within a small factor. The new bound
gives better security guarantees than the existing bound, and can
be used to guide better choices of puzzle parameters to improve
the system performance.

I. I NTRODUCTION

A key problem in peer-to-peer (p2p) based content sharing
is the incentive for peers to contribute bandwidth to serve
other peers [14]. Without a robust incentive mechanism, peers
may choose not to upload contents for other peers, causing
the entire system to fail. In many applications, a peer’s
contribution is measured by the number of bits it uploaded for
other peers. It is difficult to measure the contribution because
peers may collude with each other to get free credits. For
example, if Alice and Bob are friends, Alice, without actually
uploading, may claim that she has uploaded a certain amount
of bits to Bob. Bob, when asked about this claim, will attest
that it is true because he is Alice’s friend. Therefore, Alice
gets free credits.

With the current Internet infrastructure, such collusionsare
difficult to detect, because the routers do not keep records
of the traffic. Recently, a bandwidth puzzle scheme has been
proposed solve this problem [12]. In the bandwidth puzzle

scheme, a central credit manager, called theverifier, is as-
sumed to exist in the network. The verifier issues puzzles to
suspected nodes, calledprovers, to verify whether the claimed
transactions are true. To be more specific, when the verifier
suspects a set of provers for certain transactions, it issues
puzzlessimultaneouslyto all the involved provers, and asks
them to send back answers within a time threshold. The
puzzle’s main features are: 1) it takes time to solve a puzzle
and 2) a puzzle can be solved only if the prover has access to
the contents. To illustrate the basic idea of the puzzle, consider
the previous simple example with Alice and Bob. The verifier
issues two puzzles, one to Alice and one to Bob. As Alice did
not upload the content to Bob, Alice has the content but not
Bob. When received the puzzles, Alice can solve hers and send
the answer to the verifier before the threshold but not Bob.
Neither can Bob ask help from Alice, because Alice cannot
solve two puzzles within the threshold. Given this, Bob will
fail to reply with the answer of the puzzle and the verifier will
know that the transaction did not take place.

The bandwidth puzzle is most suited for live video broadcast
applications, where fresh contents are generated constantly
[12]. The verifier can naturally reside in the source node of the
video, and the puzzle is based on the unique content currently
being broadcast, such that there are no existing contents
downloaded earlier that can be used to solve the puzzles. The
construction of bandwidth puzzle is simple and based only
on hash functions and pseudorandom functions. In [12], the
puzzle scheme was implemented and incorporated into a p2p
video distributing system, and was shown to be able to limit
collusions significantly. An upper bound was also given for
the expected number of puzzles that can be solved given the
limit of the number of bits received among the adversaries.
However, the bound is “loose in several respects,” as stated
by the authors, because its dominating term is quadratic to
the number of adversaries such that it deteriorates quicklyas
the number of adversaries increases. In this paper, we give a
much improved bound on the performance of the puzzle. The
new bound gives theaveragenumber of bits the adversaries
must have received if they can solve the puzzles with a certain
probability. As we will prove, the average number of bits the
adversaries receive is linear to the number of adversaries.It is
also asymptotically tight in the sense that there exists a strategy



n The number of bits in the content
k The number of indices in an index set
L The number of index sets in a puzzle
z The number of puzzles sent to a prover
θ The time threshold to solve the puzzles

TABLE I
L IST OF PUZZLE PARAMETERS

that achieves this bound asymptotically within a small factor.
The improved bound leads to more relaxed constraints on the
choice of puzzle parameters, which should in turn improve the
system performance.

The rest of this paper is organized as follows. Section II
describes the construction of the puzzle. Section III givesthe
proof of the new bound. Section IV discusses related works.
Section V concludes the paper.

II. T HE CONSTRUCTION

In this section, we describe the construction of the puzzle.
The puzzle construction is largely the same as [12] except
one difference: allowing repeated indices in one index set (the
definition of index set will be given shortly), which simplifies
the puzzle construction. We first give a high-level overviewof
the puzzle construction as well as introducing some notations.
The main parameters of the puzzle are listed in Table I.

A. A High-level Description

The content being challenged is referred to simply as
content. There aren bits in the content, each given a unique
index. An index setis defined ask ordered indices chosen
from then indices. Each index set defines a string denoted as
str , called thetrue stringof this index set, which is obtained
by reading the bits in the content according to the indices.
str can be hashed using a hash function denoted ashash,
and the output is referred to as the hash of the index set. To
construct a puzzle, the verifier needsL index sets denoted
as I1, . . . , IL, where an index set is obtained by randomly
choosing the indices, allowing repeat. The verifier randomly
chooses one index set among theL index sets, denoted asIℓ̂,
called theanswer index set. It useshash to get the hash ofIℓ̂,
denoted aŝh, which is called thehint of the puzzle. The puzzle
is basically theL index sets and̂h. When challenged with a
puzzle, the prover should prove that it knows which index set
hashes intôh, by presenting another hash ofIℓ̂ generated by
hash functionans. The purpose of usingans is to reduce the
communication cost, asstr ℓ̂ may be long. The verifier may
issuez puzzles to the prover and the prover has to solve the
all puzzles before a time thresholdθ.

The strengths of the puzzle are: 1) a prover has to know
the content, otherwise it cannot get the true strings of the
index sets, and 2) even if the prover knows the content, it
still has to spend time and try different index sets until it
finds an index set with the same hash as the hint, refereed to
as aconfirm event, because the hash function is one-way. In
practice, the verifier need not generate all index sets; it need
only generate and find the hash of the answer index set. The
verifier should not send theL index sets to the prover because
this requires a large communication cost; instead, the verifier

and the prover can agree on the same pseudorandom functions
to generate the index sets and the verifier sends only a key for
the pseudorandom functions. Therefore, this constructionhas
low computation cost and low communication cost.

As a example, supposen = 8 and the content is 00110101.
Supposek = 4, L = 3, and the three index sets in the puzzle
are I1 = {5, 3, 7, 0}, I2 = {1, 2, 6, 3}, and I3 = {2, 3, 5, 3}.
Correspondingly,str1 = 1110, str2 = 0101 andstr3 = 1111.
Suppose the verifier choosesℓ̂ = 1. Supposehash is simply
the parity bit of the string, such thatĥ = 1. The prover receives
the hint and generates the three index sets, and finds that only
I1 has parity bit 1. Supposeans is simply the parity bit of
every pair of adjacent bits. The prover presents ‘01’ which
proves that it knowsI1 is the answer index set.

B. Detailed Puzzle Construction

In the construction, it is assumed that the keys of the
pseudorandom functions and the output of the hash functions
are bothκ bits. In practice,κ = 160 suffices.

Pseudorandom functions are used to generate the index sets.
A pseudorandom function family{fK} is a family of functions
parameterized by a secret key. Roughly speaking, once ini-
tialized by a key, a pseudorandom function generates outputs
that are indistinguishable from true random outputs. Two
pseudorandom function families are used:{f1

K : {1, . . . , L} →
{0, 1}κ} and{f2

K : {1, . . . , k} → {1, . . . , n}}.
Two hash functions are used in the construction,hash and

ans. hash is used to get the hint. It actually hashes the concate-
nation of aκ-bit key, a number in the range of[1, L], and ak-
bit string intoκ-bits:{0, 1}κ×{1, . . . , L}×{0, 1}k→ {0, 1}κ.
To prove the security of the puzzle,hash is modeled as a
random oracle [4]. The other hash function isans : {0, 1}k →
{0, 1}κ. For ans, only collision-resistance is assumed.

As mentioned earlier, a puzzle consists of the hintĥ and
L index-sets. The verifier first randomly picks aκ-bit string
as keyK1. Then it randomly picks a number̂ℓ from [1, L] as
the index of the answer index set. WithK1 and ℓ̂, it generates
K ℓ̂

2← f1
K1

(ℓ̂). K ℓ̂
2 is used as the key forf2

K2
to generate the

indices in the answer index set:Iℓ̂ = {f2

K ℓ̂
2

(1) . . . f2

K ℓ̂
2

(k)}.

The verifier then findsstr ℓ̂. It then uses the concatenation
of K1, ℓ̂, and str ℓ̂ as the input tohash and uses the output
as ĥ: ĥ← hash(K1, ℓ̂, str ℓ̂). IncludingK1 and ℓ̂ ensures that
the results of one puzzle-solving process cannot be used for
another puzzle, regardless of the content,k, and L. The
prover can generate index sets in the same way as the verifier
generates the answer index set, and can compare the hash of
the index sets with the hint until aconfirm is found. When the
prover finds aconfirm upon stringstrℓ, it returnsans(strℓ).

III. T HE SECURITY BOUND

In this section, we derive the new bound for the bandwidth
puzzle. Although the puzzle is designed to defend against
colluding adversaries, we begin with the simple case when
there is only one adversary given only one puzzle, because
the proof for this simple case can be extended to the case
when multiple adversaries are given multiple puzzles.



qhash The number of hash queries allowed, determined byθ

Ω A special oracle for hash and content queries
V The maximum number of missed bits
δ A positive number determined by puzzle parameters

TABLE 2
L IST OF NOTATIONS IN THE PROOF

A. Single Adversary with a Single Puzzle

Consider a single adversary challenged with one puzzle.
We begin with assumptions and definitions. Some key proof
parameters and notations are listed in Table 2.

1) Assumptions and Definitions:In the proof, we model
hash andans as random oracles and refer to them as thehash
oracle and theanswer oracle, respectively. Obtaining a bit in
the content is also modeled as making a query to thecontent
oracle denoted ascontent. The adversary is given access to
hash, ans, andcontent. To model the computational constraint
of the prover in the limited timeθ allowed to solve the puzzle,
we assume the number of queries tohash is no more thanqhash.
To ensure that honest provers can solve the puzzle,qhash ≥ L.
However, we do not assume any limitations on the number of
queries tocontent andans. We refer a query tocontent as a
content queryand a query tohash a hash query. We useA to
denote the algorithm adopted by the adversary.

In our proof, we define a special oracle,Ω, as an oracle
that answers two kinds of queries, both the content query and
the hash query. LetB be an algorithm for solving the puzzle,
when given access to the special oracleΩ and the answer
oracleans. If B makes a content query,Ω simply replies with
the content bit. In addition, it keeps the history of the content
queries made. WhenB makes a hash query toΩ for a string,
if it has made content queries for more thank − V bits in
this string, we say the hash query isinformedanduninformed
otherwise, whereV is a proof parameter much smaller than
k. If B makes an informed hash query forIℓ, Ω replies with
the hash ofIℓ; otherwise, it returns∅. In addition, ifB makes
more thanL hash queries for the puzzle,Ω will not answer
further hash queries.

2) Problem Formalization:The questions we seek to an-
swer is: givenqhash, if the adversary has a certain advantage
in solving the puzzle, how many content queries it must
make tocontent on average? In the context of p2p content
distribution, this is analogous to giving a lower bound on the
average number of bits a peer must have downloaded if it
can pass the puzzle challenge with a certain probability. Note
that we emphasize on the average number of bits because a
deterministic bound may be trivial: if the adversary happens to
pick the answer index set in the first attempt of hash queries,
only k content queries are needed. However, the adversary may
be lucky once but unlikely to be always lucky. Therefore, if
challenged with a large number of puzzles, the average number
of queries it makes tocontent must be above a certain lower
bound, which is the bound we seek to establish.

3) Proof Sketch:A sketch of our proof is as follows. As
it is difficult to derive the optimal algorithm the adversary
may adopt, our proof is “indirect.” That is, by usingΩ,
we introduce a simplified environment which is easier to

reason about. We show that given an algorithm for the real
environment, an algorithm for the simplified environment can
be constructed with performance close to the algorithm for the
real environment. This provides a link between the simplified
environment and the real environment: knowing the bound for
the former, the bound for the latter is a constant away. We
establish the performance bound of the optimal algorithm in
the simplified environment, by showing that to solve the puzzle
with certain probability, an algorithm must make a certain
number of informed hash queries toΩ and the average number
of unique indices in the informed queries, i.e., the number of
content queries, is bounded.

4) Proof Details: Given any algorithmA the adversary
may adopt, we construct an algorithmBA that employsA
and implements oracle queries forA. BA terminates when
A terminates, and returns whatA returns. WhenA makes a
query,BA replies as follows:

Algorithm 1 BA answers oracle queries forA
1: WhenA makes a query tocontent, BA makes the same

content query toΩ and returns the result toA.
2: WhenA makes a query toans, BA makes the same query

to ans and returns the result toA.
3: WhenA makes a query tohash for Iℓ:

1) BA checks whetherA has made exactly the same
query before. If yes, itreturns the same answer as
the last time.

2) BA checks whether there are no less thanV bits in
Iℓ that have not been queried. If yes, itreturns a
random string.

3) BA checks whether it has made a hash query for
Iℓ before. If no,BA makes a hash query toΩ. If
confirm is obtained upon this query,BA knows that
Iℓ is the answer index set, and sends content queries
Ω to get the remaining bits inIℓ.

4) If Iℓ is not the answer index set,BA returns a
random string.

5) If the stringA submitted is the true string ofIℓ, BA
returns the hash ofIℓ.

6) BA returns a random string.

Let ω() denote the average number of bits received by an
algorithm, where the average is taken over the random choices
of the algorithm and the randomness of the puzzle. We have

Theorem 3.1:Let CA be the event thatA returns the correct
answer whenA is interacting directly withcontent, hash and
ans. Let CBA

be the event thatBA returns the correct answer,
whenBA is interacting withΩ andans. Then,

P [CBA
] ≥ P [CA]−

qhash

2V
,

and

ω[BA] ≤ ω[A] +
Lkqhash

2V
+ V .



Proof: In our construction,BA employsA, and answers
oracle queries forA. Denote the random process ofA when it
is interacting directly withcontent, hash andans asW , and
denote the random process ofA when it is interacting with
the oracles implemented byBA asW ′. We prove thatW and
W ′ will progress in the same way statistically with only one
exception, while the probability of this exception is bounded.

First, we note that whenA makes a query tocontent or
ans, BA simply gives the query result, therefore the only case
needs to be considered is whenA makes a query tohash.
WhenA makes a query forIℓ to hash,

• If there are still no less thanV unknown bits in this
index set,BA will simply return a random string, which
follows the same distribution as the output of thehash

modeled as a random oracle. Ifℓ 6= ℓ̂, such a query will
not result in aconfirm, and this will have same effect
on the progress of the algorithm statistically as whenA
is making a query tohash. However, if ℓ = ℓ̂, it could
happen thatA is making a query with the true string.
In this case, the exception occurs. That is,W ′ will not
terminate, butW will terminate with the correct answer
to the puzzle. However, the probability of this exception
is bounded from the above byqhash

2V , because if no less
than V bits are unknown, the probability of making a
hash query with the true string is no more thanqhash

2V .
• If BA has made enough content queries for this index

set, BA checks whether it has made hash query for
this index set before. If no,BA makes the hash query,
and if a confirm is obtained,BA knows that this is the
answer index set and get the possible remaining bits
in it; otherwise BA knows that it is not the answer
index set. If Iℓ is not the answer index set,BA will
simply return a random string, which will have the same
effect statistically on the progress ofA as whenA is
interacting with hash. If Iℓ is the answer index set,
BA checks whetherA is submitting the true string, and
returns the true hash if yes and a random string otherwise.
This, clearly, also has the same effect statistically of the
progress ofA as whenA is interacting withhash.

From the above discussion, we can see thatP [CBA
] is

no less thanP [CA] minus the probability of the exception.
Therefore, the first half of the theorem is proved. We can also
see that if the exception occurs,BA makes at mostLk more
content queries thanA. If the exception does not occur,BA
receives at mostV bits thanA it encapsulates, and therefore
at mostV bits more thanA on average whenA is interacting
directly with content, hash andans.

Theorem 3.1 allows us to establish a connection between
the “real” puzzle solver and the puzzle solver interacting with
Ω. The advantage of introducingΩ is that a good algorithm
will not send any uninformed queries toΩ, because it will get
no information from such queries. If there is a bound on the
number of hash queries, which are all informed, it is possible
to establish a lower bound on the number of unique indices
involved in such queries, with which the lower bound of the

puzzle can be established. It is difficult to establish such bound
based onhash directly becausehash answers any queries.
Although some queries are “more informed” than others, all
queries have non-zero probabilities to get aconfirm. The next
theorem establishes the lower bound on the expected number
of informed hash queries to achieve a given advantage by an
optimal algorithm interacting withΩ.

Theorem 3.2:SupposeB is an optimal algorithm for solv-
ing the puzzle when interacting withΩ. If B solves the puzzle
with probability no less thanǫ, on average, the number of

informed hash queries it makes is no less than
(ǫ− 1

2V
)(L+1)

2 .

Proof: Let correct denote the event thatB returns the
correct answer. Note that

P [correct] = P [correct | confirm] P [confirm]

+P [correct | ¬confirm] P [¬confirm]

= P [confirm]

+P [correct | ¬confirm] P [¬confirm]

≤ P [confirm] + P [correct | ¬confirm]

≤ P [confirm] +
1

2V

Note thatP [correct | ¬confirm] ≤ 1
2V because if the algorithm

returns the correct answer, it must have the true string of the
answer index set, sinceans is collision-resistant. If aconfirm

was not obtained, the answer index set is missing no less than
V bits, since otherwise an optimal algorithm should make
query which will result in aconfirm. Therefore, the probability
that the algorithm can obtain the true string of the answer index
set is no more than1

2V . Note that hash queries toΩ will not
help in the guessing of the true string, becauseΩ is aware
of the number of missing bits and will not reply with any
information. Therefore, any algorithm that achieves advantage
ǫ in solving the puzzle must have an advantage of no less than
ǫ− 1

2V to getconfirm.
Let P1 be the probability thatB makes no hash query and

let Pi be the probability thatB stops making hash queries
after all previous queries (queries 1 toi−1) failed to generate
a confirm for 2 ≤ i ≤ L. Consider the probability that a
confirm is obtained upon theith query. For a given set of
P1, P2, . . . , PL, as ℓ̂ is picked at random, the probability is
(1−P1)

L−1
L (1−P2)

L−2
L−1 . . . (1−Pi)

1
L−i = 1

L

∏i
j=1(1−Pj).

Therefore, the probability that the algorithm can get aconfirm

is
∑L

i=1[
1
L

∏i
j=1(1 − Pj)] .

The event that exactlyi queries are made occurs when a
confirm was obtained upon theith query, or when all firsti
queries failed to obtain theconfirm and the algorithm decides
to stop making queries. The probability is thus[

∏i
j=1(1 −

Pj)][
1
L + L−i

L Pi+1] . Note thatPL+1 is not previously defined.
However, asL−i

L = 0 when i = L, for convenience, we can
use the same expression for all1 ≤ i ≤ L for any arbitrary
value ofPL+1. To derive the lower bound, we therefore need
to solve the problem of minimizing

∑L
i=1 i[

∏i
j=1(1−Pj)][

1
L+

L−i
L Pi+1] subject to constraints that

∑L
i=1[

1
L

∏i
j=1(1−Pj)] =

ǫ − 1
2V and 0 ≤ Pi ≤ 1. To solve the problem, we letηi =



∏i
j=1(1 − Pj) and note thatPi+1 = 1− ηi+1

ηi
. Therefore,

L∑

i=1

i[

i∏

j=1

(1 − Pj)][
1

L
+

L− i

L
Pi+1]

=

L∑

i=1

iηi[
1

L
+

L− i

L
(1−

ηi+1

ηi
)]

=
1

L
[

L∑

i=1

(L − i + 1)ηii−
L−1∑

i=1

(L− i)ηi+1i]

=
1

L
[

L∑

i=1

(L − i + 1)ηi].

We therefore consider a new problem of minimizing
1
L [

∑L
i=1(L − i + 1)ηi] subject to constraints that

∑L
i=1 ηi =

L(ǫ− 1
2V ), 0 ≤ ηi ≤ 1, ηi+1 ≤ ηi. The optimal objective value

for the newly defined problem must be no more than that of the
original problem, because any valid assignment of{Pi}i gives
a valid assignment of{ηi}i. To achieve the optimal of the new
problem, note that ifi < j, the coefficient ofηi is more than
that of ηj in the objective function, therefore, to minimize
the objective function, we should reduceηi and increase
ηj . Considering that{ηi}i is nondecreasing, the optimal is
achieved when allηi are set to the same value(ǫ− 1

2V ), and

the optimal value is
(ǫ− 1

2V
)(L+1)

2 .
We also have the following lemma, the proof of which is

given in the accompanying technical report [15].
Lemma 3.3:Suppose an algorithm makes hash queries to

β index sets on average to solve the puzzle. LetU(β) be the
average number of unique indices in the index sets selected
by the algorithm. A constantδ ∈ [0, 1] exists and satisfies

U(β) ≥
(1− δ)n(1− e−Lk/n)β

L
.

Note that the lemma is trivially true ifδ = 1; however, to make
a useful bound,δ should be as small as possible. We show
in the accompanying technical report [15] that with practical
puzzle parameters,δ can be close to 0.

SupposeA has an advantage ofσ in solving the puzzle
when receivingω(A) bits on average. Based on Theorem 3.1,
BA has an advantage of no less thanσ− qhash

2V while receiving
no more thanω(A) + Lkqhash

2V + V bits on average. Based on
Theorem 3.2, to achieve an advantage of at leastσ − qhash

2V ,

the optimal algorithmB must make at least
(σ−

q
hash

+1

2V
)(L+1)

2
informed hash queries. Based on Lemma 3.3, also considering
that B needs to receive onlyk − V + 1 bits per index set,

B receives at leastU(
(σ−

q
hash

+1

2V
)(L+1)

2 ) − L(V − 1) bits on
average. Therefore,

Theorem 3.4:SupposeA solves the puzzle with probability
no less thanσ. Let ω(A) denote the average number of

received bits. We have

ω(A) ≥
(1− δ)n(1 − e−Lk/n)(σ − qhash+1

2V )(L + 1)

2L

−L(V − 1)−
Lkqhash

2V
−V

whereqhash, V , andδ are constants determined by the puzzle
parameters.

B. Multiple Adversaries with Multiple Puzzles

For the case where multiple adversaries are required to
solve multiple puzzles, the proof uses the same idea as the
single adversary case. Due to the limit of space, the complete
proof is provided in the accompanying technical report [15].
Basically, we extendΩ to handle multiple adversaries, where
Ω gives correct answer to a hash query from an adversary
only if the number of bits the adversary received for the
index set is greater thank − V , regardless of the number of
bits other adversaries received. With similar arguments as the
single adversary case, we consider the average number of bits
received among the adversaries, and establish the relationship
between the algorithm performance when interacting withΩ
and with the real oracles. We then obtain the average number
of informed queries the adversaries must make to achieve
certain advantages when interacting withΩ. After solving the
related optimization problems, we prove that

Theorem 3.5:SupposeA adversaries are challenged withP

puzzles. SupposeA solves the puzzle with probability no less
than σ and letω(A) denote the average number of received
bits. We have

ω(A) ≥
(1 − δ)nP (σ − qhash+1

2V )(L + 1)(1− e−qhashk/n)

2qhash

−PL(V − 1)−
PLkAqhash

2V
−V P

whereqhash, V , andδ are constants determined by the puzzle
parameters.

C. Achieving the Bound

We note that there exists a simple strategy the adversaries
may adopt to be compared with the bound. In this strategy,
when challenged with the puzzles, the adversaries flip a coin
and decide whether to attempt to solve the puzzles. They
attempt with probabilityσ; otherwise they simply ignore the
puzzles. If they decide to solve the puzzles, the adversities
select P (L+1)

2qhash

members, and let each of them get the entire
content. Each of the chosen adversaries makesqhash hash
queries allowed for them. For each puzzle, the adversaries
make hash queries for the index sets one by one until aconfirm

is obtained.
We now analyze the performance of this strategy. We argue

that the adversaries can solve the puzzles with probability
close to 1 if they decide to attempt, hence their advantage isσ.
Note that to get aconfirm for puzzle according to this strategy,
the number of hash queries follows a uniform distribution in
[1, L] and is independent of other puzzles. The total number of
hash queries is a random variable with meanP (L+1)

2 . As the



10
1

10
2

10
3

10
4

10
5

10
6

10
6

10
8

10
10

10
12

10
14

Number of Adversaries

A
ve

ra
ge

 N
um

be
r 

of
 B

its n = 108

 

 

Simple
Bound

Fig. 1. Average number of bits needed by the simple strategy and the bound.

number of puzzles increases, the distribution of this variable
approaches a Gaussian distribution centered around the mean
with decreasing variance. Therefore, if the adversaries can
make P (L+1)

2 hash queries, the probability that they can solve
the puzzles asymptotically approaches 1. Note that this is
possible because there areP (L+1)

2qhash

selected adversaries, each
makingqhash queries.

According this strategy, the average number of
bits downloaded is σnP (L+1)

2qhash

. Comparing to the
bound in Theorem 3.5, it is a small fraction from
(1−δ)nP (σ−

q
hash

+1

2V
)(L+1)(1−e−q

hash
k/n)

2qhash

which is the dominant
term, provided thatδ, qhash+1

2V , ande−qhashk/n are all small. We
discuss in the accompanying technical report [15] that these
conditions are true for a wide range of puzzle parameters.
Therefore, this strategy approaches the bound asymptotically
within a small fraction.

For instance, whenn = 108, possible parameters are:k =
104, L = 2 × 103, z = 10, and aθ such thatqhash = 4 ×
104. Under such conditions, it is possible to setδ = 0.1 and
V = 60, and it can be verified that bothe−qhashk/n and qhash+1

2V

are small. Fig. 1 shows the bound and the simple strategy
when σ = 1 for various number of adversaries under these
parameters, where we can see that the difference is small.
Due to the limit of space, we discuss practical choices of the
puzzle parameters in [15].

IV. RELATED WORK

Using puzzles has been proposed (e.g., in [8], [10], [1], [7],
[6]) to defend against email spamming or denial of service
attacks. In these schemes, the clients are required to spend
time to solve puzzles before getting access to the service.
The purpose of the bandwidth puzzle is to verify whether
the claimed content transactions took place, where the ability
to solve the puzzles is tied to the amount contents actually
downloaded. As such, the construction of the bandwidth puzzle
is different from existing puzzles.

Proofs of data possession (PDP) (e.g., [2], [9], [3]) and
Proofs of retrievability (POR) (e.g., [11], [5], [13]) havebeen
proposed to allow a client to verify whether the data has
been modified in a remote store. As discussed in [12], the
key differences between PDP/POR schemes and the bandwidth
puzzle include the following. First, PDP/POR assumes a single
verifier and prover, while the bandwidth puzzle considers one
verifier with many potentially colluding provers. Second, the
bandwidth puzzle has low computational cost at the verifier,
which is desirable in the case when one verifier has to handle
many provers, while the existing PDP/POR schemes may incur

heavy computational cost at the verifier. The proof techniques
for PDP/POR schemes are also different from the techniques
used in this paper, because collusion is not considered in
existing PDP/POR schemes.

In our earlier work [12], an upper bound was given on the
expected number puzzles that can be solved if the adversaries
are allowed and a certain number of hash queries and content
queries. In this work, we remove assumption on the maximum
number of content queries. With less assumptions, our proof
is less restrictive and applies to more general cases. The new
problem is different from the problem studied in [12], and
new techniques are developed to establish the bound. Note
that although the adversaries are allowed to download as
many bits as they wish, they prefer to employ an intelligent
algorithm to minimize the number of downloaded bits. The
new bound guarantees that, if the adversaries wish to have a
certain advantage in solving the puzzle, there exist a lower
bound on the average number of bits they have to download,
regardless of the algorithm they adopt.

V. CONCLUSIONS

In this paper, we prove a new bound on the performance
of the bandwidth puzzle which has been proposed to de-
fend against colluding adversaries in p2p content distribution
networks. Our proof is based on reduction, and gives the
lower bound of the average number of downloaded bits to
achieve a certain advantage by the adversaries. The bound is
asymptotically tight in the sense that it is a small fractionaway
from the average number of bits downloaded when following
a simple strategy. The new bound is a significant improvement
over the existing bound which is derived under more restrictive
conditions and is much looser. The improved bound can be
used to guide the choice of puzzle parameters to improve the
performance of practical systems.

REFERENCES

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions.ACM Transactions on Internet Technology,
5:299–327, 2005.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proc. of
ACM CCS, 2007.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable
and Efficient Provable Data Possession. IACR eArchive 2008/114 at
http://eprint.iacr.org/2008/114.pdf, 2008.

[4] M. Bellare and P. Rogaway. Random oracles are practical:A paradigm
for designing efficient protocols. InProceedings of the 1st ACM
Conference on Computer and Communications Security, pages 62–73,
Nov. 1993.

[5] K. Bowers, A. Juels, and A. Oprea. Proofs of Retrievabil-
ity: Theory and Implementation. IACR eArchive 2008/175 at
http://eprint.iacr.org/2008/175.pdf, 2008.

[6] S. Doshi, F. Monrose, and A. Rubin. Efficient memory boundpuzzles
using pattern databases. InProceedings of the International Conference
on Applied Cryptography and Network Security, 2006.

[7] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for
fighting spam. InProceedings of CRYPTO 2003, Aug. 2003.

[8] C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail.
In Advances in Cryptology – CRYPTO ’92 (Lecture Notes in Computer
Science 740), pages 139–147, 1993.

[9] D. L. G. Filho and P. S. L. M. Barreto. Demonstrating data possession
and uncheatable data transfer. IACR eArchive 2006/150 at http://eprint.
iacr.org/2006/150.pdf, 2006.



[10] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against
connection depletion attacks. InProceedings of the 6th ISOC Network
and Distributed System Security Symposium, Feb. 1999.

[11] A. Juels and B. S. K. Jr. PORs: Proofs of retrievability for large
files. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, Oct. 2007.

[12] M. Reiter, V. Sekar, C. Spensky, and Z. Zhang. Making contribution-
aware p2p systems robust to collusion attacks using bandwidth puzzles.
In Proc. of ICISS, 2009.

[13] H. Shacham and B. Waters. Compact Proofs of Retrievability. IACR
eArchive 2008/073 at http://eprint.iacr.org/2008/073.pdf, 2008.

[14] Y. Sung, M. Bishop, and S. Rao. Enabling Contribution Awareness in
an Overlay Broadcasting System. InProc. ACM SIGCOMM, 2006.

[15] Z. Zhang. A new bound on the performance of the bandwidthpuzzle.
In arXiv:1102.3745v1, 2011.


