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(©2011 IEEE. Personal use of this material is permittedcheme, a central credit manager, called veefier, is as-
Permission from IEEE must be obtained for all other uses, sumed to exist in the network. The verifier issues puzzles to
any current or future media, including reprinting/repebing suspected nodes, callpdovers to verify whether the claimed
this material for advertising or promotional purposesatirgy transactions are true. To be more specific, when the verifier
new collective works, for resale or redistribution to sesver suspects a set of provers for certain transactions, it $ssue
lists, or reuse of any copyrighted component of this work ipuzzlessimultaneouslyto all the involved provers, and asks
other works. them to send back answers within a time threshold. The

puzzle's main features are: 1) it takes time to solve a puzzle

Abstract—A bandwidth puzzle was recently proposed to defend and 2) a puzzle can be solved only if the prover has access to
against colluding adversaries in peer-to-peer networks. fie the contents. To illustrate the basic idea of the puzzlesicen
colluding adversaries do not do actual yvork but cIajm to have the previous simple example with Alice and Bob. The verifier
uploaded contents for each other to gain free _credlts from_ th issues two puzzles, one to Alice and one to Bob. As Alice did
system. The bandwidth puzzle guarantees that if the adversies .
can solve the puzzles, they must have spent substantial band NOt upload the content to Bob, Alice has the content but not
width, the size of which is comparable to the size of the contes Bob. When received the puzzles, Alice can solve hers and send
they claim to have uploaded for each other. Therefore, the pzele the answer to the verifier before the threshold but not Bob.
discourages the collusion. In this paper, we study the perfmance  Neither can Bob ask help from Alice, because Alice cannot

of the bandwidth puzzle and give a lower bound on theaverage 0 1o puzzles within the threshold. Given this, Bob will
number of bits the adversaries must receive to be able to sav

the puzzles with a certain probability. We show that our bourd fail to reply with the answer of the puzzle and the verifierd wil
is tight in the sense that there exists a strategy to approacthis know that the transaction did not take place.
lower bound asymptotically within a small factor. The new baind The bandwidth puzzle is most suited for live video broadcast
gives better sepurity guarant.ees than the existing bound,rgﬂ can  gpplications, where fresh contents are generated cohstant
Ehe used to guide better choices of puzzle parameters {0 Imp¥e 1151 The verifier can naturally reside in the source noddef t

e system performance. . . -

video, and the puzzle is based on the unique content cuyrentl

being broadcast, such that there are no existing contents
downloaded earlier that can be used to solve the puzzles. The

A key problem in peer-to-peer (p2p) based content shariegnstruction of bandwidth puzzle is simple and based only
is the incentive for peers to contribute bandwidth to serwn hash functions and pseudorandom functions. In [12], the
other peers [14]. Without a robust incentive mechanismipe@uzzle scheme was implemented and incorporated into a p2p
may choose not to upload contents for other peers, causiigeo distributing system, and was shown to be able to limit
the entire system to fail. In many applications, a peertollusions significantly. An upper bound was also given for
contribution is measured by the number of bits it uploaded fthe expected number of puzzles that can be solved given the
other peers. It is difficult to measure the contribution hesea limit of the number of bits received among the adversaries.
peers may collude with each other to get free credits. Feibwever, the bound is “loose in several respects,” as stated
example, if Alice and Bob are friends, Alice, without actyal by the authors, because its dominating term is quadratic to
uploading, may claim that she has uploaded a certain amotité number of adversaries such that it deteriorates quiakly
of bits to Bob. Bob, when asked about this claim, will atteshe number of adversaries increases. In this paper, we give a
that it is true because he is Alice’s friend. Therefore, Alicmuch improved bound on the performance of the puzzle. The
gets free credits. new bound gives thaveragenumber of bits the adversaries

With the current Internet infrastructure, such collusians must have received if they can solve the puzzles with a certai
difficult to detect, because the routers do not keep recongi®bability. As we will prove, the average number of bits the
of the traffic. Recently, a bandwidth puzzle scheme has beadversaries receive is linear to the number of adversdtiess.
proposed solve this problem [12]. In the bandwidth puzzkdso asymptotically tight in the sense that there existsadesy

I. INTRODUCTION



z ThTehﬁur:]’&?egf?;&ﬁzgni;h:nﬁ?]gf:; < and the prover can agree on the same pseudorandom functions
T | The number of index sets in a puzzle to generate the index sets and the verifier sends only a key for
z | The number of puzzles sent to a prover the pseudorandom functions. Therefore, this construdtam
9 | The time threshold to solve the puzzigs low computation cost and low communication cost.

TABLE | As a example, suppose= 8 and the content is 00110101.

LIST OFPUZZLE PARAMETERS Supposék = 4, L = 3, and the three index sets in the puzzle

that achieves this bound asymptotically within a smalldact are I; = {5,3,7,0}, I = {1,2,6,3}, and I3 = {2,3,5,3}.
The improved bound leads to more relaxed constraints on ferrespondinglystr; = 1110, stro = 0101 andstrg = 1111.
choice of puzzle parameters, which should in turn improee tisuppose the verifier choosés= 1. Supposehash is simply
system performance. the parity bit of the string, such that= 1. The prover receives
The rest of this paper is organized as follows. Section the hint and generates the three index sets, and finds that onl
describes the construction of the puzzle. Section IIl gitees I; has parity bit 1. Supposens is simply the parity bit of
proof of the new bound. Section IV discusses related worlkevery pair of adjacent bits. The prover presents ‘01’ which
Section V concludes the paper. proves that it knowd; is the answer index set.

I[I. THE CONSTRUCTION B. Detailed Puzzle Construction

In this section, we describe the construction of the puzzle.In the construction, it is assumed that the keys of the
The puzzle construction is largely the same as [12] excdpgeudorandom functions and the output of the hash functions
one difference: allowing repeated indices in one indexthet ( are bothx bits. In practicex = 160 suffices.
definition of index set will be given shortly), which simpéf Pseudorandom functions are used to generate the index sets.
the puzzle construction. We first give a high-level overvigw A pseudorandom function familfyf } is a family of functions
the puzzle construction as well as introducing some natatio parameterized by a secret key. Roughly speaking, once ini-

The main parameters of the puzzle are listed in Table |.  tialized by a key, a pseudorandom function generates caitput
that are indistinguishable from true random outputs. Two

A. A High-level Description pseudorandom function families are uségli, : {1,..., L} —

The content being challenged is referred to simply d$,1}"} and{f% : {1,...,k} — {1,...,n}}.
content There aren bits in the content, each given a unique Two hash functions are used in the constructieassh and
index. An index setis defined ast ordered indices chosenans. hash is used to get the hint. It actually hashes the concate-
from then indices. Each index set defines a string denoted @gtion of ax-bit key, a number in the range f, L], and ak-
str, called thetrue string of this index set, which is obtainedbit string intox-bits: {0, 1}*x {1,..., L}x{0,1}* — {0, 1}".
by reading the bits in the content according to the indice0 prove the security of the puzzléash is modeled as a
str can be hashed using a hash function denotedhaas, random oracle [4]. The other hash functiorsis : {0,1}* —
and the output is referred to as the hash of the index set. {ld 1}”. Forans, only collision-resistance is assumed.
construct a puzzle, the verifier needsindex sets denoted As mentioned earlier, a puzzle consists of the Hinand
asIy,..., I, where an index set is obtained by randomly. index-sets. The verifier first randomly pickskabit string
choosmg the indices, allowing repeat. The verifier rangoméis keyK7. Then it randomly picks a numbérfrom [1, L] as
chooses one index set among théndex sets, denoted &, the index of the answer index set. Wity and/, it generates
called theanswer index selt useshash to get the hash of;, K2 e ad ). K2 is used as the key fofj. to generate the
denoted a%, which is called thénint of the puzzle. The puzzle indices in the answer index sef; {ffd( ). f(@(k)}
is basically theL index sets and:. When challenged with a The verifier then findsstr;. It then uses ‘the concatenation
puzzle, the prover should prove that it knows which index set K1, /, and str; as the input tohash and uses the output
hashes intoi, by presenting another hash bf generated by as: j — hash(K, ., str;). Including i, and/ ensures that
hash functiorans. The purpose of usingns is to reduce the the results of one puzzle-solving process cannot be used for
communication cost, asir; may be long. The verifier may another puzzle, regardless of the conteht,and L. The
issuez puzzles to the prover and the prover has to solve thgover can generate index sets in the same way as the verifier
all puzzles before a time threshoid generates the answer index set, and can compare the hash of

The strengths of the puzzle are: 1) a prover has to knqie index sets with the hint until@nfirm is found. When the

the content, otherwise it cannot get the true strings of t"p‘ﬁover finds aconfirm upon stringstry, it returnsans(stry).
index sets, and 2) even if the prover knows the content, it

still has to spend time and try different index sets until it I1l. THE SECURITY BOUND

finds an index set with the same hash as the hint, refereed tén this section, we derive the new bound for the bandwidth

as aconfirm event, because the hash function is one-way. puzzle. Although the puzzle is designed to defend against
practice, the verifier need not generate all index sets;étdnecolluding adversaries, we begin with the simple case when
only generate and find the hash of the answer index set. Tthere is only one adversary given only one puzzle, because
verifier should not send the index sets to the prover becaus¢he proof for this simple case can be extended to the case
this requires a large communication cost; instead, thdigeri when multiple adversaries are given multiple puzzles.



The number of hash queries allowed, determineddb
A special oracle for hash and content queries
The maximum number of missed bits
A positive number determined by puzzle parameters

TABLE 2
L1ST OF NOTATIONS IN THE PROOF
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reason about. We show that given an algorithm for the real
environment, an algorithm for the simplified environmem ca
be constructed with performance close to the algorithmHer t
real environment. This provides a link between the simplifie
environment and the real environment: knowing the bound for
the former, the bound for the latter is a constant away. We
i ) ) establish the performance bound of the optimal algorithm in
Consider a single adversary challenged with one puzzige simplified environment, by showing that to solve the peizz
We begin with assumptions and definitions. Some key progfth certain probability, an algorithm must make a certain
parameters and notations are listed in Table 2. number of informed hash queries(and the average number
1) Assumptions and Definitiondn the proof, we model of unique indices in the informed queries, i.e., the number o
hash andans as random oracles and refer to them ashhsh cgntent queries, is bounded.
oracleand theanswer oraclerespectively. Obtaining a bit in  4) proof Details: Given any algorithmA the adversary
the content is also modeled as making a query tocttv#ent may adopt, we construct an algorithBy that employs.A
oracle denoted agontent. The adversary is given access tqnq jmplements oracle queries fot. B4 terminates when

of the prover in the limited timé@ allowed to solve the puzzle, query, B4 replies as follows:

we assume the number of queriestsh is no more tham,gp.

To ensure that honest provers can solve the puzglg, > L. ALgorithm 1 B, answers oracle queries fot

However, we do not assume any limitations on the number -6f
. 1: When A makes a query taontent, B4 makes the same
gueries tocontent andans. We refer a query t@ontent as a

content query td? andreturns the result toA.
content quenyand a query tdash a hash queryWe useA to )
denote the algorithm adopted by the adversary. 2: When.A makes a query tans, 54 makes the same query

| f defi il @ | to ans andreturns the result toA.
n our proof, we define a special oracle, as an oracle . When A makes a query thash for I;:

that answers two kinds of queries, both the content query and
the hash query. LeB be an algorithm for solving the puzzle, 1) B4 checks WhetherA.has made exactly the same
when given access to the special orafleand the answer query before. If yes, iteturns the same answer as
oracleans. If B makes a content quers simply replies with the last time. L
the content bit. In addition, it keeps the history of the eont 2) B4 checks whether there are no less tﬁérb"s n
queries made. WheB8 makes a hash query @ for a string, Iy that hav_e hot been queried. If yes,réturns a
if it has made content queries for more than- V' bits in random string. .
this string, we say the hash queryiidormedanduninformed 3) B checks whether it has made a hash query for
otherwise, whereV is a proof parameter much smaller than Iy b_efor.e. If nQ'BA makes_a hash query Q. If
k. If B makes an informed hash query far, Q replies with confirm is obtained upon this querfi, knows that
the hash off;; otherwise, it returng. In addition, if B makes I, is the answer m_dgx se_t, a_nd sends content queries
more thanZ hash queries for the puzzl@ will not answer o Qe‘ the remaining b't_s .
further hash queries. 4) :;njéolr?] Qt?itn;he answer index sef34 returns a

2) Problem Formalization:The questions we seek to an- ; ) . . .
swe)r iS: givenghash, if the adversa(r:']y has a certain advantage 5) If the string.A submitted is the true string dt, B4
. . L returns the hash ofl,.
in solving the puzzle, how many content queries it must 6) B ¢ d i
make tocontent on averag@ In the context of p2p content ) B. retums a random string.
distribution, this is analogous to giving a lower bound oa th
average number of bits a peer must have downloaded if itLet w() denote the average number of bits received by an
can pass the puzzle challenge with a certain probabilityeNalgorithm, where the average is taken over the random choice
that we emphasize on the average number of bits becaussf &he algorithm and the randomness of the puzzle. We have
deterministic bound may be trivial: if the adversary hagpen ~ Theorem 3.1:Let C4 be the event thatl returns the correct
pick the answer index set in the first attempt of hash queriggswer whend is interacting directly withcontent, hash and
only k& content queries are needed. However, the adversary may. Let (s, be the event thaB 4 returns the correct answer,

be lucky once but unlikely to be always lucky. Therefore, iivhen B4 is interacting withQ andans. Then,
challenged with a large number of puzzles, the average numbe

=<0

A. Single Adversary with a Single Puzzle

of queries it makes taontent must be above a certain lower
bound, which is the bound we seek to establish.

3) Proof Sketch:A sketch of our proof is as follows. As and

it is difficult to derive the optimal algorithm the adversary
may adopt, our proof is “indirect.” That is, by using,
we introduce a simplified environment which is easier to

PCr.]) > P[Cu] - T3,

Lthash
2V

w[Ba] < w[A] + + V.



Proof: In our construction34 employs.A, and answers puzzle can be established. It is difficult to establish sumimiol

oracle queries fod. Denote the random process.dfwhen it based onhash directly becausehash answers any queries.
is interacting directly withcontent, hash andans as W, and Although some queries are “more informed” than others, all
denote the random process df when it is interacting with queries have non-zero probabilities to gefoafirm. The next
the oracles implemented §4 as W’. We prove that and theorem establishes the lower bound on the expected number
W’ will progress in the same way statistically with only onef informed hash queries to achieve a given advantage by an
exception, while the probability of this exception is boedd optimal algorithm interacting witl§.

First, we note that whepd makes a query t@ontent or Theorem 3.2:Supposes is an optimal algorithm for solv-
ans, B4 simply gives the query result, therefore the only cageg the puzzle when interacting with. If B solves the puzzle
needs to be considered is wheh makes a query thash. with probability no less thar, on average, the number of

_ 1
When.A makes a query fof to hash, informed hash queries it makes is no less thar? -1 VQ)(LH).
« If there are still no less thal/ unknown bits in this Proof: Let correct denote the event thaf returns the

index set,B.4 will simply return a random string, which correct answer. Note that
follows the same distribution as the output of thash

modeled as a random oracle./lt£ 7, such a query will Plcorrect] = Pfcorrect | confirm] P [confirm]

not result in aconfirm, and this will have same effect +P [correct | —confirm] P [~confirm]
on the progress of the algorithm statistically as whén = P [confirm]

is making a query tchash. However, if¢ = /, it could +P [correct | —confirm] P [~confirm]
happen that4d is making a query with the true string. < P [confirm] + P [correct | —confirm]

In this case, the exception occurs. That ¥, will not 1
terminate, butW will terminate with the correct answer < P[confirm] + -+
to the puzzle. However, the probability of this exception 2
is bounded from the above b$3:, because if no less Note thatP [correct | —confirm] < - because if the algorithm
than V bits are unknown, the probability of making areturns the correct answer, it must have the true string ®f th
hash query with the true string is no more thgsg:. answer index set, sincans is collision-resistant. If aonfirm

« If B4 has made enough content queries for this indexas not obtained, the answer index set is missing no less than
set, B4 checks whether it has made hash query foy bits, since otherwise an optimal algorithm should make
this index set before. If no34 makes the hash query,query which will result in aconfirm. Therefore, the probability
and if aconfirm is obtained,54 knows that this is the that the algorithm can obtain the true string of the answegin
answer index set and get the possible remaining b#et is no more tha@lv. Note that hash queries @ will not
in it; otherwise B4 knows that it is not the answerhelp in the guessing of the true string, becatsés aware
index set. If I, is not the answer index sef4 will of the number of missing bits and will not reply with any
simply return a random string, which will have the saminformation. Therefore, any algorithm that achieves athga
effect statistically on the progress of as whenA is ¢ in solving the puzzle must have an advantage of no less than
interacting with hash. If I, is the answer index set,e — 5} to getconfirm.
B4 checks whether is submitting the true string, and Let P, be the probability thaB makes no hash query and
returns the true hash if yes and a random string otherwisgt P; be the probability that3 stops making hash queries
This, clearly, also has the same effect statistically of thfter all previous queries (queries 1ite 1) failed to generate

progress of4 as whenA is interacting withhash. a confirm for 2 < ¢ < L. Consider the probability that a
From the above discussion, we can see tRaCy,] is confirm is obtained upon thé,, query. For a given set of
no less tharP [C.4] minus the probability of the exception.tts £2,- -, Pr, ast is picked at random, the probability is

Therefore, the first half of the theorem is proved. We can aléb— P1)“z-(1—P) =5 ... (1= P) = = 2[5, (1= 7).
see that if the exception occuS, makes at mostL.k more Ther%for?, thl_e probability that the algorithm can gebafirm
content queries thanl. If the exception does not occu$,y 'S >icalt Hj:1(1 - b))l . _
receives at most’ bits thanA it encapsulates, and therefore The event that exactly queries are made occurs when a
at mostV bits more thand on average whent is interacting confirm was obtained upon thg;, query, or when all first
directly with content, hash and ans. m Qqueries faileql to obta_in theonfirm and Fhe glgorithrin decides

Theorem 3.1 allows us to establish a connection betwelthSOP maklng queries. The propab|l|ty 1S _thquzl(l_ -
the “real” puzzle solver and the puzzle solver interactirithw P;)][1 + %5 Pis1] - Note thatP . is not previously defined.
Q). The advantage of introducing is that a good algorithm However, asti* = 0 wheni = L, for convenience, we can
will not send any uninformed queries & because it will get US€ the same expression for all< i < L for any arbitrary
no information from such queries. If there is a bound on thélue of P.. To derive the lower bound, we therefore need
number of hash queries, which are all informed, it is possibi© Solve the problem of minimizind;, i[[T;_, (1-P))][7 +
to establish a lower bound on the number of unique indicés— P; 1] subject to constraints th@le[% H;Zl(l—Pj)] =

1

involved in such queries, with which the lower bound of the — 5 and0 < P; < 1. To solve the problem, we lef; =



‘(1 — P;) and note that?,,; = 1 — "+ Therefore, received bits. We have
j=1 J + 7
(1 _ 6)”(1 _ 67[/]6/71)(0. _ Qha25hv+1)(L + 1)

L i . w(A)
_ 1 L—i = 2L
dil[Ja- Pj)][z + Tpiﬂ] Lk Ghaah
i=1 j=1 —L(V—-1)— 5V -V
L .
— Zini[l + L—i (1— Nit1 )] wheregnha.sh, V', andd are constants determined by the puzzle
= L L Ni parameters.
B. Multiple Adversaries with Multiple Puzzles
1 L L-1 For the case where multiple adversaries are required to
= = L—i+1)ni— L —i)ni411 solve multiple puzzles, the proof uses the same idea as the
17 +
i=1 i=1 single adversary case. Due to the limit of space, the complet
1 & proof is provided in the accompanying technical report [15]
= =D _(L—i+1)n] Basically, we extend? to handle multiple adversaries, where
L

N
Il
-

Q gives correct answer to a hash query from an adversary
nly if the number of bits the adversary received for the
dex set is greater thalh— V, regardless of the number of

bits other adversaries receiveW/ith similar arguments as the

ﬁ@gle adversary case, we consider the average numbeisof bit
received among the adversaries, and establish the redhtpn

We therefore consider a new problem of minimizin
%[Zle(L — i+ 1)n;] subject to constraints th{;EiL_:l N =
L(e—r}v), 0<mn; <1,n41 <mn;. The optimal objective value

for the newly defined problem must be no more than that of t

original problem, because any valid assignmen{Bf}; gives . . .
: . : . between the algorithm performance when interacting With
a valid assignment of»; };. To achieve the optimal of the new . :
9 offni}i P and with the real oracles. We then obtain the average number

problem, note that if < j, the coefficient ofy; is more than of informed queries the adversaries must make to achieve
that of n; in the objective function, therefore, to minimize q

the objective function, we should redueg and increase certain advantages when interacting with After solving the

n;. Considering that{n;}; is nondecreasing, the optimal isrelated opt|m|z§t|on problems, we prove that
I 1 Theorem 3.5:Supposed adversaries are challenged with
achieved when ali; are set to the same valie— 57 ), and

(=L )(L+1) puzzles. Supposd solves the puzzle with probability no less

the optimal value is—=5——. B thano and letw(A) denote the average number of received
We also have the following lemma, the proof of which iits. We have
given in the accompanying techrpcal report [15]. _ (1 - 8)nP(o — qhaghvﬂ)(L F1)(1 — e tenk/ny
Lemma 3.3:Suppose an algorithm makes hash queries te@(A) > 2
3 index sets on average to solve the puzzle.ZéB) be the PLk?éraSh
average number of unique indices in the index sets selected —PL(V —-1)— ¢ - VP
by the algorithm. A constant € [0, 1] exists and satisfies 2 _
wheregna.sh, V', andd are constants determined by the puzzle
1—6)n(l—eLF/mp parameters.
U > (1 —0)n( )

L . C. Achieving the Bound

We note that there exists a simple strategy the adversaries

Note that the lemmais trivially true & = 1; however, to make may adopt to be compared with the bound. In this strategy,
a useful bound§ should be as small as possible. We showhen challenged with the puzzles, the adversaries flip a coin
in the accompanying technical report [15] that with praaiticand decide whether to attempt to solve the puzzles. They
puzzle parameter$, can be close to 0. attempt with probabilitys; otherwise they simply ignore the

SupposeA has an advantage ef in solving the puzzle puzzles. If they decide to solve the puzzles, the advessitie
when receivingu(.A) bits on average. Based on Theorem S.B,elect% members, and let each of them get the entire
B4 has an advantage of no less thar %3 while receiving content. Each of the chosen adversaries makgs hash
no more thanu(A) + % + V bits on average. Based onqueries allowed for them. For each puzzle, the adversaries
Theorem 3.2, to achieve an advantage of at least %, make hash queries for the index sets one by one untihfirm

h imal algorithm K | io—%a;ihjl)@ﬂ) is obtained.
the optimal algorit must make at lea 2 We now analyze the performance of this strategy. We argue

informed hash queres. Based on Lemma_ 3.3, a'?" con&dermgt the adversaries can solve the puzzles with probability
that B needs to receive &T& _LV1+ 1 bits per index set, ;|ncq 1o 1 jf they decide to attempt, hence their advantage is
B receives at IeasU(W) — L(V — 1) bits on Note that to get @aonfirm for puzzle according to this strategy,
average. Therefore, the number of hash queries follows a uniform distribution in

Theorem 3.4:SupposeA solves the puzzle with probability [1, L] and is independent of other puzzles. The total number of
no less thano. Let w(A) denote the average number ohash queries is a random variable with m +1  As the




14 n=10° heavy computational cost at the verifier. The proof techesqu
for PDP/POR schemes are also different from the techniques
used in this paper, because collusion is not considered in
existing PDP/POR schemes.

Simple
-6-Bound|

Average Number of Bits
BB »5 B B

0°9 In our earlier work [12], an upper bound was given on the
o° L . . y . ] expected number puzzles that can be solved if the advessarie
0 A by A e 10 are allowed and a certain number of hash queries and content

queries. In this work, we remove assumption on the maximum
) o ) . number of content queries. With less assumptions, our proof
number of puzzles increases, the distribution of this Weia ig |ess restrictive and applies to more general cases. Tie ne
approaches a Gaussian distribution centered around the mﬁfbblem is different from the problem studied in [12], and

with dPe(%rflasmg variance. Therefore, if the adversaries Cae\y techniques are developed to establish the bound. Note
make ZZE hash queries, the probability that they can SoMg 4t although the adversaries are allowed to download as
the puzzles asymptoUcaIIyinri roaches 1. Note t_hat this fany bits as they wish, they prefer to employ an intelligent
possible because there aféqﬁ selected adversaries, eaclygorithm to minimize the number of downloaded bits. The
making gnash queries. new bound guarantees that, if the adversaries wish to have a

_According  this strategy, 1the average number  Qlertain advantage in solving the puzzle, there exist a lower
bits ~ downloaded is %ﬁ) Comparing to  the poung on the average number of bits they have to download,
bound in Theorem 3.5, it is a small fraction fromregardless of the algorithm they adopt.

Ghash +1 —dpash /7
(1_5)7”3(0_%%;;?1)(1_6 “+"™") which is the dominant
term, provided tha#, ‘“Q—W ande~9=k/" gre all small. We )
discuss in the accompanying technical report [15] thatethes !N this paper, we prove a new bound on the performance
conditions are true for a wide range of puzzle parametefd, the bandwidth puzzle which has been proposed to de-

Therefore, this strategy approaches the bound asymptpticd&nd against colluding adversaries in p2p content distiobu
within a small fraction. networks. Our proof is based on reduction, and gives the

For instance, whem = 10%, possible parameters are:= lower bound of the average number of downloaded bits to
104, L = 2 x 103, 2z = 10, and a# such thatgnae = 4 x achieve a certain advantage by the adversaries. The bound is
10%. Under such conditions, it is possible to get 0.1 and asymptotically tight in the sense that it is a small fractzovay _

V = 60, and it can be verified that botr =%/ and qhashvﬂ from the average number of bits d_ownl(_)ao_le_d Wh_en following
are small. Fig. 1 shows the bound and the simple strate@?'mple strategy. The new bound is a significant improvement
wheno = 1 for various number of adversaries under the<Ver the existing bound which is derived under more restect

parameters, where we can see that the difference is sm@@nditions and is much looser. The improved bound can be

Due to the limit of space, we discuss practical choices of ti§€d to guide the choice of puzzle parameters to improve the
puzzle parameters in [15]. performance of practical systems.
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