
Prioritized Scheduling in WDM Packet Switching Networks with
Limited Range Wavelength Conversion

Zhenghao Zhang and Yuanyuan Yang

Dept. of Electrical & Computer Engineering, State University of New York, Stony Brook, NY 11794, USA

ABSTRACT

In this paper we study scheduling problems in unbuffered
WDM packet switching networks when the packets have
different priorities. The WDM packet switching networks
we consider have wavelength conversion ability. We focus
on limited range wavelength conversion since it is easier to
implement and more cost effective than full range wavelength
conversion and also contains the latter as a special case. We
formalize the problem of optimal scheduling as a problem of
finding an optimal matching in a weighted bipartite graph.
The optimal matching is capable of both maximizing network
throughput and providing good service differentiation. We give
a simple algorithm called Zig-Zag Path Insertion Algorithm
which solves the problem in O(NK log(Nk) + NkD) time,
where N is the number of input/output fibers of the switching
network, k is the number of wavelengths per fiber and D is the
conversion degree, as compared to O(N2k2) time if directly
adopting other existing algorithms.

Index Terms: Wavelength-division-multiplexing (WDM), opti-
cal switching network, scheduling, wavelength conversion, lim-
ited range wavelength conversion, bipartite graphs, matching,
matroid.

I. INTRODUCTION

In this paper, we study Optical Packet Switching Networks
with Wavelength Division Multiplexing (WDM) as it has bet-
ter flexibility and better exploitations of the huge bandwidth of
optical systems [7]. Since optical buffers are made of fiber de-
lay lines and are costly and bulky, we will focus on unbuffered
switching networks.

In a WDM optical packet switched network, output con-
tention arises when some packets on the same wavelength are
destined for the same output fiber. The contention can be solved
by converting the wavelength of a packet to some idle wave-
length (if there are any) on the output fiber. The translation of
wavelengths is achieved by using a wavelength converter which
converts a signal on one wavelength to another. The converter
can be full range, which is capable of converting a wavelength
to any other wavelengths, or limited range, which only converts
a wavelength to several adjacent wavelengths. Full range wave-
length converters are quite difficult and expensive to implement
due to technological limitations [4], [2], therefore, a more cost-
effective and realistic choice is to use limited range wavelength
converters.

In many networking applications, packets arrived at a switch
may have different priorities. To meet the QoS requirement

The research work was supported in part by the U.S. National Science Foun-
dation under grant numbers CCR-0073085 and CCR-0207999.

for different priorities, service differentiation should be given
to packets such that the loss probability is higher for lower pri-
ority packets than for higher priority packets. Therefore, a good
scheduling algorithm is needed for a WDM switch to decide
which packet to accept and which packet to reject. Current ap-
proaches to meeting the QoS requirement in WDM networks
are mainly based on reserving resources for higher priority con-
nection requests, [8]. This approach is simple and easy to im-
plement but may result in low resource utilization. In this paper
we will give an optimal scheduling algorithm based on optimal
matchings in bipartite graphs. Our proposed method is more
cost-effective in the sense that all resources (wavelength chan-
nels) can be assigned to all packets whenever possible.

Extensive research has been conducted on scheduling algo-
rithms for various electronic switches (which can be consid-
ered as a single wavelength switch). For example, [1] consid-
ered parallel scheduling algorithms in input-buffered electronic
switches under unicast traffic. Scheduling algorithms for WDM
broadcast and select networks were also well studied in recent
years. Time slotted WDM switches with limited range wave-
length conversion was considered in [3], [5]. [3] only provided
some rather preliminary simulation results. [5] gave an optimal
algorithm for nonprioritized scheduling in such WDM switches.
In this paper we will consider the prioritized scheduling.

II. PRELIMINARIES

A. The Switch Model

The WDM switching network is shown in Figure 1. It has
input N fibers and N output fibers, on each fiber there are k
wavelengths that carry independent data. An input fiber is first
fed into a demultiplexer, where different wavelength channels
are separated from one another. An input wavelength is then fed
into a wavelength converter to be converted to a proper wave-
length. The output of a wavelength converter is then split into
N copies of itself, which are connected to each of the output
fibers under the control of N SOA gates. The signal can reach
the output fiber if the SOA gate is on, otherwise it is blocked.
In the front of each output fiber there is an optical combiner
which multiplexes the signals on different wavelengths into one
composite signal and send to the output fiber. Apparently, it is
required that all signals fed to the optical combiner should be
on different wavelengths.

As in [3], [7], we assume that the switch operates in a syn-
chronous mode and optical packets or cells arrive at the network
at the beginning of time slots. We consider the case where all
packets are of the same priority and of same length. The traffic
pattern considered in this paper is unicast, i.e., each packet is
destined for only one output fiber. The packet does not specify
which wavelength channel on the destination fiber it should be

Globecom 2004 1823 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

spliter

1

λk

λ1 λk...

λ1

λk

λ1 λk...

λ1 λk...

λ1 λk...

1

N

1

N

D
M
U
X

1

N

1

N

D
M
U
X

fiber 1

fiber N

M
U
X

M
U
X

fiber 1

fiber N

wavelength
converter

SOA gate

λ

Fig. 1. A wavelength convertible WDM switch.

8

λ1
λ
λ
λ
λ
λ
λ
λ

2
3
4
5
6
7
8

λ1
λ
λ
λ
λ
λ
λ
λ

2
3
4
5
6
7

Fig. 2. Conversion on an optical fiber with 8 wavelengths.

directed to, and can be assigned to any free wavelength channel
accessible to it.

B. Wavelength Conversion

As mentioned earlier, with limited range wavelength conver-
sion, an incoming wavelength may be converted to a set of ad-
jacent outgoing wavelengths. We define the set of these outgo-
ing wavelengths as the adjacency set of this input wavelength.
The cardinality of the adjacency set is the conversion degree
of this wavelength. We also define the conversion distance as
the largest difference between the index of a wavelength and a
wavelength that it can be converted to. The conversion distance
is denoted by d. The largest conversion degree of all wave-
lengths is denoted by D.

We assume that
Assumption 1: The wavelengths in the adjacency set of λi,

i ∈ [1, k] can be represented by an interval of integers denoted
by [begin(i), end(i)], where begin(i) and end(i) are positive
integers.

Assumption 2: For two wavelengths λi and λj , if i < j, then
begin(i)≤ begin(j) and end(i)≤ end(j).

Wavelength conversion can be illustrated by a bipartite graph,
in which left side vertices represent input wavelengths and right
side vertices represent output wavelengths. If input wavelength
λi can be converted to output wavelength λj , there is an edge
connecting them. Figure 2 is an example when k = 8 and d = 2.

III. PROBLEM FORMALIZATION

In this section we show how optimal scheduling in the WDM
switch can be formalized into a bipartite graph matching prob-
lem. First consider one output fiber and the packets arrived for
this output fiber. The relationship between the packets and the
wavelength channels on that output fiber can be described by a
bipartite graph, called request graph. The left side vertices of
the request graph represent the packets and the right side ver-

tices represent output wavelengths. The vertices on each side
of the graph are depicted according to their wavelength indexes,
λ1 first, then λ2, then λ3 and so on. For the right side vertices,
there is exactly one vertex on each wavelength. There could be
multiple left side vertices on the same wavelength since there
may be more than one packets on the same wavelength going
to the same output fiber. These vertices can be in an arbitrary
order in this case. There is an edge connecting a left side vertex
a and a right side vertex b if the wavelength of packet a can be
converted to output wavelength b.

We can draw a request graph for each output fiber. Since we
will never assign a wavelength channel on output fiber j to a
packet destined to output fiber i if i �= j, there will be no con-
nections between vertices belonging to different request graphs.
Therefore the decisions in one request graph do not affect the
decisions in other request graphs, and in the following we will
explain our algorithm for one request graph. We can run the
same algorithm for each of the N request graphs, either one by
one or in parallel, to obtain the optimal scheduling.

For convenience, we also define the request vector. A re-
quest vector is a 1× k row vector, with the ith element repre-
senting the number of packets arrived on wavelength λi. Fig-
ure 3(a) shows the request graph when the request vector is
[1,2,2,2,0,0,0,1]. The number in the parenthesis on the right
of each left side vertex is the weight of this vertex which will be
soon discussed.

In a request graph G, let E denote the set of edges. Any
wavelength assignment can be represented by a subset of E,
E′, where edge ab ∈ E′ if wavelength channel b is assigned to
packet a. Under unicast traffic, any connection request needs
only one output channel and an output channel can be assigned
to only one connection request. It follows that E′ is a matching
in G, since if two edges share a vertex, either one packet is
assigned two wavelength channels or one wavelength channel
is assigned to two packets.

For a given set of packets, to maximize network throughput,
we should find a maximum matching in the request graph. This
problem was studied and solved in [5]. If the connection re-
quests have different priorities, we can assign weights to packets
according on their priorities and find a group of contention-free
connection requests with maximum total weight. The problem
can be formalized as: Given a request graph with weighted left
side vertices, find a maximum matching with maximum total
weight of the covered left side vertices. Such a matching is
called an optimal matching. As an example, Figure 3(b) shows
an optimal matching for the request graph in Figure 3(a).

IV. MAXIMUM MATCHINGS IN REQUEST GRAPHS

Before we move onto solving the problem formalized in the
previous section, we first briefly discuss maximum matchings
in request graphs. As in [5], we can use a simple algorithm
called the First Available Algorithm described in Table 1 for
finding a maximum cardinality matching in a request graph. In
the description of the algorithm n is the number of left side
vertices. By this algorithm, left side vertex ai is matched to the
first available right side vertex adjacent to it. We can image this
as picking the “top” edge in the request graph and adding it to

Globecom 2004 1824 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

(1)

b
b
b
b
b
b
b
b

1

2

3

4

5

6

7

8

a
a 1

2

a
a
a
a
a
a

3

4

5

6

7

8

λ

λ

λ

λ

2

3

4

8

1λ

(8)
(7)
(6)

(5)
(4)

(3)
(2)

(6)

b
b
b
b
b
b
b
b

1

2

3

4

5

6

7

8

a
a 1

2

a
a
a
a
a
a

3

4

5

6

7

8

(3)
(2)
(1)
(4)
(5)
(8)
(7)

(a) (b)

Fig. 3. Request graph and an optimal matching when the request vector is
[1,2,2,2,0,0,0,1] in an 8-wavelength switch with conversion distance 2. The
number in the parenthesis on the right of each left side vertex is the weight of
this vertex. (a) Request Graph. (b) Optimal matching.

TABLE 1

FIRST AVAILABLE ALGORITHM

First Available Algorithm
for i := 1 to n do

Find bj which is the right side vertex
adjacent to ai with the smallest index and
is not matched to any other vertex yet.
if such bj exists

match ai to bj

else
ai is not matched

end if
end for

the matching in each iteration. [5] gave a proof for the following
theorem.

Theorem 1: First Available Algorithm finds a maximum
matching with no crossing edges in a request graph.

Finding the first available vertex is simple and can be imple-
mented in hardware. The time complexity of this algorithm is
O(n), since the loop is executed n times which is the number
of left side vertices.

V. OPTIMAL MATCHING IN A VERTEX-WEIGHTED

REQUEST GRAPH

A. The Matroid Greedy Algorithm

In this section we show how to find optimal matchings in
a vertex-weighted request graph. Optimal matching in an ar-
bitrary bipartite graph can be found by the following simple
greedy algorithm which can be called the Matroid Greedy Al-
gorithm [6]. The algorithm starts with an empty set Π. In step
t, let a be the left side vertex with the tth largest weight. The
algorithm checks whether there is a matching covering a and all
the previously selected vertices in Π. If yes, add a to Π, other-
wise leave a uncovered. Update t← t + 1 and repeat until all
vertices have been checked. When finished, Π stores left side
vertices that can be covered by an optimal matching.

However, the time complexity of the matroid greedy algo-
rithm is O(n3) for an n-vertex bipartite graph, since to check
whether a vertex can be covered along with all the previously
covered vertices one needs O(n2) time. The algorithms in [6]
can be used to find an optimal matching in the request graph in
O(N2k2) time. Next we will give a much simpler and faster
algorithm that runs in O(NK log(Nk)+ NkD) time where D

is the conversion degree.

B. The Zig-Zag Path Insertion Algorithm

Optimal matching in request graphs can be found more
quickly, since we can find easier ways to determine whether
a vertex can be covered along with all the previously selected
vertices or not. Suppose we are at step t and are checking ver-
tex ai. We define Gt as the subgraph of G with vertex set of
the previously selected left side vertices and all the right side
vertices. Let Mt be the matching that is found by running the
First Available Algorithm on Gt. We now add ai to Gt based
on the wavelength it is on. Call this graph G′

t.
We first check if there are some unsaturated right side ver-

tices adjacent to ai in G′
t. If yes, ai can be covered. Otherwise,

we check whether there is a left side vertex on a larger wave-
length than that of ai’s. Any such left side vertex will be called
ai’s lower neighbor. Among all ai’s lower neighbors, let al be
the one with the smallest index. al is called ai’s closest lower
neighbor and suppose al is matched to bv. We have that

Lemma 1: If ai is not adjacent to any unsaturated vertex, ai

can be covered only if ai has lower neighbors and ai is adjacent
to bv, the vertex matched to its closest lower neighbor.
Proof. We first show that ai must have lower neighbors by con-
tradiction. If ai does not have any lower neighbor, under Mt, all
the right side vertices adjacent to ai must be matched to vertices
with smaller indices than ai. Now suppose there is a matching
covering all the left side vertices in G′

t. If there exists such a
matching, it can be found by the First Available Algorithm and
let it be M ′

t . Now consider running the First Available Algo-
rithm on G′

t. All the left side vertices other than ai were checked
before ai, and their connections to the right side vertices are ex-
actly the same in Gt as in G′

t. Therefore, the matching for these
vertices are exactly the same in Mt as in M ′

t , and all the ver-
tices adjacent to ai will again be matched to left side vertices
with smaller indices than ai under M ′

t . As a result, ai cannot be
matched to any vertex. This is a contradiction.

In the second case, if ai has a lower neighbor but ai is not
adjacent to bv, ai is not adjacent to any vertices matched to its
lower neighbors, since Mt is non-crossing. It follows that all the
vertices adjacent to ai are also matched to vertices with smaller
indices than ai. With similar arguments to that in the first case,
we can show that ai cannot be covered.

If ai is adjacent to bv, ai may or may not be covered. To
see whether it can be covered or not we define the zig-zag path
starting from ai as follows. For simplicity, we use mat[] to de-
note the vertex matched to a given vertex, for example, mat[al]
is bv and mat[bv] is al. The zig-zag path first extends from ai

to bv, and then from bv to al. When the path extends back to a
left side vertex, we call the vertex the current “checking point”
and denote it as ap. We use bq to denote the right side vertex
matched to ap. At this time ap is al and bq is bv. If ap is not
adjacent to bq+1, the path terminates at ap. Otherwise, if bq+1 is
unsaturated, the path terminates at bq+1. Else the path extends
from ap to bq+1 then to mat[bq+1], and the checking point is
now mat[bq+1]. This process continues until the path cannot be
extended further.

The zig-zag path will eventually end since one of these two

Globecom 2004 1825 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

cases will sooner or later become true: (1) The zig-zag path
extends to a left side vertex, the current checking point, which
is matched to its end vertex. (2) The zig-zag path extends to an
unsaturated right side vertex. In this case, The current checking
point ap is not matched to its end vertex, i.e., ap is adjacent to
bq+1, and bq+1 is now unsaturated.

We have that
Lemma 2: If ai is not adjacent to any unsaturated vertex, ai

can be covered if and only if the zig-zag path ends in case (2).
Proof. It is easy to see that the condition is sufficient, since if
the algorithm terminates in case (2), the zig-zag path is an Mt

augmenting path starting from ai. To see it is also sufficient
we prove it by contradiction. Suppose the claim is not true,
i.e., there is a case that ai can be covered, but the zig-zag path
terminates in case (1). If ai can be covered along with all the
previously selected vertices, there is a perfect matching from
the left to the right in G′

t. Such a matching can be found by the
First Available Algorithm. and let it be M ′

t. As shown in the
proof of Lemma 1, the matchings for the left side vertices with
smaller indices than ai must be the same in M ′

t as in Mt.
Now, under Mt, suppose al is the closest lower neighbor of

ai and is matched to bv. Let the last checking point of the zig-
zag path be ah and matched to bw. If the zig-zag path terminates
in case (1), bw is the end vertex of ah. Since the zig-zag path
terminates at ah, all the vertex between bv and bw must be satu-
rated. Therefore there are exactly w−v vertices covered by Mt

from al to ah.
Note that under M ′

t , vertices from ai to ah can only be
matched to vertices from bv to bw, since bv is the vertex that
would be matched to ai in M ′

t and bw is the end vertex of ah.
Therefore there can be at most w− v vertices covered by M ′

t

from ai to ah. This is a contradiction since M ′
t must cover

w− v +1 vertices from ai to ah: those covered by Mt from al

to ah plus ai. This completes our proof.
This lemma suggests that optimal matchings in request

graphs can be found as follows. At step t, when checking ver-
tex ai, first check whether there are some unsaturated right side
vertices adjacent to it. If yes, choose one to match to ai. We
call this “direct matching”. Otherwise check if ai has a closest
lower neighbor al and if ai is adjacent to bv. If no, ai cannot
be covered. Otherwise start extending the zig-zag path from ai.
If the path terminates in case (1), ai cannot be covered. Else ai

can be covered and we say ai is “inserted”.
If ai can be covered, we need to update the matching. We

have seen in the proof of the lemmas that it is very simple to
determine whether ai can be covered if Mt is the same as the
matching found by the First Available Algorithm. Therefore we
would like to keep this property in the new matching, Mt+1.
Apparently it would make no sense if we run the First Available
Algorithm every time we check a vertex. Instead, if Mt is the
same as the matching found by the First Available Algorithm,
Mt+1 can be made to have the same property by only modifying
Mt. We now explain how this can be done.

At step t, if ai cannot be directly matched but can be covered
by insertion, we can match ai to bv, match mat[bv] to bv+1,
match mat[bv+1] to bv+2, . . ., and match ah which is the last
checking point to the unsaturated right side vertex, as what is

TABLE 2

ZIG-ZAG PATH INSERTION ALGORITHM

Zig-Zag Path Insertion Algorithm
for t := 1 to n do

Let ai be the vertex with the tth largest weight.
Find bu which is the right side vertex adjacent
to ai with the smallest index and is not matched
to any other vertex yet.
Find al which is the closest lower neighbor of ai

and suppose it is matched to bv.
if bu exists

if u < v or bv dose not exist
match ai to bu

else
for s := u downto v + 1 do

mat[bs] = mat[bs−1]
end for
match ai to bv.

end if
else

if al does not exist or ai is not adjacent to bv

ai cannot be matched.
else

Start extending the zig-zag path from ai.
if the zig-zag path ends in case (1)

ai cannot be covered.
else

Let bw be the unsaturated vertex at the
end of the path.
for s := w downto v + 1 do

mat[bs] = mat[bs−1]
end for
match ai to bv.

end if
end if

end if
end for

suggested by the zig-zag path. The matchings for all other ver-
tices are kept unchanged. This new matching will be exactly the
same as that would be found by the First Available Algorithm
on G′

t, since the matchings for left side vertices with smaller
indices than ai and larger indices than ah are not changed, and
vertices from ai to ah are all matched to their first available
vertices. Else, if ai can be directly matched, we first find the
unsaturated vertex adjacent to ai with the smallest index and let
it be bu. Suppose al is matched to bv in Mt. If u < v, ai should
be matched to bu, and the matchings for all other vertices need
not be changed. This new matching will also be the same as the
matching found by the First Available Algorithm as bu is the
first available vertex for ai. If u > v, bv is the first available ver-
tex for ai and ai should be matched to bv. The matchings for the
vertex with larger indices than ai and matched to vertices with
smaller indices than bu should be shifted down by one vertex.

The complete algorithm is described in Table 2. Based on the
discussion above, we conclude

Theorem 2: The Zig-Zag Path Insertion Algorithm finds an

Globecom 2004 1826 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

optimal matching in a request graph.
We now analyze the complexity of the newly proposed Zig-

Zag Path Insertion Algorithm. The work done in each step of
the algorithm consists of the following four parts: (1) Find the
first available right side vertex bu. (2) Find the closest lower
neighbor al and bv which is the vertex matched to al. (3) Update
the matching. (4) Extend the zig-zag path.

Part 1 is a linear search through the adjacency set of ai and
takes O(D) time where D is the conversion degree. Part 2 also
takes O(D) time, as we need only to scan at most D wave-
lengths starting from the wavelength of ai. If no left side ver-
tices can be found in this range, even if ai has a closest lower
neighbor al, al will be matched to a vertex not adjacent to ai.
Since there are up to Nk left side vertices, overall the time spent
in parts 1 and 2 is O(NkD).

There are two cases in part 3, update the matching. The first
case is the simple one: match ai to bu without changing other
matchings, which can be done in constant time. Overall the time
spent in this simple update is bounded by O(k), since there can
be at most k vertices covered by the optimal matching. The
second case of update requires shifting down the matchings for
several left side vertices and the number of vertices involved in
this shift could vary. However, note that when update a match-
ing, the matching for a left side vertex will only move down and
will never go up. Therefore, a left side vertex can be involved
in this type of update for no more than D times, where D is the
conversion degree. Overall the time spent on this type of update
is bounded by O(kD).

The time spent on part 4 is determined by how many vertices
the zig-zag path visited before reaching the end point and can
be done in O(kD) time.

As a conclusion, the time complexity of the Zig-Zag Path
Insertion Algorithm is O(NkD). Note that in order to find
the optimal scheduling, the left side vertices should first be
sorted according to their weights since in the algorithm the ver-
tices with larger weights are checked first. The sorting will
need O(Nk log(Nk)) time. Overall, including sorting, we need
O(Nk log(Nk)+ NkD) time to find the optimal scheduling.

VI. SIMULATION RESULTS

Besides giving proofs and analyses for the proposed schedul-
ing algorithm, we also implemented the algorithm in software
and tested them by simulations. We tested the switching net-
works of various sizes, due to the limit of space we show the
results for N = 8 and k = 8. In the simulations, we assume
that the traffic is bursty and the length of the busy and idle pe-
riods follows geometric distribution. The network performance
is measured by the packet loss probability.

In Figure 4 we plot the packet loss probabilities for various
prioritized packets as a function of conversion distance. The
tested traffic load is ρ = 0.8, and average busy period is 16 time
slots and average idle period is 4 time slots. There are four pri-
orities, each of 25% of the total traffic The highest priority is
1 and the lowest priority is 4. We can see that the packet loss
probability for all priorities decreases as the conversion distance
increases. But when the conversion distance is larger than a cer-
tain value, the decrease of packet loss probability is marginal. In

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

Conversion distance

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

N=8,k=8

priority 1
priority 2
priority 3
priority 4

Fig. 4. Packet loss probability of WDM switching networks for packets with 4
different priorities in an 8× 8 switch with 8 wavelengths per fiber.

this case there is little benefit for further increasing the conver-
sion degree, which is exactly the reason for using limited range
wavelength converters other than the full range wavelength con-
verters. It can also be seen that the Zig-Zag Path Insertion Al-
gorithm achieves good service differentiation.

VII. CONCLUSIONS

In this paper we have studied optimal scheduling in priori-
tized unbuffered WDM packet switching networks with limited
wavelength conversion. We formalize the problem of optimal
scheduling as a problem of finding an optimal matching in a
weighted bipartite graph. We give a simple algorithm called
Zig-Zag Path Insertion Algorithm which solves the problem in
O(NK log(Nk) + NkD) time, where N is the number of in-
put/output fibers of the switching network, k is the number of
wavelengths per fiber and D is the conversion degree, as com-
pared to O(N2k2) time if directly adopting other existing al-
gorithms. We also conducted simulations to study the network
performance of the switching networks under this scheduling
algorithm and the results show that the algorithm indeed gives
good service differentiation.

REFERENCES

[1] N. McKeown, “The iSLIP scheduling algorithm input-queued switch,”
IEEE/ACM Trans. Networking, vol. 7, pp. 188-201, Apr. 1999.

[2] T. Tripathi and K. N. Sivarajan, “Computing approximate blocking prob-
abilities in wavelength routed all-optical networks with limited-range
wavelength conversion,” IEEE Journal on Selected Areas in Communi-
cations, vol. 18, pp. 2123–2129, Oct. 2000.

[3] G. Shen, et. al, “Performance study on a WDM packet switch with limited-
range wavelength converters,” IEEE Communications Letters , vol. 5, no.
10, pp. 432-434, Oct. 2001.

[4] R. Ramaswami and G. Sasaki, “Multiwavelength optical networks with
limited wavelength conversion,” IEEE/ACM Trans. Networking, vol. 6,
pp. 744–754, Dec. 1998.

[5] Z. Zhang and Y. Yang, “Distributed scheduling algorithms for wavelength
convertible WDM optical interconnects,” Proc. of the 17th IEEE Inter-
national Parallel and Distributed Processing Symposium, Nice, France,
April, 2003.

[6] W. Lipski Jr and F.P. Preparata “Algorithms for maximum matchings in
bipartite graphs,” Naval Res. Logist. Quart.,14, pp. 313-316, 1981.

[7] L. Xu, H. G. Perros and G. Rouskas, “Techniques for optical packet
switching and optical burst switching,” IEEE Communications Magazine,
pp. 136 - 142, Jan. 2001.

[8] A. Kaheel, et. al., “Quality-of-service mechanisms in IP-over-WDM net-
works,” IEEE Communications Magazine , vol. 40, no. 12, pp. 38 -43,
Dec. 2002.

Globecom 2004 1827 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

