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AbmacI- Multicast involves transmining information fmmm a single 
P O U ~ C D  to multiple dortir&ion$ m d  is an important opentiion in high- 
perfomanre neworb. A k-fold multicast nrhuork was recently proposed 
171 PS a cost-effective solution to provide better QoS functions in support- 
ing multicart communication. To give a quantitative banb tor network d e  
signen to determine the mlt~ble value of system parameter k under differ- 
ent aaffic loads, in this paper we propose so analytical model for the per- 
formsnrr of k-fold multicast networks under Poisson tnlRc. We l int  give 
the stationary distribution O f  nehuork states and then derive the thmugh- 
put and blocking probability of the nehuort We also conduct simulPtionr 
to Yalidate the annlytical model and the mwlb show that the andytied 
model is wry accurate under the assumptions we make. The analytical 
and simulation results mved that by increasing the fold of the network, 
network throughput i n c r e w  almost exponcntiaUy when the fanouts of 
multicast connections are relatively rmsl campared to the network *he. 

I .  INTRODUCTION 

Multicast involves transmitting information from a single 
source to multiple destinations, and is an important operation 
in high-performance networks. Multicast will be increasingly 
used to support various interactive applications such as multi- 
media, teleconferencing, web servers and electronic commerce 
on the Internet, as well as communication-intensive applica- 
tions in parallel and distributed computing systems, such as 
distributed database updates and cache coherence protocols. 
Many of these applications require not only multicast capa- 
bility but also predictable communication performance, called 
quality-of-service (QoS). The combination of the non-uniform 
nature of multicast traffic and the requirement of QoS guaran- 
tees makes the problem very challenging. 

There has been much work in the literature on multicast 
communication in various networks, see, for example, [ 1]-[7]. 
Several researchers [ I ] ,  [2 ] ,  [3], [4] have considered support- 
ing multicast assignments in switch-based networks in a non- 
blocking or rearrangeable fashion. A multicast assignment is a 
mapping from a subset of network source nodes to a subset of 
network destination nodes with no overlapping allowed among 
the destinations of different sources. However, in real-world 
multicast applications, multicast communication pattems are 
not necessarily multicast assignments and overlapping among 
destinations of different multicast connections may he possible. 
A simple example is that a destination node may be simultane- 
ously involved in two multicast connections. Such connections 
will be blocked in a network which is designed to be nonblock- 
ing or rearrangeable for only multicast assignments. 

To overcome this problem, recently [7] presented a design 
for a nonblocking k-fold multicast network, which can pro- 
vide better QoS functions for arbitrary multicast communica- 
tion. Specifically, the network can realize multiple, say, k mul- 

The research work w supported in pan by the US. National Science Foun- 
dation under gran1 numbers CCR-0073085 and CCR-0207YW. 

ticast assignments, in a single pass with a guaranteed latency. 
A k-fold multicast assignment is defined as a mapping from a 
subset of network source nodes to a subset of network desti- 
nation nodes with up to k-fold overlapping allowed among the 
destinations of different sources. In other words, any destina- 
tion node can be involved in multicast connections from up to 
k different sources at a time. A network which can realize any 
k-fold multicast assignments in a single pass is referred to as 
a k-fold multicast nehvork. Clearly, an ordinary multicast net- 
work is a 1-fold multicast network. Here k is an adjustable pa- 
rameter in network design and an appropriate value of k should 
be determined by the multicast traffic in  the target multicast ap- 
plications, specially by the statistics of destination overlapping 
in multicast connections. Note that although k-fold multicast 
assignments can be realized by simply stacking k copies of 1- 
fold networks together, the k-fold network designed in [7] has 
much lower hardware cost. In fact, the cost of the former is 
about 3 to k times of a k-fold network for any k. 

To provide a quantitative hasis for network designers to 

under multicast traffic, see, for example, 

in terms of k-fold multicast assignments. In this paper, we 
derive the blockingprobability and the throughput of a k-fold 
multicast network under Poisson traffic and validate the model 
through simulations. Based on the assumptions we make, we 
first show that the number of ongoing multicast connections in 
the network is a continuous time Markov chain. The network 
throughput and blocking probability can then be obtained in 
terms of the stationary distribution of the Markov chain. We 
also conduct simulations to validate the analytical results. 

11. PRELIMINARIES 
In this section, we give tbe definitions and assumptions we 

will use in this paper. First, we will need following definitions: 
Definition I: A multicast connection refers to that a source 

node is connected to multiple destination nodes simultaneously 
in the network, and is sending the same message to these desti- 
nation nodes. In this paper, we sometimes simply refer to it as 
a connection. 

Dejnition2: We assume there are no buffers at source 
nodes. Input blocking refers to the case that a multicast con- 
nection request arrives at a busy source node and is blocked. 

Definition 3: If a destination node is connected to m source 
nodes, we say that this destination node is of degree m. 

Dejnition 4: Output blocking refers to the case that a mul- 
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ticast connection request arrives at an idle source nods hut is 
blocked because it requests some destination node of degree k. 

Definition 5: We define output blocking ratio as the ratio of 
the requests blocked due to output blocking over all the re- 
quests blocked. 

Definition 6: If a group of multicast connections can be 
transmitted simultaneously through the network without any 
blocking, we say that they are mutually compatible and ahhre- 
viate it as m.c. Clearly, in a k-fold multicast network, only 
those multicast connections that can fit into a k-fold multicast 
assignment are m.c. 

Definition 7: We say that the network is in state i when there 
are i ongoing multicast connections in the network. 

Definition 8: We define the average number of successful 
multicast connection requests carried by the network in a unit 
time as carried throughput, or simply throughput. 

In addition, throughout this paper, we make following as- 
sumptions on the multicast traffic we consider: ( I )  The proha- 
bility ofa destination node being involved in an incoming mul- 
ticast connection request is 8 and is independent of other des- 
tination nodes. Thus, the fanout of a multicast connection fol- 
lows Binomial distribution. (2) Multicast connection requests 
at different source nodes are independent of each othor. (3) 
Service time of each multicast connection is exponentially dis- 
tributed with parameter p and is independent of each other. (4) 
Multicast connection requests arrive at each source node ac- 
cording to a Poisson process with intensity X and are indepen- 
dent of each other. 

111. STATIONARY DISTR~BUTION OF NETWORK STATES 

Based on the assumvtions made in the previous section, we 
now denve thc swtionsy distribution o f  network states. 

Consider an N x N k-fold muI1Icast network. Gwen that 
there are i multicast connections in the network. let JJdc , ( i ,  i i i )  
be probability that a destination node has degree m. A drestina; 
tion node is of degree m if among the i multicast connections, 
this node is the destination of exactly m multicast connections. 
The rohahility that any multicast connection re uest chooses 
this &stination node is 9 and is independent of o&er multicast 
connections. Thus, we have 

pd..(i,m) = ( A ) S Y ( ~  - ~ ) ' - m ,  m E {0,1, ..., i), (1) 

which is a Binomial random variable. Since each destination 
node in a multicast connection is selected independently, the 
degrees of all N destination nodes in the network aras inde- 
pendent of each other and have the same distribution given by 
equation (I). 

Let P,,,<(i) be the probability that i multicast connecl.ion re- 
quests are m.c. in a k-fold multicast network. Recall that a 
set of multicast connection requests are m.c. when nont: of the 
destination nodes has a degree more than k when realized si- 
multaneously in the network. From equation (I) ,  we know the 
probability that a destination node having a degree less than or 
equal to k is Cm=opdrg(i,m) for i  > k, and I fo r i  5; k he- 
cause when i < k, no destination node can have a degree more 
than k. Since the degrees of destination nodes are independent 
of each other, we have 

x 

Suppose a new multicast connection request arrives when 
there are i multicast connections in the network. If this new 
connection can he realized along with those ongoing connec- 
tions, we say it can '?join'' them. Let Pj?(i) he the probability 
that a new multicast connection can ioin a onmine connections. 

(3) 

To see this, let E1 he the event that a new multicast connection 
request and the existing i multicast connections are m.c, EZ be 
the event that i multicast connections are m.c, and E3 be the 
event that i + 1 multicast connections are m.c. Wc have 

Suppose the network is carrying i multicast connections, or 
in state i. The network state may change when some con- 
nection requests arrive at the network and can join the ongo- 
ing connections, or when some ongoing connections are termi- 
nated. Since we assume that the arrival process is a Poisson 
process and the connection holding time follows exponential 
distribution, the probabilities that more than one connection 
requests arrive at the same time, more than one ongoing con- 
nections terminate at the same time, and a connection request 
arrives and an ongoing connection terminates at the same time 
are very small and therefore can be neglected. Thus, state I 
may only transit to state i + 1 or i - 1 (for 0 < i < N). A 
transition to state i + 1 occurs when a new connection request 
arrives at an idle source node and can join the i ongoing con- 
nections. A transition to state i - 1 occurs when one of the 
on oing connections terminates. 

&e the arrival process is Poisson and the service time 
is ex onentiall distributed, the network state is a continuous 
timebarkov clain [SI. We now derive the state transition rate. 
First, consider the transition from state i to state i - 1. In state i 
there are i ongoing multicast connections, and service times of 
these connections are exponentially distributed with parameter 
p and independent of each other. Thus, the transition rate to 
state i - 1 is ip .  Now consider the transition from state i to 
state i + 1. We know that there are N - i idle source nodes in 
the network, and under assumption 4 in the previous section, 
the arrival processes at these nodes are Poisson with intensity 
X and independent of each other. Hence the combined arrival 
process is also Poisson and with intensity (N - i)X.  A connec- 
tion request is accepted with probability Pjn(i) and is rejected 
with probability 1 - Pjn(i). Thus, the combined Poisson pro- 
cess is then randomly split into two random processes: one 
is the process of the arrivals that can be successfully realized 
in the network, and another is the process of the arrivals that 
are blocked. Since a split Poisson process is still Poisson, the 
arrival of a connection request that can join the i ongoing con- 
nections is Poisson with intensity (N - i)XPj"(i), which is 
the transition rate from state i to state i + 1. We should also 
consider the boundary conditions fori  = 0 and i = N .  A com- 
plete state transition diagram is illustrated in Fig. 1. Clearly, 
this is a birth-death process and let ni,i = 0 , 1 , .  . . , N, be the 
stationary distribution, We have 

ni+l( i  + l )p = ni(N - i )APjn(i) ,  i E {O, 1,. . . , N - 1) 

Let p = Alp, 
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Fig. 1. Sate m i t i o n  diagram ofa k-fold multicast network. 

where ro is the probability that the network is in state 0 which 
can he determined by rro = q - j -  PSP"44 

IV. THROUGHPUT AND BLOCKING PROBABILITY 

Given the stationary distribution of network states, in this 
section we derive the throughput and blocking probability of a 
k-fold multicast network. 

Consider a long time period [0, TI. First we have the follow- 
ing lemma. - 

Lemmu I For d time penod [O,T]. the average number of 
successful multicast connection requestscanied by thc network 
during [O, T ]  is given by 

Proof. The average dwelling time of state i is the inversion of 
the rate that the network departs from state i: 

1 

( N - i ) A P j , ( i ) + i p  

It holds for all i E (0,1,. . . , N ) .  Since the time the system 
spent in state i during [0, T ]  is s;T, the average number of 
visits to state i durine 10.T1 is T d ( N  - iLiPL[i)  + iu). - .  . , . ,.-., 
Notice that thc numbcrof visits is also'thc number of times $e 
networh depans from swte I. A deparmrc may he caused by the 
arrival o fa  successful connectiun request or the termination of 
an ongoing connection. The first caw has the probability 

( N  - i)APj,,(<) 
( N  - i)APjn(i) + i p  

Thus, the average number of times the network departs from 
state i due to the arrival of a successful connection request is 
Tni(N - i)XPjn(i). This is also the average number of suc- 
cessful connection requests arrived at the network when the 
network is in state i (i E (0,1,. . . , N ) )  during [O,T]. There- 
fore, the average number of successful connection requests car- 
ried by the network during [0, TI is obtained by summing over 

Proposition I: The throughput of a k-fold multicast net- 

T H = A x r i ( N - i ) P j , ( i )  (6) 

i: N,,,, = TXCfj=,a;(N -i)P,,,(i). 

work is given by N 

i=o 

which can be directly obtained from Lemma 1. 
On the average, the total number of connection requests ar- 

rived at the network during [0, T] is Ntot.i = NXT, among 
which only N,,,, connection requests given in Lemma I are 
successful. and the rest 

2387 

N 
NM = N ~ ~ ~ . ~  - N.,,, = TA r i i ( ~ ( 1 -  pj . ( i ) )  + iPj"(i)) 

i=o 

connection requests are blocked. The blocking probability is 
NbllNtotal. Thus, we have 

Pmposition 2: The blocking probability of a k-fold multi- 
castnetworkis 

(7) P B  = -X~;(N(I - Pj.(i)) + iPj,,(i)) 
Ni -0  

To further study the performance of a k-fold multicast net- 
work, we consider input blocking and output blocking sepa- 
rately. Input blocking depends on the number of busy source 
nodes in the network. Since a larger fold means more busy 
source nodes, increasing k will generally increase the proba- 
bility of input blocking. Input blocklng can be reduced only 
by adding buffers at each source node, which is not consid- 
ered in this paper. On the other hand, increasing k will reduce 
the chance of output blocking. In order to calculate the output 
blocking probability, first we have the following Lemma. 

Lemma 2: Let pal(i,m) be the probability that exactly m 
requests anived at idle source nodes are blocked during a single 
visit to state i. We have 

p&,m) = 4 -4", (8) 

(N- i )AP.= ( i ) + i p  wherea = (N-d;A+i,, . 
Proof. Define the following events: El: the first m connection 
requests anive before any of the i ongoing connections termi- 
nates; E*: none of the m connection requests can be realized 
along with the i ongoing connections; E3: one of the ongoin 
connections terminates after the anival of the mth request an 
before the arrival ofthe (m + l ) + h  request: Ed: the fm + l h  

% 
, .. . . . . 

request amves before &y ongoing connection terminates &d 
is m.c. with the i ongoing connechons. We have 

Events El and El are independent of each othcr because that 
knowing the amval time of a connection request does not pro- 
vide any information on whether i t  can join the t ongoing con- 
nections Thus.P(E, n E , )  = P ( E , r P ( F j ~  SincceventsE? . . -  ~. . ~. 
and E d  cannot occur at thesame tune, 

P ( E B U E ~ I E I  n E z )  =P(&IEi nE2)+P(E41El  nEd.Thus, 

Now let Y denote the time interval that the network first enters 
state i till one of the i on oing connections terminates. Y is an 
exponentially distributecfrandom variable with parameter ip. 
Let X ,  denote the time interval that the network first enters 
state i till the arrival of the mth connection request. Then X ,  
is the summation of m independent exponentially distributed 
random variables with 

Since connection requests are independent of each other, we 
have P(E2) = (1 - Pjn(i))"'. Also, 

P ( E J J E L  n Ez) = P ( Y  < Xm + 1IY > Xm) 
= 1 - P ( Y  > X m +  1JY > Xm) = 1 - P ( Y > X m + l , Y > X m )  

PW > Xm) 
P ( Y  > X m +  I )  - ifi 

( N  - i)X +ip 
= 1- - 

P(Y > Xm) (9) 



Let a = ( N - i ) A P . m ( i ) + i ~  (N--ijA+i,, .We havepbl(i,m) = a(l- .  a)" 
From Lemma 2 we know that the number of the requests 

blocked due to ou ut blocking durin staying in state a is a 
eometrically d i s d u t e d  random varia%le with parameter a. It 

fas mean: 
(10) 

From the proof of Lemma 1, we know that the average num- 
berofvisits to state i during [O, TI is Tr; ( (N- i )XPj"( i )+ ip ) .  
Combinin this fact and (IO), we have that the average total 
number ofrequests blocked due to output blocking when net- 
work is in state i during [O,T] is Ta;(N - i)X(l - Pjn(i)). 
Then the average number of requests blocked by output block- 
ing during [O, T] is 

N~~~~~ = r ~ C * ~ ( ~ - i ) ( i - ~ , , ( i ) )  

Thus, the average number of requests blocked due to input 
blocking during [O,T] is the average number of the requests 
blocked minus NOYtbl 

k b l  = Nbi - Novtbi =TA zp" 

1 - U  ( N - i ) X ( I - P j " ( ; ) )  

( N  - i)XPj"(i) + ia 
- -- 

U 

N 

i=o 

N 

i=o 

We have 
Proposition 3: The output blocking ratio which is defined 

as the ratio of blocked requests due to output blocking over all 
blocked requests is 

V. S O M E  GENERALIZATIONS 

In this section, we discuss some possible generalizations of 
our results obtained in previous sections. 

First, although we have mainly focused on an N x N k- 
fold multicast network, the results can be easil extended to an 
asymmetrical k-fold multicast network with 5 source nodes 
and M destination nodes. The on1 modification we need to 
make is equation (2). For an N x d k - f o l d  multicast network, 
the probability that i multicast connection requests are m.c. is 

(12) 
M 

i > 
othenvise 

All other results and discussions are still valid. 
Secondly, if the fanout of a multicast connection follows 

other types of distributions other than binomial, such as geo- 
metric distribution or arbitrary distribution used in [9 ] ,  we also 
only need to recalculate PmC(a). However, in this case, the 
degrees of destination nodes will no longer be independent of 
each other. When the network size is large, finding PmC(i)  
analytically becomes impractical. Thus we have to generate 
PmC(a) by simulations. Afler obtaining PmC(i), the throughput 
and blocking probability can be obtained immediately from our 
analytical model. 

VI. SIMULATIONS AND OBSERVATIONS 

We have conducted simulations for network sizes 16 and 32 
under different fanouts and arrival rates to validate our analyt- 
ical results. Due to limited space, in Fig. 2, we illustrate only 
the results for network size 32. In the simulation, we use F 
to represent the fanout of a multicast connection request. F is 
a Binomial random variable with parameter ( N ,  9 )  and mean 
E ( F )  = NB. Without loss of generality, we let service rate 
p = l .  

In Fig. 2(a) and (b) we plot network throughput as a function 
of network fold k. In Fig. 2(a), we keep arrival rates at 0.5 and 
vary the fanout distribution. First, let's look at the growth of 
the throughput with respect to k for different values of mean 
fanout E ( F ) .  We observe that when E ( F )  is relatively small, 
the throughput grows almost exponentially, but when E ( F )  be- 
comes larger, throughput grows much slower. Next, we can see 
that for any E ( F ) ,  the throughput grows more rapidly when 
k is small, and tends to converge to some value when k fur- 
ther increases. For example, in Fig. 2(a) for the average fanout 
E ( F )  = 3.2, the throughput increases by 75% when network 
fold k increases from 1 to 2, but when k > 5, it stops increasing 
and remains at about 10.6. This is because when k becomes 
very large, almost every connection request arrived at an idle 
source node can go through. Thus, the network throughput is 
totally determined by the arrival rate. In this case, further in- 
creasing k will not increase the throughput. 

In addition, the value of k to achieve the maximum through- 
put depends on the fanout distribution. In Fig. 2(a),we can 
see that to achieve the maximum throughput, we need to let 
k = 5 for E ( F )  = 3.2, k = 8 for E ( F )  = 6.4, k = 13 
for E(F)  = 16 and k = 16 for E(F) = 25.5, respectively. 
We can see that the increase is not linear to E ( F )  because the 
larger the E(F) ,  the less k we need to add to the network to 
achieve the maximum throughput. 

In Fig. 2(b), we fix the fanout distribution and study network 
performance under different arrival rates. Similar observations 
can be drawn for X < 1. We also did experiments on X > 1 
which means arriving is faster than serving. In most networks 
this would lead to an unstable state and is not considered. How- 
ever, since we assume no buffers at source nodes and any con- 
nection request arrived at a busy source node is immediately 
dropped, it is still valid in our case. As we can see, a larger 
X leads to larger throughput, but needs a larger k to reach the 
maximum throughput. 

In Fig. 2(c) and (d), we plot the network blocking proba- 
bility as a function of network fold k. In Fig. 2(c),we keep 
arrival rates at 0.5 and vary the fanout distnbution. First, we 
notice that when the average fanout E ( F )  is relatively small, 
blocking probability decreases very fast when k increases. For 
example, in Fig. 2(c) where N = 32, for E ( F )  = 3.2, block- 
ing probability drops by 30% when k increases from 1 to 2. 
However, when E ( F )  becomes larger, blocking probability de- 
creases much slower and almost linearly to k. Next, we can 
see that blocking probability does not reach 0 when k further 
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Fig. 2. Comparison of simulations and analytical ~esulfs for a k-fold multicast network. (a) Thmughput under different fanout distributions. (b) Throughput 
under different arrival rates. (c) Blocking probability under different fanout disoibutions. (d) Blocking probability under different arrival raw. (e) Output 
blocking ratio under different fanout disoibutians. (0 Output blocking ratio under different arriral rates. 

increases. This is because of the presence of input blocking, 
which actually increases with k. In Fig. 2(d), we fix the fanout 
distribution and study network performance under different ar- 
rival rates. Again, we can see that blocking probability de- 
creases quickly when anival rates are small (say, less than 0.5) 
and much slower when arrival rates become large. 

In Fig. 2(e) and (0, we plot the output blocking ratio as a 
function of network fold k. We can see that when k is larger 
than a certain value the output blocking ratio tends to 0, which 
means no connection request is blocked due to output blocking. 
As in Fig. 2(e) where N = 32 and X = 0.5, to make output 
blocking ratio almost 0, we need only to let k = 6 for E(F) = 
3.2, k = 9 for E ( F )  = 6.4 and k = 14 for E(F) = 16, 
respectively. Again, the value ofk to eliminate output blocking 
is not a linear function of E(F) .  The larger the E(F), the 
less fold we need to add to the network to achieve zero output 
blocking ratio. 

VII. CONCLUSIONS 

A k-fold multicast network was recently proposed [7] as a 
cost-effective solution to provide better QoS functions in sup- 
porting multicast communication. To give a quantitative basis 
for network designers to determine the suitable value of sys- 
tem parameter k under different traffic loads, in this paper we 
have presented an analytical model for the performance of k-  
fold multicast networks under Poisson traffic. We first gave the 
stationary distribution of network states and then derived the 
throughput and blocking probability of the network. We have 
also conducted simulations to validate the analytical model and 

the results show that the analytical model is very accurate under 
the assumptions we made. From the analytical and sinplation 
results we can see that by increasing the fold of the'network, 
network throughput increases almost exponentially when the 
fanouts of multicast connections are relatively small compared 
to the network size. Our future work includes generalizing the 
model to other traffic distributions and other types ofmulticast 
networks. 
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