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Abstract— Multicast involves transmitting information from a single
source to multiple destinations, and is an important operation in high-
performance networks. A k-fold multicast network was recently proposed
[7] as a cost-effective solution to provide better QoS functions in support-
ing multicast communication. To give a quantitative basis for network de-
sigmers to determine the suitable value of systemn parameter k under differ-
ent traffic loads, in this paper we propose an analytical model for the per-
for of k-fotd mult networks under Poisson traffic. We first give
the stationary distribution of network states and then derive the through-
put and blocking probability of the network. We also conduct simulations
to validate the analytical mode] and the results show that the analytical
model is very accurate under the assumptions we make. The analytical
and simulation results reveal that by increasing the fold of the network,
network throughput increases almost exponentially when the fanouts of
multicast connections are relatively small compared to the network size.

I. INTRODUCTION

Multicast involves transmitting information from a single
soutce to multiple destinations, and is an important operation
in high-performance networks. Multicast will be increasingly
used to support various interactive applications such as multi-
media, teleconferencing, web servers and electronic commerce
on the Internet, as well as communication-intensive applica-
tions in parallel and distributed computing systems, such as
distribuied database updates and cache coherence protocols.
Many of these applications require not only multicast capa-
bility but also predictable communication performance, called
quality-of-service (QoS). The combination of the non-uniform
nature of multicast traffic and the requirement of QoS guaran-
tees makes the problem very challenging.

There has been much work in the literature on multicast
communication in various networks, see, for example, [1]-[7].
Several researchers [1], [2], (3], [4] have considered support-
ing multicast assignments in switch-based networks in a non-
blocking or rearrangeable fashion. A multicast assignment is a
mapping from a subset of network source nodes to a subset of
network destination nodes with no overlapping allowed among
the destinations of different sources. However, in real-world
multicast applications, multicast communication patterns are
not necessarily multicast assignments and overlapping among
destinations of different multicast connections may be possible.
A simple example is that a destination node may be simultane-
ously involved in two multicast connections. Such connections
will be blocked in a network which is designed to be nonblock-
ing or rearrangeable for only multicast assignments.

To overcome this problem, recently [7] presented a design
for a nonblocking k-fold multicast network, which can pro-
vide better QoS functions for arbitrary multicast communica-
tion. Specifically, the network can realize multiple, say, k¥ mul-
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ticast assignments, in a single pass with a guaranteed latency.
A k-fold multicast assignment is defined as a mapping from a
subset of network source nodes to a subset of network desti-
nation nodes with up to k-fold overlapping allowed among the
destinations of different sources. In other words, any destina-
tion node can be involved in multicast connections from up to
k different sources at a time. A network which can realize any
k-fold multicast assignments in a single pass is referred to as
a k-fold multicast network. Clearly, an ordinary multicast net-
work is a 1-fold multicast network. Here k is an adjustabie pa-
rameter in network design and an appropriate value of k should
be determined by the multicast traffic in the target multicast ap-
plications, specially by the statistics of destination overlapping
in multicast connections. Note that although &-fold multicast
assignments can be realized by simply stacking k copies of 1-
fold networks together, the k-fold network designed in [7] has
much lower hardware cost. In fact, the cost of the former is
about 3 to k times of a k-fold network for any k.

To provide a quantitative basis for network designers to
choose the suitable value of system parameter & under different
traffi¢’loads, in this paper we propose an analytical model for
analyzing the performance of a k-fold multicast network. Al-
though there has been a lot of research on performance analysis
in various networks under multicast traffic, see, for example,
[5], {6}, 191, frone of them has considered network performance
in terms of k-fold multicast assignments. In this paper, we
derive the blocking probability and the rthroughpur of a k-fold
multicast network under Poisson traffic and validate the model
through simulations. Based on the assumptions we make, we
first show that the number of ongoing multicast connections in
the network is a continuous time Markov chain. The network
throughput and blocking probability can then be obtained in
terms of the stationary distribution of the Markov chain. We
also conduct simulations to validate the analytical results.

II. PRELIMINARIES

In this section, we give the definitions and assumptions we
will use in this paper. First, we will need following definitions:

Definition I: A multicast connection refers to that a source
node is connected to multiple destination nodes simultaneously
in the network, and is sending the same message to these desti-
nation nodes. In this paper, we sometimes simply refer to it as
a connection.

Definition 2: We assume there are no buffers at source
nodes. Input blocking refers to the case that a multicast con-
nection request arrives at a busy source node and is blocked.

Definition 3: If a destination node is connected to m source
nodes, we say that this destination node is of degree m.

Definition 4: Output blocking refers to the case that a mul-
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ticast connection request arrives at an idle source node but is
blocked because it requests some destination node of degree k.

Definition 5: 'We define output blocking ratio as the ratio of
the requests blocked due to output blocking over all the re-
quests blocked.

Definition 6: If a group of multicast connections can be
transmitted simultaneously through the network without any
blocking, we say that they are mutually compatible and abbre-
viate it as m.c. Clearly, in a k-fold multicast network, only
those multicast connections that can fit into a k-fold multicast
assignment are m.c.

Definition 7. We say that the network is in state ¢ when there
are ¢ ongoing multicast connections in the network.

Definition 8: We define the average number of successful
multicast connection requests carried by the network in a unit
time as carried throughput, or simply throughput.

In addition, throughout this paper, we make following as-
sumptions on the multicast traffic we consider: (1) The proba-
bility of a destination node being involved in an incomirg mul-
ticast connection request is & and is independent of other des-
tination nodes. Thus, the fanout of a multicast connection fol-
lows Binomial distribution. (2) Multicast connection requests
at different source nodes are independent of each othzr. (3)
Service time of each multicast connection is exponentially dis-
tributed with parameter i and is independent of each other. {4)
Multicast connection requests arrive at each source node ac-
cording to a Poisson process with intensity A and are indepen-
dent of each other.

II[. STATIONARY DISTRIBUTION OF NETWORK STATES

Based on the assumptions made in the previous section, we

now derive the stationa*y distribution of network states.

Consider an N x N k-fold multicast network. Given that
there are i mulicast connections in the network, let py., (2, m)
be probability that a destination node has degree m. A destina-
tion node is of degree m if among the ¢ multicast connections,
this node is the destination of exactly m multicast connections.
The probability that any multicast connection request chooses
this destination node is ¢ and is independent of other muiticast
connections. Thus, we have

Paegi,m) = ( . ) A= " me{0,1,..3), (D)
which is a Binomial random variable. Since each destination
node in a multicast connection is selected independently, the
degrees of all NV destination nodes in the network arz inde-
pendent of each other and have the same distribution given by
equation (1). '

Let Pp,.(i) be the probability that 4+ multicast connection re-
quests are m.¢. in a k-fold multicast network. Recall that a
set of multicast connection requests are m.c. when none of the
destination nodes has a degree more than k& when realized si-
multaneously in the network. From equation (1), we know the
probability that a destination node having a degree less than or
equal to k is Efnzopdeg(i,m) fori > k,and | fori < k be-
cause when i < k, no destination node can have a degree more
than k. Since the degrees of destination nodes are independent
of each other, we have :

E . N &
1(2m=0 Pdeg (2: m)) 1> (2)

otherwise

Prc (i) = {

Suppose a new multicast connection request arrives when
there are i multicast connections in the network. If this new
connection can be realized along with those ongoing connec-
tions, we say it can “join” them. Let Py, (i} be the probability
that a new multicast connection can join { ongoing connections.

We have Preli+1)

3
P} 3

Piali) =

To see this, let F; be the event that a new multicast connection
request and the existing ¢ multicast connections are m.¢, E2 be
the event that i multicast connections are m.c, and Ej be the
event that ¢ + 1 multicast connections are m.c. We have
: . P(E1,E2) P(E3})  Pmc{i+1)
P {fy=P E1 Ez = = = -
i {i} (E1|E2) P(Es) P(Es) P i)

Suppose the network s carrying ¢ multicast connections, or
in state ¢. The network state may change when some con-
nection requests arrive at the network and can join the ongo-
ing connections, or when some ongoing connections are termi-
nated. Since we assume that the arrival process is 2 Poisson
process and the connection holding time follows exponential
distribution, the probabilities that more than one connection
requests arrive at the same time, more than one ongoing con-
nections terminate at the same time, and a connection request
arrives and an ongoing connection terminates at the same time
are very small and therefore can be neglected. Thus, state 1
may only transit tostate 1 + Tori — 1 (for0 < i < N). A
transition to state ¢ + 1 occurs when a new connection request
arrives at an idle source node and can join the ¢ ongoing con-
nections. A transition to state ¢ — 1 occurs when one of the

ong()ing connections terminates. o

. Since the arrival process is Poisson and the service time
is exggnentlall distributed, the network state is a continuous
time Markov chain [8]. We now derive the state transition rate.
First, consider the transition from state ¢ to state 1 — 1. [n state 7
there are { engoing multicast connections, and service times of
these connections are exponentially distributed with parameter
4 and independent of each other. Thus, the transition rate to
state ¢ — 1 is i, Now consider the transition from state £ to
state ¢ + 1. We know that there are N — 1 idle source nodes in
the network, and under assumption 4 in the previous section,
the arrival processes at these nodes are Poisson with intensity
A and independent of each other. Hence the combined arrival
process is also Poisson and with intensity (N — {)A. A connec-
tion request is accepted with probability P;,(f) and is rejected
with probability 1 — Py, (2). Thus, the combined Poisson pro-
cess is then randomly split into two random processes: one
is the process of the amrivals that can be successfully realized
in the network, and another is the process of the arrivals that
are blocked. Since a split Poisson process is still Poisson, the
arrival of a connection request that can join the ¢ ongoing con-
nections is Poisson with intensity (N — i)AP;, (1), which is
the transition rate from state i to state ¢ + 1. We should also
consider the boundary conditions for¢ = 0and i = N. A com-
plete state transition diagram is illustrated in Fig. 1. Clearly,
this is a birth-death process and let w;,2 = 0,1,... , N, be the
stationary distribution. We have

i1 (i + D = mi(N — §)APjali), i € {0,1,... ,N — 1}

Letp = M,
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where mg is the probability that the network is in state 0 which
can be determined by my = 1

Ln( N )P"Pmc(’.)
)

1V. THROUGHPUT AND BLOCKING PROBABILITY

Fig. 1.

n

)piPmc(i),i €{0,1,...,N} “

Given the stationary distribution of network states, in this
section we derive the throughput and blocking prebability of a
k-fold multicast network,

Consider a long time period {0, T]. First we have the foliow-
ing lemma.

Lemma 1: For a time period [0, T, the average number of
successful multicast connection requests carried by the network
during [0, T is given by

N
Nouee =TA z Wi(N - i)Pjﬂ(i)

i=0

5y

Proof. The average dwelling time of state 4 is the inversien of
the rate that the network departs from state 2:
1

(N —DAPa (i) +in

It holds for all ¢ € {0,1,... ,N}. Since the time the system
spent in state ¢ during [0, T] is =T, the average number of
visits to state © during [0,7] is Tm;{(N — ©)AP;n (i) + ip).
Notice that the number of visits is also the number of times the
network departs from state 7. A departure may be caused by the
arrival of a successful connection request or the termination of
an ongoing connection. The first case has the probability

(N - i).«\Pjﬁ{i)
(N — AP i) +1u

Thus, the average number of times the network departs from
state ¢ due to the arrival of 2 successful connection request is
Tri{N — 1)AP;n(i). This is also the average number of suc-
cessful connection requests arrived at the network when the
network is in state i (i € {0,1,... ,N}) during [0, T]. There-
fore, the average number of successful connection requests car-
ried by the network during [0, T is obtained by summing over
i Nsucc =TA Eiv:u ”i(N . 3)P:m(7:) u
Proposition 1: The throughput of a k-fold multicast net-

work 15 given by N
: TH =A% mi{N - i)Pja (i)

i=0

O]

which can be directly obtained from Lemma 1.
On the average, the total number of connection requests ar-

rived at the network during [0, T] is Niptat = NAT, among .

which only Nsy.. connection requests given in Lemma ] are
successful, and the rest

N
Nyt = Nygtal — Navee = Tf\z (V{1 — Pjn(i)) +iPjali))
=0

connection requests are blocked. The blocking probability is
Nbg/thmg. Thl.'lS, we have
Proposition 2: The blocking probability of a k-fold multi-
cast network is &
PB = ﬁ; W (N(1 = P (i) + iP;n(i))

g

To further study the performance of a k-fold multicast net-
work, we consider input blocking and output blocking sepa-
rately. Input blocking depends on the number of busy source
nodes in the network. Since a larger fold means more busy
source nodes, increasing k will generally increase the proba-
bility of input blocking. Input blocking can be reduced only
by adding buffers at each source node, which is not consid-
ered in this paper. On the other hand, increasing & will reduce
the chance of output blocking. In order to calculate the output

_blocking probability, first we have the following Lemma.

Lemma 2: Let py(i,mm) be the probability that exactly m
requests arrived at idle source nodes are blocked during a single

visit to state 1. We have
puliym) = a(l — o)™, ]

N—i)AP;n (i) +i,

where a = %f)\ii)Tp.

Proof. Define the following events: E;: the first rn connection
requests arrive before any of the 1 ongoing connections termi-
nates; Ey: none of the m connection requests can be realized
along with the ¢ ongoing connections; E3: one of the ongoin
connections terminates afier the armival of the m, 4 request an
before the arrival of the (m + 1), request; Ey: the (m + 1)
request arrives before any ongoing connection terminates and
is mn.c. with the 7 ongoing connections. We have

pai(i, m) = P{E1 N E;)P(Es U E4|E1 N Ea)

Events £ and E» are independent of each other because that
knowing the arrival time of a connection request does not pro-
vide any information on whether it can join the ¢ ongoing con-
nections. Thus, P(E, N Ey) = P(E1)P(E,). Since events Fa
and Ej cannot occur at the same time,

P(Eg V] E4|E|_ n Ez) = P(EalE] r‘\Ez) + P(E4|E1 n Eg).'[hus,
pr(i,m) = P{E1)P{Ez){(P(E3|E\ (1 E2) + P(E4|E1 1 Eg))

Now let Y denote the time interval that the network first enters
state 7 till one of the 7 ongoing connections terminates. Y is an
exponentially distributed random variable with parameter iz.
Let X, denote the time interval that the network first enters
state 7 till the arrival of the m;,, connection request. Then X,
is the summation of m independent exponentially distributed
random variables with parameter (N ? ;)A..)Yve can show that
-t
P(E1) = P(Y > Xum) ((N e

Since connection requests are independent of each other, we
have P(Eg) = (1 — Pj,(i))™ . Also,
P(E3tEL N Ep) = P(Y < Xm + 1|Y > Xm)

1-B(Y > Xm+ 1Y >Xm)=1—

P(Y > Xm+1Y > Xm)

P(Y > Xm)
_PY>Xm+1) _ i

1 =
P(Y > Xm) (N -DA+ip
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Similarly, we have
P(E4|By 0 E3) = W -9 Pjn i)

(N—iA+ip *

Leta = %ﬂ We have pu(i,m) = all —a)™ B
From Lemma 2 we know that the number of the requests
blocked due to cutput blocking during staying in state 2 is a
Eeometrical ly distributed random variable with parameter c. It
as mean:
1—a (N -1~ P(i) (1)
a (NP0 +ip

From the proof of Lemma 1, we know that the average num-
ber of visits to state ¢ during [0, T) is T'm; (N — ) APy, (1) +1p).
Combining this fact and (10), we have that the average total
number of requests blocked due to output blocking when net-
work is in state ¢ during [0,T] is Ta{N — )A(1 — Ppa(3)).
Then the average number of requests blocked by output block-
ing during [0, T is

N
Nowept =TAY . mi( N — i){1 — Pjali))

i=0

Thus, the average number of requests blocked due to input

blocking during [0, T is the average number of the requests
blocked minus Noypi

N
Ninst = Npt — Nowent =TA Z_fﬁ'i
rd

We have
Proposition 3: The output blocking ratio which is defined
as the ratio of blocked requests due to output blocking over all
blocked requests is

Tilom(NV — (1 - Pin(i)
T om N (L — Pjn(i)) + iPja(i))

a1

V. SOME GENERALIZATIONS

In this section, we discuss some possible generalizations of

our results obtained in previous sections.

First, although we have mainly focused on an N x N k-
fold multicast network, the results can be easily extended to an
asymmetrical k-fold multicast network with /V source nodes
and M destination nodes. The only modification we need to
make is equation (2). Foran N x M k-fold multicast network,
the probability that ¢ multicast connection requests are m.c. is

M
et | (Brcomm) >
1 otherwise

(12)

All other results and discussions are still valid.

Secondly, if the fanout of a multicast connection follows
other types of distributions other than binomial, such as geo-
metric distribution or arbitrary distribution used in [9], we also
only need to recalculate P, (i). However, in this case, the
degrees of destination nodes will no longer be independent of
each other. When the network size is large, finding Ppn.(%)
analytically becomes impractical. Thus we have to generate
Pruc(2) by simulations. After obtaining P (3), the throughput
and blocking probability can be obtained immediately from our
analytical model.

V1. SIMULATIONS AND OBSERVATIONS

We have conducted simulations for network sizes 16 and 32
under different fanouts and arrival rates to validate our analyt-
ical results. Due to limited space, in Fig. 2, we illustrate only
the results for network size 32. In the simulation, we use F'
to represent the fanout of a multicast connection request. F is
a Binomial random variable with parameter (N, ) and mean
E(F) = N@. Without loss of generality, we let service rate
p=1

In Fig. 2(a) and (b) we plot network throughput as a function
of network fold k. In Fig. 2(a), we keep arrival rates at 0.5 and
vary the fanout distribution. First, let’s look at the growth of
the throughput with respect to k for different values of mean
fanout E(F'). We observe that when E(F) is relatively small,
the throughput grows almost exponentially, but when E(F) be-
comes larger, throughput grows much slower. Next, we can see
that for any E(F), the throughput grows more rapidly when
k is small, and tends to converge to some value when k fur-
ther increases. For example, in Fig. 2(a) for the average fanout
E(F) = 3.2, the throughput increases by 75% when network
fold k increases from 1 to 2, but when k > 5, it stops increasing
and remains at about 10.6. This is because when k becomes
very large, almost every connection request arrived at an idle
source node can go through. Thus, the network throughput is
totally determined by the arrival rate. In this case, further in-
creasing k will not increase the throughput.

In addition, the value of k to achieve the maximum through-
put depends on the fanout distribution. In Fig. 2(a),we can
see that to achieve the maximum throughput, we need to let
k=5for B(F) =32, k =8for E(F) = 64,k = 13
for E(F)} = 16 and &k = 16 for E(F) = 28.8, respectively.
We can see that the increase is not linear to E{F) because the
larger the E(F’), the less k we need to add to the network to
achieve the maximum throughput.

In Fig. 2{b), we fix the fanout distribution and study network
performance under different arrival rates. Similar observations
can be drawn for A < 1. We also did experimentson A > 1
which means arriving is faster than serving. In most networks
this would lead to an unstable state and is not considered. How-
ever, since we assume no buffers at source nodes and any con-
nection request arrived at a busy source node is immediately
dropped, it is still valid in our case. As we can see, a larger
A leads to larger throughput, but needs a larger k to reach the
maximum throughput.

In Fig. 2{c} and (d), we plot the network blocking proba-
bility as a function of network fold k. In Fig. 2(c),we keep
arrival rates at 0.5 and vary the fanout distribution. First, we
notice that when the average fanout E(F) is relatively small,
blocking probability decreases very fast when % increases. For
example, in Fig. 2(c) where N = 32, for E{(F) = 3.2, block-
ing probability drops by 30% when & increases from 1 to 2.
However, when E(F) becomes larger, blocking probability de-
creases much slower and almost linearly to k. Next, we can
see that blocking probability does not reach 0 when k further
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Fig. 2. Comparison of simulations and analytical results for a k-fold multicast network. (a) Throughput under different fanout distributions. (b)-Throughput
under different arrival rates. (c) Blocking probability under different fanout distributions. (d) Blocking probability under different arrival rates. (e} Output
blocking ratip under different fanout distributions. (f) Qutput blocking ratio under different arrival rates.

increases. This is because of the presence of input blocking,
which actually increases with k. In Fig. 2(d), we fix the fanout
distribution and study network performance under different ar-
rival rates. Again, we can see that blocking probability de-
creases quickly when arrival rates are small (say, less than 0.5)
and much slower when arrival rates become large.

In Fig. 2(e) and (f), we plot the output blocking ratio as a
function of network fold k. We can see that when k is larger
than a certain value the output blocking ratio tends to 0, which
means no connection request is blocked due to output blocking.
As in Fig. 2(e) where N = 32 and A = 0.5, to make output
blocking ratio almost 0, we need only to let k = 6 for E(F) =
32,k = 9for E(F) = 64 and k = 14 for E(F) = 16,
respectively. Again, the value of k to eliminate output blocking
is not a linear function of E(F). The larger the E(F), the
less fold we need to add to the network to achieve zero output

blocking ratio.
VII. CONCLUSIONS

A k-fold multicast network was recently proposed [7] as a
cost-effective solution to provide better QoS functions in sup-
porting multicast communication. To give a quantitative basis
for network designers to determine the suitable value of sys-
tem parameter k£ under different traffic loads, in this paper we
have presented an analytical model for the performance of k-
fold multicast networks under Poisson traffic. We first gave the
stationary distribution of network states and then derived the
throughput and blocking probability of the network. We have
also conducted simulations to validate the analytical model and

the results show that the analytical model is very accurate under
the assumptions we made. From the analytical and simulation
results we can see that by increasing the fold of the network,
network throughput increases almost exponentially when the
fanouts of multicast connections are relatively small compared
to the network size. Our future work includes generalizing the
model to other traffic distributions and other types of muincast
networks.
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