Homework One

1. (10 points) Calculate the channel capacity if the bandwidth is 1 MHz and signal to noise ratio (S/N) is 127 according to the Shannon's theorem. (Easy, please get it right!)
2. (10 points) We say a sine wave is at frequency $f \mathrm{~Hz}$ if it is can be written as $\cos (2 \pi f t)$. Let $x(t)=\cos (3 \pi f t) \cos (\pi f t)$. If $x(t)$ is sent to a low-pass filter with cut-off frequency of $3 f / 2$ Hz , meaning that all signals on frequency $3 f / 2 \mathrm{~Hz}$ or higher will be filtered out, what is the output of the filter?
3. (10 points) Consider a communication link. Suppose the receiver receives $y=x+n$, where x is -1 (representing bit 0) and 1 (representing bit 1) with equal probability and n is the noise. Based on the value of y, a detector outputs either 0 or 1 .
(a) If $|n| \leq 0.5$, how would you design the detector?
(b) If the noise takes value from $\{-1.5,-0.5,0.5,1.5\}$ with probability $\{0.4,0.1,0.1,0.4\}$, respectively, how would you design the detector? What is the probability that your detector makes a mistake?
4. (10 points) Consider the basic wireless communication system, where the sender sends $I(t) \cos (2 \pi f t)$ and the receiver multiplies the received waveform with its local carrier and then sends the signal to a low pass filter (which will pass the baseband signals but not signals on higher frequencies).

Figure 1: Problem 4.
(a) If the receiver's local carrier is not synchronized with the sender's carrier and is $\cos (2 \pi f t+$ $\phi)$ where ϕ is the phase difference, please write down the signal after the low pass filter. If $\phi=\pi / 2$, can the receiver receive any baseband signal?
(b) What if the receiver uses two receiving channels, one multiplying the input by $\cos (2 \pi f t+$ $\phi)$ and the other by $\sin (2 \pi f t+\phi)$? If $\phi=\pi / 2$, can the receiver receive any baseband signal?
5. (10 points) Suppose the 3 G carrier is on 1.8 GHz and the Wi-Fi carrier is on 2.4 GHz . If a 3 G phone transmits signals, will a Wi-Fi receiver receive any baseband signal? Why? Assume the bandwidth of the Wi-Fi signal is 20 MHz .
6. (10 points) If to minimize the bit error ratio, which assignment of bits to the QPSK constellation makes more sense? Why?

Figure 2: Problem 5.
7. (10 points) Suppose a Wi-Fi carrier is on 2.4 GHz and there are two paths from the sender to the receiver of same signal strength with length 12.5 m and 12.5625 m , respectively. Assume the bandwidth of the Wi-Fi signal is 20 MHz . Will the antenna of the receiver receive any signal at 2.4 GHz ? Will the receiver receive any baseband signal?
8. (10 points) The $(7,4)$ Hamming code we discussed in class can correct 1 bit error in a codeword. Assume:

- bit errors occur independently in the stream of bits,
- any codeword with more than 1 bit error cannot be corrected and the number of errors after the decoding is 7 (worst case).

Calculate the Bit Error Ratio (BER) for the data bits protected by the Hamming code if the raw BER of the channel is $p=0.0001$.
9. (10 points) The $(7,4)$ Hamming code we discussed in class has minimum distance 3 . Using this fact, prove that no two rows in the parity checking matrix H are the same. (Hint: Recall that the minimum distance is the minimum weight of codewords, and any codeword multiplied with H is 0.)
10. (10 points) The $(7,4)$ cyclic we discussed in class has generator polynomial $g(x)=x^{3}+x+1$. Find the code polynomial for $m(x)=x^{2}+x$ when $C(x)=m(x) g(x)$. Find the code polynomial for the same $m(x)$ when using systematic code.

