1. This homework MUST be completed individually.
2. This assignment has been designated by the Department of Computer Science for assessment of certain expected outcomes for its degree programs, as required by our accreditation agencies, the University, and the State of Florida. Departmental policy does not permit a final grade of "C-" or better to be assigned unless the student has at earned a grade of "C-" or better on this assignment, regardless of performance on other work in the course.

1. (60 points) Implement two functions:

a. A function called “match” which takes in $a0 and $a1 two positive integers and returns in $v0 1 if they match, which by our definition means that the smaller of the two integers is greater than half of the larger of the two integers, and 0 otherwise.

b. A called “find” which takes in $a0 the starting address of an positive integer array $a1 an integer value, $a2 the length of the array, and prints out all values in the array that matches $a1, obviously by calling the “match” function.
Note that you must practice MIPS calling conventions in this problem.
2. (40 points) Implement the “nchoosek” function, i.e., C(n,k), which takes two integers as input in $a0 as n and $a1 as k and finds the number of ways to pick k items from n items.
Note that:

· Error checking is required, including:
· n or k is negative.

· k is larger than n.
· n is larger than 30, which will cause overflow.
· You may find you need to use floating point calculations for nchoosek because we need to calculate numbers as large as C(30,15). Due to the precision problem of the single precision numbers, there will be some errors. An error percentage of less than 0.0001% is acceptable. That is, for example, C(30,15) = 155117520, but it is acceptable if your function says 155117536.
Grading:

1. You should document your code properly in this homework. You may use the following code as an example:

Zhenghao Zhang -- 04/10/09

newton.asm – a simple program calculating the square root of a given

is number n using singles. The value of the square root of n,

denoted by x, approximated by x=(x+n/x)/2, until the the

absolute value of the difference between new x and the previous

x is smaller than a given threshold such as 1.0E-3.

function main -- written by Zhenghao Zhang -- 04/10/09

calling the calsqrt function and display the results

Register use:

$a0 syscall parameter

$v0 syscall parameter

$f0 exp and syscall return value

$f12 exp and syscall parameter

.text

.globl main

main:
li.s $f0, 361.0

mfc1 $a0, $f0

jal calsqrt

done:
mtc1 $v0, $f12

li $v0,2

syscall

eixt:
li $v0,10

syscall

function calsqrt -- written by Zhenghao Zhang -- 04/10/09

calculating the square root of a given number n using singles.

The value of the square root of n, denoted by x, approximated

by x=(x+n/x)/2, until the the absolute value of the difference

between new x and the previous x is smaller than a given

threshold such as 1.0E-3.

Register use:

$a0 parameter from calling routine

$v0 return value

$f0 storing the value of n as a single precision number

$f1 current value of x

$f2 next value of x

$f3 tempory vaiable

$f20 storing constant 2 for dividing

$f21 storing constant 0.001 for exit comparision

calsqrt:

addi $sp, $sp, -24

swc1 $f0, 20($sp)

swc1 $f1, 16($sp)

swc1 $f2, 12($sp)

swc1 $f3, 8($sp)

swc1 $f20, 4($sp)

swc1 $f21, 0($sp)

mtc1 $a0, $f0
$f0 gets n

li.s $f20, 2.0
$f20 storing constant 2 for dividing

li.s $f21, 0.001
$f21 storing constant 0.001 for exit comparision

div.s $f1, $f0, $f20
$f1 gets n/2

calsqrtloop:

div.s $f2, $f0, $f1
$f2 gets n/x

add.s $f2, $f2, $f1
$f2 gets n/x + x

div.s $f2, $f2, $f20
$f2 gets x'=(n/x + x)/2

sub.s $f3, $f2, $f1
$f3 gets x'-x

abs.s $f3, $f3

$f3 gets |x'-x|

c.lt.s $f3, $f21
set the flag if |x'-x| < 0.001

bc1t calsqrtdone

mov.s $f1, $f2

j calsqrtloop

calsqrtdone:

mfc1 $v0, $f2

lwc1 $f0, 20($sp)

lwc1 $f1, 16($sp)

lwc1 $f2, 12($sp)

lwc1 $f3, 8($sp)

lwc1 $f20, 4($sp)

lwc1 $f21, 0($sp)

addi $sp, $sp, 24

jr $ra

.data

msg_done: .asciiz "done\n"

2. Your programs will be evaluated using the following criteria:

Proper use of registers and memory (0-8,9-16,17-20)
Proper use of load, store and branch instructions (0-4,5-8,9-10)
Proper use of integer arithmetic instructions (0-4,5-8,9-10)
Proper use of floating point arithmetic instructions (0-4,5-8,9-10)
Proper use of subprogram calls [including use of stack] (0-4,5-8,9-10)
Proper use of return instructions [including use of stack] (0-2,3-4,5-5)
Proper design of a subprogram meet specified requirements (0-8,9-16,17-20)
Proper use of appropriate tools to assemble, test and debug program (0-2,3-4,5-5)

Appropriate documentation (0-4,5-8,9-10)

The three point ranges next to each item specify the range of scores that will be used to represent ineffective, effective and highly effective performance, respectively.

