
DKSM: Subverting Virtual Machine Introspection for Fun and Pr ofit

Sina Bahram, Xuxian Jiang, Zhi Wang Junghwan Rhee, Dongyan Xu
Mike Grace, Jinku Li, Deepa Srinivasan Department of Computer Science

North Carolina State University Purdue University
{sbahram, xjiang4, zhiwang, mcgrace}@ncsu.edu {rhee, dxu}@cs.purdue.edu

Abstract

Virtual machine (VM) introspection is a powerful tech-
nique for determining the specific aspects of guest VM
execution from outside the VM. Unfortunately, existing
introspection solutions share a common questionable as-
sumption. This assumption is embodied in the expectation
that original kernel data structures are respected by the
untrusted guest and thus can be directly used to bridge
the well-known semantic gap. In this paper, we assume the
perspective of the attacker, and exploit this questionable
assumption to subvert VM introspection. In particular,
we present an attack calledDKSM (Direct Kernel Struc-
ture Manipulation), and show that it can effectively foil
existing VM introspection solutions into providing false
information. By assuming this perspective, we hope to
better understand the challenges and opportunities for the
development of future reliable VM introspection solutions
that arenot vulnerable to the proposed attack.

Keywords: Virtualization, Introspection, Direct Kernel
Structure Manipulation

I. Introduction
Research in virtualization technologies has gained sig-

nificant momentum in recent years, mainly due to the
many new opportunities to address a variety of computer
system problems (including security and reliability). One
key technique behind these opportunities is calledvirtual
machine introspection. The goal of VM introspection is to
enable the observation of a VM’s states and events from
outside the VM. In particular, this outside observation can
have the same (or similar) semantic view of system states
and events as if they were seen from inside the VM. This
observability is critical to enable tamper-resistant, high-
fidelity VM monitoring, which is in turn the basis of a
wide range of opportunities being actively explored, such
as introspection-based intrusion detection, fault-tolerance,
service hosting, and dynamic resource provisioning.

VM introspection has been touted as an extremely pow-
erful technique and a number of recent systems have been

successfully developed to demonstrate its great potential.
For example, Livewire [11] is the first introspection-based
intrusion detection system that aims to protect running
guest VMs from being compromised (e.g., by kernel
rootkits). XenAccess [2], VMwatcher [13], VMwall [23],
and others [14], [15] were developed to monitor VM
execution and infer guest-internal states or events (e.g.,
running processes, loaded kernel modules, active network
connections, or ongoing guest system calls). These guest-
internal states and events are needed for the purpose of
either recording or denying the execution of suspicious
programs. Most recently, VMware has introduced VMsafe
[25] technology that can allow third-party security vendors
to leverage the unique benefits of VM introspection to
better monitor, protect, and control guest VMs.

The capability to introspect running VMs opens up
many opportunities that are simply not possible with
physical machines. A key challenge, however, that needs
to be overcome is the so-calledsemantic gap[9] between
the external and internal observations of a VM (Figure
1(a)). Specifically, from outside the VM, we can get a view
of the VM at the virtual machine monitor (VMM) level,
which includes its register values, memory pages, disk
blocks and low-level events (e.g., execution of a privileged
instruction); whereas from inside the VM, we can observe
semantic-level entities (e.g. processes and files) and events
(e.g., system calls). This semantic gap is formed by the
vast difference between external and internal observations,
manifesting the main challenge for VM introspection.

To bridge the semantic gap (Figure 1(b)), one key
observation behind existing introspection tools is that the
guest OS being introspected contains a set of data struc-
tures (e.g., those for process and file system management),
which can be used as “templates” to interpret VMM-level
VM observations. As such, we can cast low-level VM
observations to guest OS data structures to uncover the
VM’s semantic entities and their states. As an example,
by casting VM memory page content to guest OS data
structure definitions, we can locate and identify kernel
data structures that have been defined to maintain semantic

Guest OS Semantic

Gap

Virtual Machine Monitor

(a) The “semantic gap” challenge

Guest OS

Virtual Machine Monitor

VM Introspection

(b) Existing VM introspection tools (e.g., XenAccess [2])

Fig. 1. Existing VM introspection tools bridge the “semanti c gap”

entities in the VM (e.g., process control blocks and kernel
modules). By following these data structures, we can
further derive their attributes (e.g., a process’ name, PID,
page table etc.). In particular, for a process, we can explore
its virtual address space through its page table and derive
its user-level states (e.g., variables at specific memory
locations).

However, a careful examination of existing VM intro-
spection tools as well as our past experiences in building
some of them [13] indicate thatthe effectiveness and
reliability of VM introspection does not naturally come
without question. In particular, the main concern stems
from a common, fundamental assumption of VM intro-
spection: the guest OS being introspected is assumed to
use the kernel data in a prescribed fashion by following
these data structure templates. In other words, all existing
introspection tools rely upon the fact that the underlying
guest OS is conforming to certain behaviors and idioms
(with respect to these templates) which would, at first
glance, appear to be rather obvious and set in stone.
Unfortunately, as is most often the case with introspection,
the guest OS kernel could be compromised. And once
compromised, the assumption about the kernel respecting
its own data structures becomes seriously questionable.

In this paper, we presentDirect Kernel Structure Ma-
nipulation (DKSM), an attack which can effectively subvert
and confound existing VM introspection tools. Specifically,
by presenting DKSM, we show that it is possible to
compromise a guest such that the kernel’s use of any field
of its data structures (or templates) could be potentially
modified. The modification can be achieved by various
techniques that involve changing the associated syntax and
semantics of the underlying data structures, thus invali-
dating the fundamental assumption of introspection. With
this invalidation, we are effectively creating three different
views of the system: (1) The first,internal, view comprises
what the OS (or various system routines such asps and
netstat) sees; (2) The second,external, view comprises
what an external introspection-based tool observes; (3) The
third, actual, view comprises what is really going on in
the system. A piece of malware (e.g., a kernel rootkit) that
implements our proposed attack technique can effectively
control all three of these views. This means that an attacker

can present any desiredexternal view of the system to
evade or circumvent VM introspection, while presenting
a completely differentinternal view of the system to the
guest. However, neither of these two views will represent
the actual view of what is executing in the system.

We have developed a proof-of-concept DKSM proto-
type to illustrate this attack and show the fragility of
existing introspection tools. In our prototype, we have
successfully misrepresented several important types of in-
formation to existing VM introspection tools. Specifically,
by manipulating information aboutrunning processes,
loaded modules, andactive network connections, we show
that it is possible for a new (and stealthier) class of
introspection-resistant malware to emerge. In addition, we
also examine possible strategies to better cloak the DKSM
attack and “raise the bar” even further for future enhanced
VM introspection techniques. Meanwhile, it is important to
note that by effectively evading existing VM introspection
tools, our goal here is to expose the fundamental limitation
of these tools; thereby arguing for the need of next-
generation VM introspection techniques with enhanced
tamper-resistance. We believe this higher level of diligence
is increasingly important especially considering the current
trend of adopting virtualization and related introspection-
capable applications.

II. DKSM Design
In a nutshell, DKSM foils existing introspection tech-

niques by attacking the basic assumption upon which
they are based. Specifically, it is important to notice that
DKSM is based on the observation that the kernel data
structures (or templates) of a guest VM are key to any
introspection tool, which means a DKSM attack can be
launched in various ways to manipulate these kernel data
structures. In the following, we examine three different
approaches: (1)syntax-based manipulationwhere certain
fields of kernel data structures are potentially added or
removed; (2) semantics-based manipulationwhere the
semantics of the underlying data structures are changed;
and (3)multifaceted combo manipulationwhich effectively
combines the previous two. Note all these attacks can
effectively manipulate the kernel data structures to subvert
introspection tools and their analysis.

In this work, we assume the presence of guest kernel
vulnerabilities that can be exploited by the attacker to
compromise the guest kernel and hijack the control flow.
We consider this adversarial model because this is often the
case how an introspection tool is deployed. By hijacking
control flow, the attacker has the freedom to either modify
existing kernel code or inject his own code for execution.
We also notice the recent emergence of return-oriented
programming [7], [20], [12] and believe it is possible
to launch a similarly return-oriented DKSM attack. This
possibility will be discussed in Section III-C.

A. Syntax-based Manipulation

One potential approach to implementing a DKSM attack
involves adding or removing specific fields from particular
kernel data structures. By doing so, the template-based
approach of existing introspection tools will be using the
wrong templates to infer guest states and thus derive
inaccurate results. Note that an added member field to the
kernel data structure may not impact introspection as the
analysis of existing member fields could be sufficient in
inferring guest VM states. However, a removed member
field could greatly affect the accuracy and reliability of the
results. As mentioned in [10], certain fields of kernel data
structures are simply not used by the OS.1 As a result,
their removal would not adversely affect the OS kernel
behavior. When an introspection tool depends on any of
these removed fields for the analysis, such syntax-based
manipulation will evade or even mislead the tool analysis.

From another perspective, we notice this form of the
DKSM attack is subject to certain limitations as it does not
fundamentally hide or change the underlying semantics of
the affected data structures. What happens is that the data
structure types are syntactically manipulated. Therefore, if
an introspection tool is changed to lessen its dependency
upon the syntax of related templates (e.g., by leveraging
only essential member fields), the chances are high that
this attack is less effective.

B. Semantics-based Manipulation

A more advanced form of the DKSM attack is to modify
the underlying semantics of the kernel data structures of
interest. Because the changed semantics can be transparent
to the OS while offering great consternation to introspec-
tion tools, we consider this approach to be much more
powerful than the previous approach.

Specifically, kernel data structures contain a number of
member fields. Often, some of these fields are of similar

1A similar observation has led to the examination of reliability of kernel
data structure signatures for memory forensic analysis. Specifically, when
a signature involves a member that is not being used by the OS kernel,
an attacker could potentially misuse this member to evade or mislead
signature-based analysis. One such example is the backward pointer in
the all task list [10].

types or widths. For example, in a kernel data structure
that contains several integer values, one interesting attack
involves switching these integers around. By doing so, the
underlying OS can still use the correct integer fields of
the data structure. However, an external introspection tool
would assume the standard layout of the data structure
(before the members are switched) to be true; therefore,
it would assign incorrect semantics to these switched
member fields. Further, such a technique can be easily
extended from integers to strings, and eventually support
any data types. Here, we also note that homogeneity of
data types is not required at all, which means that an
integer field can be used to contain a pointer to a C-style
string, while a previous C-style string pointer can be used
as an actual integer. Effectively, such a technique hides the
actual data in plain sight as it has been neither redirected
nor changed in any way. However, when the data is
being introspected, the template-based view precludes the
examination of the actual way in which this data is used.
As such, the introspection technique is unable to derive
accurate semantics about the affected data structures.

From another perspective, we can also achieve
semantics-based manipulation by redirecting chosen fields
of kernel data structures to somewhere else. In other words,
various fields of interest are redirected to shadow locations
instead of being exchanged with other members. By doing
so, the attack can create a data structure that is physically
dis-contiguous (and the affected OS kernel will be instru-
mented to operate seamlessly with these dis-contiguous
kernel objects), thus greatly impacting the template-based
introspection view. One nice property of this approach is
that introspection tools are still presented with a perfectly
natural and normal looking view of the system. No fields
are missing or added, nor do the meanings of various
member fields in the kernel data structures appear to be
unusual. Unfortunately, for the introspection tools, the OS
is not using this data in any meaningful way. As a result,
we can further use it to provide false information in an
attempt to mislead or confuse the external view generated
by introspection.

Specifically, a rootkit that chooses to employ this spe-
cific technique has the intriguing opportunity to present
an external view of the system (to introspection tools), as
well as an internal view (to running anti-virus software for
example). Theexternalview is false and consists of what
the rootkit wishes the introspection tool to see. Similarly,
the internal view can be anything and everything that
the rootkit wishes the OS to see. Neither of these views
have to be remotely accurate. They simply have to satisfy
current expectations, such as those of the underlying OS, or
fundamental assumptions, such as those of introspection.
However, the reality, i.e., theactualview, of what is going
on in the system can be hidden away from all parties.

C. Multifaceted Combo Manipulation

A third approach is to combine the above two attacks
together to launch a multifaceted combo attack. This is
possible because there is no limitation in the presented
attacks restricting them to be mutually exclusive. Specif-
ically, a combo attack would involve first redirecting all
accesses of the specific data, followed by switching the
various sibling members with one another, while simulta-
neously adding and removing unused member fields to the
various data structures. An introspection tool would have to
first untangle the complex interweaved web of semantics
encompassing each structure (since all the introspection
tool’s templates now have become useless). Then it would
have to try to derive and understand the appropriate
semantics of the various data structures. After it has
successfully realized such a hard goal, the introspection
tool is finally left with the reality that none of this data
is even being used because it has all been redirected. We
notice that this particular process is remarkably similar to
the existing arms-race between malware obfuscation and
reverse engineering. As a result, DKSM can make things
arbitrarily hard for analysis.

This combo attack interestingly puts the attacker in the
position of a “defender”. One is, in essence, defending
against the introspection tool’s attempts to find out the
truth. The various stages of the attack can be viewed as
layers of “defense” that the introspection tool must break
through to find the truth, only to be presented with another
false and even more complicated set of circumstances
to have to deal with. In addition, certain implementation
details such as shadow scheme and return scheme (Section
III) make such an attack very attractive as it can not only
effectively subvert all existing introspection tools, butalso
significantly raise the bar for next-generation ones.

III. Implementation Strategies

In this section, we present different schemes with
varying stealthiness guarantees and respective prototyp-
ing difficulties to implement the proposed DKSM attack.
Specifically, we first examine adirect schemethat achieves
the DKSM effect by directly changing existing kernel code
that accesses the kernel data. Then we present ashadow
schemethat shadows the execution of the attack code to
achieve the same goal (e.g., by hijacking kernel control
flow without tampering with existing kernel code). We then
present areturn schemethat misuses existing code via
the use of return-oriented programming [20], [12]. Each
scheme builds upon the previous one. In the following, we
also examine the strengths and weaknesses of each scheme.

A. Direct Scheme

In the direct scheme, the kernel code which accesses the
data is directly manipulated. Using an exploit, malicious

LKM, or other delivery mechanism to gain root access, this
scheme proceeds to overwrite those instructions that access
data of interest and detour their execution. When those
instructions are to be executed, the detoured execution will
include additional logic to decide how those instructions
should be instrumented to reflect theinternal view of the
current kernel data. For example, when certain member
fields are re-located to another memory page, the corre-
sponding kernel data-accessing code will be redirected to
access the data from the new location. Also, when storing
the redirected data (e.g., PIDs, port numbers, and module
names), we can further obfuscate this data to foil potential
analysis attempts. For instance, the data can be split apart
such that PIDs do not appear close to one another in the
redirected form, strings can be altered programmatically to
foil statistical analysis, and so on.

We note that this scheme can be detected if a VM
introspection tool chooses to examine the memory loca-
tions containing the original instructions and verify kernel
code integrity. Specifically, a tool that carried out such
an analysis would easily detect the compromise of kernel
code. And by analyzing how the code is modified, the tool
may piece together a real view of the system, independent
of the various results of the syntax and semantics based
attacks. Although the obfuscations of kernel data and non-
contiguous layout of kernel objects can make this task
significantly harder, a persistent introspection tool may
eventually defeat these obfuscations. More importantly, the
introspection tool would infer that the guest kernel code
was compromised, thus exposing the attack.

B. Shadow Scheme

From another perspective, our second scheme aims to
use a shadow memory implementation to increase the
attack’s stealthiness and thus make it harder for detection.
Particularly, a shadow memory implementation is a specific
form of split memory where data and code are separated
from one another. Our scheme is inspired by available split
memory systems [18], [19], [22], [24] on thex86architec-
ture and misuses this technique for our attack. Specifically,
in a shadow memory implementation, one can exploit the
caching mechanisms of thex86architecture to present one
view of memory mapped in cache, while the original code
memory pages simply contain the untampered values to
potentially mislead introspection.

Note this shadow mode can facilitate (redirection-
based) semantics manipulation and make it harder for
introspection tools to handle. In particular, if the original
instructions that would have been overwritten for detouring
in direct mode are examined, they appear to be completely
pristine and unchanged. In shadow mode, one basic way
to achieve this is to tamper with function pointers (not
code) in the related execution paths that contain those
instructions and redirect their execution to our own code

Algorithm 1 : TLB Poisoning
Input : Splitting Page Address (addr), Pagetable

Entry for addr (pte)

invalidate_instr_tlb (pte);1

pte =the_shadow_code_page (addr);2

mark_global (pte);3

reload_instr_tlb (pte);4

pte =the_orig_code_page (addr) ;5

to launch the attack. Although this scheme still requires
the execution of our own attack code, it avoids the need to
modify existing kernel code. In the following, we examine
an advanced split-memory implementation that has been
used in existing kernel rootkits, i.e., Shadow Walker [22].

Specifically, split-memory is achieved by intelligently
poisoning the TLB cache for better stealthiness. This is
made possible due to the presence of separate instruction
cache (ITLB) and data cache (DTLB) on commodityx86
processors. Both instruction fetch and data access are
eventually achieved through ITLB and DTLB, respectively.
The separation of ITLB and DTLB is intended to achieve
better performance as instruction and data typically have
different locality properties. In Algorithm 1, we show how
this split-memory can be realized.

Basically, the algorithm invalidates the previous ITLB
entry (this is achieved by the step 1) that points to the
original code page and reloads it with the new shadow
code page. The code in the shadow page implements the
DKSM attack (by redirecting certain member fields of
kernel data structures to some other locations). For the
purpose of TLB poisoning, the shadow code page will not
immediately contain a five-bytejmp (for the purpose of
detouring the execution to the DKSM code as in the direct
mode). Instead, it will contain another specialjmp which
returns back to the insertion point where the Algorithm
1 is executed. This specialjmp is intended to facilitate
the step 4 in two ways: Firstly, it causes this page to
be loaded into the ITLB. Secondly, it returns the control
back to the insertion point and resumes the execution to
the redirection code for DKSM. Considering the entries
in the TLB cache could be possibly invalidated by context
switches, the algorithm marks the global bit to prevent this
from happening (step 3).

In the meantime, due to the limited size of ITLB
and DTLB caches, the cached entries, under TLB pres-
sure, could be replaced due to the side-effect of another
unrelated memory access. In order to have a reliable
split-memory scheme, there is a need to re-populate the
invalidated entries in the cache after they are replaced.
Note a persistent TLB cache is possible if it is managed by
software. However, if managed by hardware, this becomes
much more challenging. The Shadow Walker rootkit [22]

overcomes this challenge by leveraging certain protection
bits associated with page table entries. In particular, by
marking the original code pages not executable (NX), when
they are to be executed, a page fault occurs, and a small
piece of logic can execute to dictate the values that are
supposed to be seen by whatever is accessing these pages.
More specifically, if the pages are simply read or written
to, these operations go through to the page containing
the original values with no interception; however, for an
instruction fetch, the ITLB will need to be reloaded to point
to the memory page with the DKSM code. Therefore, one
last important thing to handle is to re-gain the control to
reload flushed TLB entries.

There are two main approaches to achieve that: (1)
The first approach can directly modify the IDT (Interrupt
Descriptor Table) to hijack the page fault handling routine.
One limitation of this approach, however, is that the intro-
spection tools can be enhanced to spot the modification of
the IDT table. To mitigate that, we can choose to hijack
a function pointer that is located in the execution path of
page fault handling. The misuse of such a function pointer
is significantly more stealthier than the direct modification
of IDT (that has well-known values). (2) The second
approach involves the debug registers (DRs). Specifically,
one can use them to regain the control by placing break-
points either on the page fault handling routine or those
instructions that access the kernel data of interest. By
doing so, we can minimize the changes to the system.
The downsides, however, include the limited availability of
DRs (which can greatly restrict the scale of launching the
DKSM attack) and the possibility that the contents of these
DRs can be inspected as well to detect such anomalies.

C. Return Scheme

Our next strategy is to apply the notion of return-
oriented programming [7], [12], [20] that can effectively
bypass existing code integrity protection schemes. As
pointed out earlier, thedirect schemeneeds to modify
existing kernel code and the modification will likely be
trapped by code integrity protection schemes. Similarly,
the shadow schemerequires the execution of attack code
in the kernel space and the execution of unverified attack
code, though common in compromised systems that are
being introspected, will be prevented if the kernel code
integrity is strictly enforced. To bypass these protection
mechanisms, we naturally turn to return-oriented program-
ming so that the proposed DKSM attacks become harder
to defeat.

Note that in our prototype, we did not implement this
return scheme. The reasons are that return-oriented pro-
gramming can achieve Turing-completeness in performing
malicious computation and existing research efforts have
already successfully developed a return-oriented program-
ming compiler [7], [12], [20]. Considering the main pur-

pose of this work is to expose the fundamental limitation
of existing introspection techniques, we use a loadable
kernel module to implement the other two modes. In this
way, we can still model the same level of access a DKSM
attack would have, if implemented based on return-oriented
programming.

IV. Prototyping and Evaluation

We have implemented a proof-of-concept DKSM pro-
totype and used it to attack a Ubuntu9.04 system to
demonstrate its capability to control the external view
presented to introspection tools (e.g. XenAccess) as well as
the internal view presented to various system management
routines (e.g., top, ps, lsmod, and netstat). In the following,
we present our prototyping details, three representative
case studies, and related performance evaluation.

A. Prototyping Details & Case Studies

In our prototype, we first prepare all kernel data struc-
ture manipulation routines in a loadable kernel module
(LKM). To launch the DKSM attack, we either directly
modify the existing kernel code (the direct mode) or
indirectly hijack the control flow (the shadow mode) and
then invoke these routines in the LKM to manipulate kernel
data structures. For simplicity, we focus our DKSM attack
on redirection-based semantics manipulation in the context
of direct mode.2

Before launching a DKSM attack, there are two ques-
tions which must be answered. (1) The first one is “what
are the specific kernel data structures which should be
chosen for the DKSM attack?” To answer this question,
we select important kernel objects which are frequently
attacked by existing kernel rootkits. Consequently, our
goal here is to misrepresent the information about running
processes, loaded kernel modules, and active network
connections. (2) Once these kernel objects are determined,
a follow-up question is “what are the related instructions
that will access these data structures?” There are two
complementary approaches. The first one is to analyze
the kernel source code and identify those instructions that
will access the kernel objects of interest. The second
one is to profile the execution of OS kernel and locate
every instruction that touches the chosen kernel objects.
In our prototype, considering the convenience of system
development and our past experience, we take the second
approach. Specifically, we modified the open-source whole

2For the TLB-based shadow scheme, our prototyping experience
indicates there exists a subtle architectural issue that affects the TLB
flushing. Specifically, there exist a vast variety of virtualmachine monitor
implementations and running modes. Some of them will involve a world
switch (from the guest to the virtual machine monitor and vice versa) in
the process of re-gaining the control (Section III). A worldswitch for
non-para-virtualized guests will flush the TLB, leading to unnecessary
performance penalty. Fortunately, it is being avoided in recent processors
with tagged-TLB support [4].

system emulator, QEMU0.9.1. By logging every mem-
ory access, the modified QEMU is used to show those
instructions that access a given list of memory locations
(containing the kernel objects of interest). We also point
out that debug registers (DRs) can be used to profile these
locations in a production system, avoiding the need of a
modified QEMU.

After identifying the relevant instructions, we then
launch the DKSM attack by loading a kernel module.
When being loaded, the module initializes a shadow
copy of the affected kernel objects and patches all these
instructions in memory to redirect their accesses. With
the redirection, the related memory accesses will go to
the shadow copy instead of the original copy. In the
following, we discuss three representative examples in
detail on how a DKSM attack can be used to manipulate
running processes, loaded modules, and active network
connections, respectively.

1) Attack I: Process Manipulation:To manipulate run-
ning processes, we choose one important member field,
i.e., PID, to demonstrate the DKSM attack. As described
earlier, we first need to find out those memory addresses
that contain the PID field and then profile the guest
execution to locate all kernel instructions that access the
PID field. At first, we thought this could be challenging
due to the dynamic nature of running processes (as new
ones will be dynamically created). Fortunately, it turns
out that the kernel treats its access of the PID field in
a generic way. Specifically, if we just profile the memory
access for one particular PID, the identified instructions
will be applicable for all PIDs in the system. This is not
surprising since commodity OS kernels need to support
dynamic kernel objects. As a result, there always exist a
1 : N mapping from the kernel instructions to the accessed
kernel objects. For our redirection purposes, there is a need
to maintain a1 : 1 mapping between the original PID
and the corresponding shadow copy. Accordingly, when
shadowing the related PIDs, we will have to emulate the
original kernel instruction, derive the exact PID that is
being accessed, lookup the1 : 1 mapping, and then redirect
the memory access.

When an external introspection tool applies the original
data structure as a template to infer the guest state, it
will be accessing the original memory locations. However,
these locations areno longerused by the kernel. In other
words, if we simply write an arbitrary number value
(e.g., 42) into the original PID field, from that particular
moment, introspection will report the PID as 42.

As a running example, the PID field of theinit
process (PID 1) on our Ubuntu 9.04 install is lo-
cated at0xdf8301ec. This memory address is derived
from the task struct structure of theinit process (lo-
cated at0xdf830000) and the offset of the PID field
in task struct (0x1ec). With this address, we then exer-

(a) An inside view of running processes fromps (b) An external view of running processes fromXenAccess

Fig. 2. A DKSM attack against running processes

cise possible code paths in the profiler (e.g., by running
commands such asps, top, cat, /proc/1/sched, and so
on) to identify related PID-accessing instructions. The
profiling results indicate that there only exist two lo-
cations: 0xc01bf798 (in kernel functionnext tgid) and
0xc0117a52 (in proc schedshow task). With the help of
a disassembler, these two instructions are presented as
follows:
0xc01bf798: 8b 80 ec 01 00 00 mov 0x1ec(%eax),%eax
0xc0117a52: 8b 81 ec 01 00 00 mov 0x1ec(%ecx),%eax

After identifying these two instructions, we can then
load the LKM to create a shadow copy of the PIDs of
all running processes and then replace these two with a
jmp to our instrumentation code. Our instrumentation code
essentially performs the memory access redirection from
the original memory location to the corresponding shadow
copy. During our prototyping, we experienced several
caveats when these instructions were being patched. For
example, the instruction that accesses the kernel object of
interest may be less than five bytes in length, thus it is
unable to accommodate the five-byte-longjmp instruction.
As a result, subsequent instructions will need to be over-
written, which means our instrumentation code will have
to compensate for the additionally overwritten instructions
as a part of the instrumentation. After that, we need to
seamlessly return the execution to where it is jumped from.

In our experiment, after loading the DKSM module to
launch the attack, we run the commandps -A to get an
internal viewof running processes and use theprocess-list
command that comes with XenAccess to obtain anexternal
view. For comparison, the results are shown in Figures
2(a) and 2(b), respectively. We point out that the distorted
information shown in Figure 2(b) “dramatizes” the fact that
the external view of the VM can be arbitrarily changed
and in practice, the attacker can easily create a more
realistic yet deceptive view. In particular, the attacker can
distort both internal and external views while maintaining

their consistency (thus avoiding the view comparison-
based detection [13]). An astute reader may also observe
that the PIDs in Figure 2(b) actually follow the Fibonacci
sequence, showing the fact that there is no synthetic
limitation (other than the actual 32-bit width restriction)
when launching the DKSM attack against the 32-bit PID
field of the task. Our experience confirms that similar steps
can be used to handle the redirection of almost all other
data types.

2) Attack II: Manipulating Loaded Modules:In this
experiment, we apply the DKSM attack to manipulate
the views about loaded kernel modules. Specifically, we
choose the module name field to demonstrate our attack.

Redirecting a name string is similar to, but slightly
different from, the redirection of non-string types. In
particular, most of our previous steps remain the same. We
first find out the memory address that contains the module
names. Using a kernel module8139cp as an example,
its name field on our system is located at0xe084d5cc.
Similarly, this memory address is derived from the module
structure for the8139cpmodule (located at0xe084d5c0)
combined with the offset of the name field in the module
structure (0xc). Just as we did previously, we exercised
possible code paths in the profiler (e.g., by running com-
mands such aslsmod and cat /proc/modules) to identify
related module-name-accessing instructions. The profiling
results indicate that there only exists one instruction at
0xc0248131 (in the string routine):

0xc0248131: 89 e5 mov %esp,%ebp

We can see that thestring function is responsible for
the module name access. However, if we overwrite this
function, we would intercept the checking of every single
string that the kernel deals with. This is certainly not a
tenable and efficient solution. Instead, what needs to occur
is the movement of our redirection to one semantic level
higher and for us to identify the corresponding call sites
that invoke thestring routine. As a result, we identify

(a) An inside view of loaded modules from the
first run of lsmodbefore launching the attack

(b) An inside view of loaded modules from the
second run oflsmodafter launching the attack

(c) An external view of loaded modules from
XenAccessafter launching the attack

Fig. 3. A DKSM attack against loaded modules

the m show routine. The related instructions are located
at 0xc013c542 (shown below). By overriding the value of
eax, we can successfully control how the module names
are eventually printed.

0xc013c542: 83 c0 08 add $0x8,%eax
0xc013c545: 89 44 24 08 mov %eax,0x8(%esp)

If we look back at the previous attack on running
processes, there are two instructions (at0xc0249959 and
0xc02481bc) that access the process name field. They
appear in frequently used routines,strnlen and string.
Interestingly, by moving our redirection one level higher,
we identify a common instruction (add $0x2d4,%edx)
at 0xc0185651 in the get task comm function. In our
instrumentation, we simply examine the current content in
edx, use it to locate the corresponding shadow string, and
reload it with the shadow copy. By doing so, we can not
only handle both instructions, but also avoid redirecting an
instruction that occurs in a very frequently executed loop.

0xc0249959: 80 38 00 cmpb $0x0,(%eax)
0xc02481bc: 0f b6 04 13 movzbl (%ebx,%edx,1),%eax

To demonstrate our attack, we first run the command
lsmod to get an authenticinternal view of loaded mod-
ules. Then we load the DKSM module, re-run the same
command to get a manipulatedinternal view. After that,
we also use themodule-list command that comes with
XenAccess to obtain anexternal view. The results are
shown in Figures 3(a), 3(b), and 3(c), respectively. From
the figure, our attack module successfully controls both
internal and external views. It is important to note that a
number of introspection-based tools [11], [13] have been
developed to compare its external view with an internal
view and any discrepancy will indicate the presence of a
hidden malware. The coordinated control of both internal
and external views is needed by DKSM to foil such a
cross-view comparison.

3) Attack III: Manipulating Network Connections:
Next, we present our DKSM attack against network con-
nections. Note that the manipulation of network connection
information is remarkably similar to what we have dis-
cussed so far. Particularly, the redirection of port numbers
is almost the same as the redirection of the process’
PID in Section IV-A1. The manipulation of the name of
a running process which owns a network connection is
extremely similar to the process/module name redirection
in Section IV-A2. This similarity highlights an intriguing
aspect of any DKSM attack: For different kernel objects

that are being affected by the attack, though the underlying
semantics might be vastly different, they share a limited
set of common attack mechanisms. In the following, we
only present an abbreviated description of this experiment.

In our experiment, we choose to hide an active net-
work connection as the demonstration. We found that the
tcp4 seq showfunction is the one that iterates across the
list of network connections. Therefore, a simple attack
on the iteration code is designed to achieve the intended
results. After the attack, we ran thenetstatcommand to
list the TCP connections in the LISTEN state and wrote
a network-listutility based on XenAccess to list the TCP
ports as well as the applications that own these ports. The
results are shown in Figures 4(a) and 4(b), respectively. As
we can see, one active TCP port, i.e., 80, is hidden from
the external view.

B. Performance

DKSM DKSM
(NO) (YES) Overhead

Apache 911.341 886.483 2.7%
(#reqs/sec)

Kernel 247.788 248.777 0.4% (User)
Compilation 189.835 194.556 2.5% (System)

(seconds) 449.93 452.35 0.5% (Total)

TABLE I. Summary of experiments

To evaluate the performance impact from the proposed
DKSM attack, we use a default Ubuntu 9.04 32-bit install
on a standard Dell Optiplex 760 desktop machine. The
desktop has 4GB of memory and an Intel Core2 Quad
CPU Q9550 processor, running at 2.83GHz. We choose
two performance measurement tasks: the Apache HTTP
throughput benchmarking tool and kernel compilation. Our
HTTP benchmarks were performed with a one minute du-
ration, at a concurrency level of4. The kernel compilation
runs consist of compiling the kernel ten times and taking
the average of the reported time. Each measurement task
is performed twice: one with DKSM disabled and another
enabled. When enabled, the DKSM attack achieves the
manipulation of running processes, loaded modules, and
active network connections (Section IV-A). We summarize
our results in Table I.

From the table, we can see the DKSM-infected system
causes a 2.7% slowdown in the measured HTTP through-
put. In our experiments, we noticed up to a 5% variation

(a) An inside view of network connections fromnetstat (b) An external view of network connections fromXenAccess

Fig. 4. A DKSM attack against network connections

simply across multiple sets of runs. For the kernel compi-
lation, the overhead of the total elapsed time to compile
the kernel is 0.5%. Again, a higher variation was noticed
across multiple compilation runs, leading us to firmly
believe that this overhead is statistically insignificant.

V. Discussion
In this section, we re-visit the nature of the proposed

DKSM attack and aim to better understand the limitations
of existing introspection tools. This analysis is necessary
as it can lead to countermeasures that can be potentially
deployed to defend against DKSM and insights for the de-
velopment of next-generation, reliable introspection tools.

In the various instantiations of DKSM (Section II), we
can see that the success of DKSM is directly proportional
to its scope and capability of kernel data access. This
ratio directly translates into the efficacy of the attack. For
example, if DKSM was unable to redirect or manipulate
a particular field or data structure, then it would be much
harder to attack such kernel data, and consequently it might
be unable to foil various types of introspection analysis.
This results in two potential limitations of DKSM which
can be leveraged for defense purposes.

Unmanipulatable structures The first one involves
the inability of DKSM to redirect certain structures that are
specified and used by the CPU directly. For example, the
global descriptor table (GDT), the interrupt descriptor table
(IDT), the task state segment (TSS), and so forth. These
structures, once loaded into the CPU cannot be changed
implicitly. To change them, an explicit reload operation
is necessary. For example, thelidt instruction will reload
the IDTR to a given memory address. Fortunately, these
malicious reloads can be easily detected and defeated.
Similarly, for an introspection tool, it is important to start
from the unmanipulatable data structure as a base and then
gradually expand from it to reliably infer other guest states.

Untamperable control flow To influence the kernel’s
interpretation of a particular kernel object, DKSM needs to
maintain its ownactual view on how the object should be
accessed. To do that, there is a need for DKSM to hijack
the control flow, either by directly modifying existing
kernel code (the direct mode) or indirectly tampering with
a function pointer (the shadow mode) or a return address
(the return mode). As such, if a full kernel control-flow
integrity (CFI) guarantee can be made about a system,
such a guarantee will disallow DKSM to execute in the

first place. Unfortunately, there are no working systems
[17] developed yet to guarantee the kernel CFI, due to
the fact that the enforcement of kernel CFI is much
more challenging than the user-level counterparts [3] (e.g.,
because of the support of multi-tasking and asynchronous
interrupts in commodity OS kernel design). Alternatively,a
weaker form of semantic integrity [5] can be used to detect
the violation of kernel data invariants. Recent efforts [6]
have made encouraging progress toward this direction by
inferring these invariants.

More fundamentally, if we re-examine the nature of
introspection, an external introspection tool aims to an-
alyze a guest which is not trusted. However, it still de-
pends on the guest-maintained memory state and expects
the untrusted guest to respect the kernel data structure
templates, therefore leading to atrust inversionproblem.
This problem fundamentally explains the effectiveness
of our attack and equivalently the fragility of existing
introspection solutions. For the very same reason, we
also believe that existing memory snapshot-based memory
analysis tools and forensics systems [1], [8], [10] share the
same limitation.

From another perspective, in this paper, we have so far
only explored the spatial aspect of DKSM (i.e., the layout
of a data structure), not the temporal aspect. Consider-
ing the dynamics of a guest OS, an introspection-based
analysis of a running guest typically requires a period
of time to complete and is thus temporally limited in its
capability to obtain a consistent view. To partially address
that, some introspection tools such as VIX [16] choose
to pause guest execution while performing introspection
activities. However, this adversely perturbs the execution of
the guest VM. Further, the asynchronous and independent
nature of external introspection still implies it may not be
mutually excluded when the guest is running in a critical
section, resulting in an inconsistent view. It is part of our
future work to assess the extent and scale of this limitation.

VI. Related Work
VM Introspection can be executed in two different

ways. The first one involves the introspection completely
running outside of the guest. Several examples of the
external approach exist [2], [5], [11], [13], [14], [16],
[23]. This approach benefits from a much stronger level
of isolation, and thus protection. Unfortunately, because
this introspection is performed outside of the guest, its
view is also an external one and cannot benefit from the

implicit advantages afforded to the internal view. Namely,
an external view has to bridge a significant semantic gap
[9]. This results in a much more complex implementation
of introspection techniques with its VMM-level view of the
guest. Several systems such as Livewire [11], VMwatcher
[13], and VMwall [23] have to reconstruct the semantics of
what is executing within the guest and thus are vulnerable
to the proposed DKSM attack.

The second approach to VM introspection is to take
a hybrid approach by having two entities, one inside and
another outside. The goal here is to obtain the advantages
of having a semantic-rich view of the guest with the help
of an internal entity while still protecting the internal
entity from being corrupted. SIM [21] is a recent research
system that is moving towards this direction. However,
in its current implementation, the current internal agent,
though running inside the guest context, still suffers from
the semantic gap as it is designed not to rely on any
existing kernel code. As such, it is still vulnerable to the
proposed DKSM attack. From another perspective, as it is
running inside the guest, it has unique advantages that can
be potentially leveraged to mitigate the DKSM attack. We
plan to explore this possibility in our future work.

VII. Conclusion
In this paper, we have shown that current VM introspec-

tion techniques are subject to an attack called DKSM. By
violating their basic assumption about the use of underly-
ing kernel data structures, a DKSM attack can change the
syntax and semantics of kernel data structures in a running
guest. We have developed a proof-of-concept prototype
and used it to manipulate important system information
(e.g., running processes, loaded kernel modules, and ac-
tive network connections) to successfully foil existing
introspection tools into reporting false information. By
exposing this fundamental limitation, we aim to examine
the challenges as well as opportunities for the development
of next-generation, reliable VM introspection techniques.

Acknowledgments The authors would like to thank the
reviewers for their insightful comments. This work was
supported in part by the US AFRL grant FA8750-09-1-
0224 and the US NSF grants 0852131, 0855141, 0855297,
and 0952640. Any opinions and findings expressed in this
material are those of the authors and do not necessarily
reflect the views of the AFRL and the NSF.

References

[1] Volatile systems. https://www.volatilesystems.com.
[2] Xenaccess library. http://code.google.com/p/xenaccess/.
[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

flow integrity principles, implementations, and applications.
ACM Trans. Inf. Syst. Secur., 13(1):1–40, 2009.

[4] Advanced Micro Devices.AMD64 Architecture Program-
mer’s Manual Volume 3: General-Purpose and System In-
structions, 3.14 edition, September 2007.

[5] F. Baiardi, D. Cilea, D. Sgandurra, and F. Ceccarelli. Mea-
suring semantic integrity for remote attestation. InProc. of
the 2nd Conference on Trusted Computing, 2009.

[6] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference
and enforcement of kernel data structure invariants. InProc.
of the 2008 ACSAC, pages 77–86, Washington, DC, 2008.

[7] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
Good Instructions Go Bad: Generalizing Return-Oriented
Programming to RISC. InProc. of the 15th ACM CCS,
2008.

[8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping Kernel Objects to Enable Systematic
Integrity Checking. InProc. of the 16th ACM CCS, 2009.

[9] P. M. Chen and B. D. Noble. When virtual is better than
real. In Proc. of the 8th HotOS Workshop, 2001.

[10] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.
Robust Signatures for Kernel Data Structures. InProc. of
the 16th ACM CCS, pages 566–577, 2009.

[11] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In
Proc. of the 2003 NDSS, February 2003.

[12] R. Hund, T. Holz, and F. Freiling. Return-Oriented Rootkits:
Bypasssing Kernel Code Integrity Protection Mechanisms.
In Proc. of the 18th USENIX Security Symposium, 2009.

[13] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detec-
tion through VMM-based ”Out-of-the-Box” Semantic View
Reconstruction. InProc. of the 14th ACM CCS, 2007.

[14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Antfarm: Tracking Processes in a Virtual Machine
Environment. InProc. of the 2006 USENIX Annual Techni-
cal Conference, Berkeley, CA, 2006.

[15] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
Support for Identifying Covertly Executing Binaries. In
Proc. of the 17th conference on Security symposium, 2008.

[16] K. Nance, M. Bishop, and B. Hay. Virtual Machine
Introspection: Observation or Interference?IEEE Security
and Privacy, 6(5):32–37, 2008.

[17] N. L. Petroni, Jr. and M. Hicks. Automated Detection of
Persistent Kernel Control-Flow Attacks. InProc. of the 14th
ACM CCS, 2007.

[18] R. Riley, X. Jiang, and D. Xu. An Architectural Approach
to Preventing Code Injection Attacks. InProc. of the 37th
DSN, pages 30–40, 2007.

[19] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing.
In Proc. of the 11th RAID, 2008.

[20] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In
Proc. of the 14th ACM CCS. ACM, 2007.

[21] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM
Monitoring using Hardware Virtualization. InProc. of the
16th ACM CCS, 2009.

[22] S. Sparks and J. Butler. Shadow Walker: Raising the Bar
For Windows Rootkit Detection.Phrack, 11(63), 2005.

[23] A. Srivastava and J. Giffin. Tamper-Resistant, Application-
Aware Blocking of Malicious Network Connections. In
Proc. of the 11th RAID, Berlin, Heidelberg, 2008.

[24] P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-
Assisted Circumvention of Self-Hashing Software Tam-
per Resistance.IEEE Trans. Dependable Secur. Comput.,
2(2):82–92, 2005.

[25] VMware. VMware VMsafe Security Technology.
http://www.vmware.com/technical-resources/security/
vmsafe.html.

