Countering Persistent Kernel Rootkits Through
Systematic Hook Discovery

ZhiWang, Xuxian Jiang Weidong Cui Xinyuan Wang
North Carolina State University Microsoft Research George Masowdusity

Abstract. Kernel rootkits, as one of the most elusive types of malware, pose
significant challenges for investigation and defense. Among the mtetlecare
persistent kernel rootkits special type of kernel rootkits that implant persistent
kernel hooks to tamper with the kernel execution to hide their presead®fénd
against them, an effective approach is to first identify those kerredshand then
protect them from being manipulated by these rootkits. In this paper, ous fan
the first step by proposing a systematic approach to identify those Kevoks.
Our approach is based on two key observations: First, rootkits by desiign
attempt to hide its presence froatl running rootkit-detection software includ-
ing various system utility programs (e.@s andls). Second, to manipulate OS
kernel control-flows, persistent kernel rootkits by their nature will implaernel
hooks on the corresponding kernel-side execution paths invoked tsetheity
programs. In other words, for any persistent kernel rootkit, eitherdetectable
by a security program or it has to tamper with one of the kernel hooks®n th
corresponding kernel-side execution path(s) of the security progkara result,
given an authentic security program, wely need to monitor and analyze its
kernel-side execution paths to identify the related set of kernel hooksahia be
potentially hijacked for evasion. We have built a proof-of-conceptesyscalled
HookMap and evaluated it with a number of Linux utility programs sudbs,qss,
andnetstatin RedHat Fedora Core 5. Our system found that there 8Xikernel
hooks in the kernel-side execution pathl®that can be potentially hijacked for
manipulation (e.g., for hiding files). Similarly, there &#& kernel hooks foips
and 51 kernel hooks fometstat which can be respectively hooked for hiding
processes and network activities. A manual analysis of eight redthnaotkits
shows that our identified kernel hooks cover all those used in them.

1 Introduction

Rootkits have been increasingly adopted by general malemairgruders to hide their
presence on or prolong their control of compromised machifre particular, kernel
rootkits, with the unique capability of directly subvedithe victim operating system
(0OS) kernel, have been frequently leveraged to expand thie IS functionalities
with additional (illicit) ones, such as providing unautized system backdoor access,
gathering personal information (e.g., user keystrokesjyalating the privilege of a
malicious process, as well as neutralizing defense mesimsndn the target system.
In this paper, we focus on a special type of kernel rootkitiedgersistent kernel
rootkits Instead of referring to those rootkits that are stored asigtent disk files and
will survive machine reboots, the notion of persistent kémootkits here (inherited
from [14]) represents those rootkits that will make peesistmodifications to run-
time OS kernel control-flow, so that normal kernel executidlhbe somehow hijacked



to provide illicit rootkit functionality. For example, many existing rootkits [1, 2] will
modify the system call table to hijack the kernel-level cohtiow. This type of rootkits
is of special interest to us for a number of reasons. Firsgcant survey [14] of
both Windows and Linux kernel rootkits shows ti9&f% of them are persistent kernel
rootkits and they will make persistent control-flow modifioas. Second, by running
inside the OS kernel, these rootkits have the highest pgeilon the system, making
them very hard to be detected or removed. In fact, a recenttr§}j shows that, once
a system is infected by these rootkits, the best way to redowa them is to re-install
the OS image. Third, by directly making control-flow modificas, persistent kernel
rootkits provide a convenient way to add a rich set of malisioootkit functionalities.

On the defensive side, one essential step to effectivelyrdidfig against persistent
kernel rootkits is to identify those hooking points (or kelrooks) that are used by
rootkits to regain kernel execution control and then infiittsorts of manipulations
to cloak their presence. The identification of these keroekks is useful for not only
understanding the hooking mechanism [23] used by roottitsalso providing better
protection of kernel integrity [10, 14, 20]. For exampleistixg anti-rootkit tools such
as [8,16,17] all can be benefited because they require tbe kmbwledge of those
kernel hooks to detect the rootkit presence.

To this end, a number of approaches [14, 23] have been prdpése example,
SBCFI [14] analyzes the Linux kernel source code and buildgpproximation of
kernel control-flow graph that will be followed at run-timg b legitimate kernel. Un-
fortunately, due to the lack of dynamic run-time informatid is only able to achieve
an approximation of kernel control-flow graph. From anotbenspective, HookFinder
[23] is developed to automatically analyze a given malwarage and identify those
hooks that are being used by the provided malware. More fépaly, HookFinder
considers any changes made by the malware as tainted amphise®a specific change
as a hooking point if it eventually redirects the executionteol to the tainted attack
code. Though effective in identifying specific hooks usedthyy malware, it cannot
discover other hooks that can be equally hijacked but arbe&iog used by the malware.

In this paper, we present a systematic approach that, giveotkit-detection pro-
gram, discovers those related kernel hooks that could mpally used by persistent
kernel rootkits to evade from it. Our approach is motivatgthie following observation:
To hide its presence, a persistent kernel rootkit by desighhide from the given
security program and the hiding is achieved by implantingi&khooks in a number
of strategic locations within the kernel-side executiothpaof the security program.
In other words, for any persistent kernel rootkit, eithesitletectable by the security
program or it has to tamper with one of the kernel hooks. Tegefor the purpose of
detecting persistent kernel rootkits, it is sufficient tstjidentify all kernel hooks in the
kernel-side execution paths of a given rootkit-detectimgpam.

To identify hooks in the kernel-side execution of a prograve, face three main
challenges: (1) accurately identifying the right kernielesexecution path for monitor-
ing; (2) obtaining the relevant run-time context infornoati(e.g., the ongoing system
call and specific kernel functions) with respect to the ideat execution path; (3)

1 For other types of kernel rootkits that may attack kernel data, thepatrthe focus of this
paper and we plan to explore them as future work.



uncovering the kernel hooks in the execution path and extiaassociated semantic
definition. To effectively address the first two challenges developed a context-aware
kernel execution monitor and the details will be describe8éction 3.1. For the third
one, we have built a kernel hook identifier (Section 3.2) thidltfirst locate the run-
time virtual address of an uncovered kernel hook and theflopeIOS-aware semantics
resolution to reveal a meaningful definition of the relatediel object or variable.

We have developed a prototype called HookMap on top of a soétveased QEMU
virtual machine implementation [6]. It is appropriate faotmain reasons: First, software-
based virtualization allows to conveniently support corditpoOSes as guest virtual
machines (VMs). And more importantly, given a selected etien path, the virtual-
ization layer can be extended to provide the unique capaliiliinstrumenting and
recording its execution without affecting its functiotgliSecond, since we are dealing
with a legitimate OS kernel in a clean system, not with a ribatkmple that may
detect the VM environment and alter its behavior accordirthle use of virtualization
software will not affect the results in identifying kerneddks.

To evaluate the effectiveness of our approach, we ran a ldl@fatallation of Red-
Hat Fedora Core 5 (with Linux kernel 2.6.15) in our systenstéad of using any
commercial rootkit-detection software, we chose to teshwhree utility programs,
Is, ps and netstatsince they are often attacked by rootkits to hide files, psses or
network connections. By monitoring their kernel-side exems, our system was able
to accurately identify their execution contexts, discaaktiencountered kernel hooks,
and then resolve their semantic definitions. In particudar, system identified5, 85,
and 51 kernel hooks, folls, ps and netstat respectively. To empirically evaluate the
completeness of identified kernel hooks, we performed a alamalysis of eight real-
world kernel rootkits and found that the kernel hooks emetbhy these rootkits are
only a small subset of our identified hooks.

The rest of the paper is structured as follows: Section »éhices the background
on rootkit hooking mechanisms. Section 3 gives an overviesuoapproach, followed
by the description of HookMap implementation in Section dct®n 5 presents the
experimental results and Section 6 discusses some ligrigatif the proposed approach.
Finally, Section 7 surveys related work and Section 8 catedithe paper.

2 Background

In this section, we introduce the hooking mechanisms tleabaing used by persistent
kernel rootkits and define a number of terms that will be ukealghout the paper.
There exist two main types of kernel hooksde hooksinddata hooksTo implant
a code hook, a kernel rootkit typically modifies the kernek &0 that the execution
of the affected text will be directly hijacked. However, @inthe kernel text section is
usually static and can be marked as read-only (or not wejalhe way to implant
the code hook can be easily detected. Because of that, reatikiors are now more
inclined to implant data hooks at a number of strategic mgrtamations in the kernel
space. Data hooks are usually a part of kernel data thatterpiated as the destination
addresses in control-flow transition instructions suctedisandjmp. A typical example
of kernel data hook is the system call table that containatitzesses to a number of
specific system call service routines (egysopen). In addition, many data hooks may
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v t $OX80 | REPLACE(write);
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Userland -2 XERL oL ! REPLACE(getdents);
REPLACE(KiIll);

; l REPLACE(fork);
KO R e e REPLACE(clone);
| ENTRY(system_call) i REPLACE(close);
pushl %eax # eax: syscall number | REPLACE(open);

SAVE_ALL | REPLACE(stat);

call *0xc030f960(,%eax,4) # call sys_call_table[eax] R__E.PLACEUStat)?

A HAP instruction module_init(adore_init);

(a) The system call dispatcher on Linux (b) The Linux adore rootkit

Fig. 1. A HAP instruction example inside the Linux system call dispatcher — the izésddernel
data hooks have been attacked by various rootkits, including the Linue aolatkit [1].

contain dynamic content as they are mainly used to hold thetinbe addresses of
kernel functions and can be later updated because of thangpadunloading of kernel
modules. For ease of presentation, we refer to the contwiflansition instructions
(i.e., call or conditional or un-conditional jumps) whose destinataliresses are not
hard-coded constants heok attach point§HAPS).

In Figure 1, we show an HAP example with associated kernel tabks, i.e.,
the system call table, which is commonly attacked by kerpetkits. In particular,
Figure 1(a) shows the normal system call dispatcher on Limbite Figure 1(b) con-
tains the code snippet of a Linux rootkit — adore [1]. From tleatrol-flow transfer
instruction —call *0xc030f960(,%eax,4)in Figure 1(a), we can tell the existence of
a hook attach point inside the system call dispatcher. litiadd Figure 1(b) reveals
that the adore rootkit will replace a number of system célldantries (as data hooks)
so that it can intervene and manipulate the execution ofetheplaced system calls.
For instance, the code statem®&&EPLACE (writeyewrites the system call table entry
syscall_table[4] to intercept thesyswrite routine before its execution. The correspond-
ing run-time memory locatiofzc030970 and the associated semantic definition of
syscall_table[4] will be identified as a data hook. More specifically, the mgmoca-
tion 02030970 is calculated afxc030£960 + %eax x 4 where0zc030960 is the
base address of system call table &teha: = 4 is the actual number for the specific
syswrite system call. We defer an in-depth analysis of this partioudatkit in Section
5.2.

Meanwhile, as mentioned earlier, there are a number of itsatkat will replace
specific instructions (as code hooks) in the system call learfebr instance, the SucKit
[19] rootkit will prepare its own version of the system calbte and then change the
dispatcher so that it will invoke system call routines pepedl in its own system call
table. Using Figure 1(a) as an example, the rootkit will mythie control-flow transfer
instruction or more specifically the base address of theesysiall tabledxc030 960
to point to a rootkit-controlled system call table. Considg that (1) implanting a code

2 This instruction is in the standard AT&T assembly syntax, meaning that it \aitisfier its
execution to another memory location pointed tdby030 f960 + %eaz X 4.
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hook will inflict kernel code modifications, which can be dasietected, and (2) every
kernel instruction could be potentially overwritten fordeohook purposes, we in this
paper focus on the identification of kernel data hooks. Witlenbiguity, we use the
term kernel hooks to represent kernel data hooks througheuygaper.

Finally, we point out that kernel hooks are elusive to idgritecause they can be
widely scattered across the kernel space and rootkit asik®mp surprising us in using
new kernel hooks for rootkit purposes [7, 18]. In fact, rdaesearch results [23] show
that some stealth rootkits use previously unknown kernekbdo evade all existing
security programs for rootkit detection. In this paper, goal is to systematically
discover all kernel hooks that can be used by persistenekeontkits to tamper with
and thus hide from a given security program.

3 System Design

The intuition behind our approach is straightforward bé¢etive: a rootkit by nature
is programmed to hide itself especially from various sdgyiograms including those
widely-used system utility programs suchgssls, andnetstat As such for an infected
OS kernel, the provided kernel service (e.g., handling &iquéar system call) to any
request from these security software is likely manipulafdte manipulation typically
comes from the installation of kernel hooks at strategi@afions somewherwithin
the corresponding kernel-side execution path of theseitgsoftware. Based on this
insight, if we can develop a system to comprehensively mortite kernel-side exe-
cution of the same set of security programs within a cleategyswe can use it to
exhaustively uncover all kernel hooks related to the exeoytath being monitored.
Figure 2 shows an architectural overview of our system with imain components:
context-aware execution monitandkernel hook identifierln the following, we will
describe these two components in detail.

3.1 Context-Aware Execution Monitor

As mentioned earlier, our system is built on top of an opaira® virtual machine
implementation, which brings the convenient support of omdity OSes as guest
VMs. In addition, for a running VM, theontext-aware execution monit@ further
designed to monitor the internal process events includangpus system calls made by



running processes. As suggested by the aforementioneghtngie need to only capture
those kernel events related to security software that isingrinside the VM. Note that
the main purpose of monitoring these events is to underskandight execution context
inside the kernel (e.g., “which process is making the systeli?”). With that, we can
then accurately instrument and record all executed kenséluctions that are relevant
to the chosen security software.

However, a challenging part is that modern OS kernels greathplicate the cap-
ture and interpretation of execution contexts with theadtrction of “out of order” ex-
ecution (mainly for improving system concurrency and perfance reasons). The “out
of order” execution means that the kernel-side executioangfprocess can be asyn-
chronously interrupted to handle an incoming interruptiessj or temporarily context-
switched out for the execution of another unrelated proddstice that the “out of
order” execution is considered essential in modern OSehémupport of multi-tasking
and asynchronous interrupt handling.

Fortunately, running a commodity OS as a guest VM providesr@enient way to
capture those external eventthat trigger the “out of order” executions in a guest ker-
nel. For example, if an incoming network packet leads to #rgegation of an interrupt,
the interrupt event needs to be emulated by the underlyiigalimachine monitor and
thus can be intercepted and recorded by our system. Thg p&skis to determine when
the corresponding interrupt handler ends. For that purpes@strument the execution
of iret instruction to trace when the interrupt handler returnsiel@r, additional com-
plexities are introduced for the built-in supportreésted interruptén the modern OS
design where an interrupt request (IRQ) of a higher priasigllowed to preempt IRQs
of a lower priority. For that, we need to maintain a shadowrinipt stack to track the
nested level of an interrupt.

In addition to those external events, the “out of order” exen can also be intro-
duced by some internal events. For example, a running psaoay voluntarily yield
the CPU execution to another process. For that, insteadtafifgg and intercepting all
these internal events, we need to take another approachdnflgiintercepting context
switch events occurred inside the monitored VM. The intetioa of context switch
events requires some knowledge of the OS internals. We asitdbe it in more details
in Section 4.

With the above capabilities, we can choose and run a paati@gcurity program
(or any rootkit-detection tool) inside the monitor. The ritonwill record into a local
trace file a stream of system calls made by the chosen progrdfioaeach system call,
a sequence of kernel instructions executed within the systdl execution path.

3.2 Kernel Hook Identifier

The context-aware execution monitor will collect a list @&rkel instructions that are
sequentially executed when handling a system call request & chosen security
program. Given the collected instructions, the kernel hidektifier component is de-
veloped to identify those HAPs where kernel hooks are ire@I\T he identification of

3 Note that the external events here may also include potential debugtiexsegaused from
hardware-based debugger registers. However, in this work, wetdmuant those related hooks
within the debug interrupt handler.



potential HAPs is relatively straightforward because thsythe control-flow transfer
instructions, namely thosmall or jmp instructions.

Some astute readers may wonder “wouldn’t static analysik ¥ao the very same
need?” By statically analyzing kernel code, it is indeedatd@ of identifying those
HAPs. Unfortunately, it cannot lead to the identificationtloé corresponding kernel
hooks. There are two main reasons: (1) A HAP may use registensemory loca-
tions to resolve the run-time locations of the related kiehoeks. In other words, the
corresponding kernel hook location cannot be determinexligh static analysis. (An
example is already shown in Figure 1(a).) (2) Moreover dhexists another complexity
that is introduced by the loadable kernel module (LKM) sup@o commodity OS
kernels. In particular, when a LKM is loaded into the kern&dt only its loading
location may be different from previous runs, but also thelate text content will be
updated accordingly during the time when the module is bkiaded. This is mainly
due to the existence of certain dependencies of the newdaaddule on other loaded
modules or the main static kernel text. And we cannot resthiese dependencies until
at run-time.

Our analysis shows that for some discovered HAPS, theitirne-execution trace
can readily reveal the locations of associated kernel hdkan example, in the system
call dispatcher shown in Figure 1(a), the HAP instructiaralt *Oxc030f960(,%eax,4)
after the execution, will jump to a function which is pointea from the memory
location: 0030960 + %eax x 4, where the value o¥eaxregister can be known
at run-time. In other words, the result of the calculatioruattime will be counted as a
kernel hook in the related execution path. In addition,eledso exist other HAPs (e.g.,
call *%edx that may directly call registers and reveal nothing abauhk&l hooks but
the destination addresses the execution will transferdottat, we need to start from
the identified HAP and examine in a backwards manner thosgéetkinstructions to
identify the source, which eventually affects the caledatiestination value and will
then be considered a kernel hook. (The detailed discussibberpresented in Section
4.2.) In our analysis, we also encounter some control-flawdfer instructions whose
destination addresses are hardcoded or statically linkeidé machine code. In this
case, both static analysis and dynamic analysis can beaghtify the corresponding
hooks. Note that according to the nature of this type of hqSlkstion 2), we consider
them as code hooks in this paper.

Finally, after identifying those kernel hooks, we also amrésolve the memory
addresses to the corresponding semantic definitions. Bgrile leverage the symbol
information available in the raw kernel text file as well asded LKMs. More specifi-
cally, for main kernel text, we obtain the corresponding bghinformation (e.g., object
names and related memory locations) from the rel@gdtem.mafiile. For kernel
modules, we derive the corresponding symbol informatiomfthe object files (e.g., by
running thenmcommandj. If we use Figure 1(a) as an example, in an execution path
related to thesysopenroutine, the hook’s memory address is calculate@a®30f974
From the symbol information associated with the main keteed, that memory ad-

4 We point out that them command output will be further updated with the run-time loading
address of the corresponding module. For that, we will instrument théuledoading
instructions in the kernel to determine the address at run-time.



dress is occupied by the system call table (with the symbwolasyscall_table) whose
base address @3xc030f960As a result, the corresponding kernel hook is resolved as
syscall_table[5]° where5 is actually the system call number for thgsopenroutine.

4 Implementation

We have built a prototype system called HookMap based on an-spurce QEMU
0.9.0 [6] virtual machine monitor (VMM) implementation. As meatied earlier, we
choose it due to the following considerations: (1) Firsiceiwe are dealing with normal
OS kernels, the VM environment will not affect the resultstle identified kernel
hooks; (2) Second, it contains the implementation of a ketualization technique
called dynamic binary translation [6, 4], which can be legerd and extended to select,
record, and disassemble kernel instruction sequencegesest; (3) Third, upon the
observation of VM-internal process events, we need to enobedwn interpretation
logic to extract related execution context informationeTdpen-source nature of the
VM implementation provides great convenience and flexipilh making our imple-
mentation possible. Also, due to the need of obtaining nme-symbols for semantic
resolution, our current system only supports Linux. Newagss, we point out that
the principle described here should also be applicable fioerosoftware-based VM
implementations (e.g., VMware Workstation [4]) and othemenodity OSes (e.g.,
Windows).

4.1 Context-Aware Execution Logging

One main task in our implementation is that, given an exaguternel instruction, we
need to accurately understand the current execution doswethat we can determine
whether the instruction should be monitored and recordexle Xhat the execution
context here is defined as the system call context the cuiemtel) instruction belongs
to. To achieve that, we have the need of keeping track of teinfie of a system call
event. Fortunately, the lifetime of a system call event idl wiefined as the kernel
accepts only two standard methods in requesting for a systdinservice:int $0x80
and sysenter Since we are running the whole system on top of a binarystasion-
capable VMM, we can conveniently intercept these two irgtoms and then interpret
the associated system call arguments accordingly. Fosplasific task, we leverage an
“out-of-the-box” VM monitoring framework called VMscopé&]] as it already allows
to real-time capture system calls completely outside the VWMat remains to do is to
correlate a system call event and the related system cathrevent to form its lifetime.
Interested readers are referred to [11] for more details.

Meanwhile, we also face another challenge caused by thedfeatder” execution
(Section 3). To address that, we monitor relevant exter@its (e.g., interrupts) as well
as internal events (e.g., context switches) to detectima-thanges of the execution
context. The main goal here is to avoid the introduction @i$es” —unnecessary kernel
executions — into the execution path for monitoring and ysisl Fortunately, with a
software-based VM implementation, we are able to intere#ighese external events

® The calculation is based on the followinzc030£974 — 0zc030£960)/4 = 5, where4
represents the number of bytes occupied by a function pointer.



as they need to be eventually emulated by the underlying VM&vever, an interesting
part is to handle the nested interrupts scenario where aghaterrupt stack should be
maintained at the VMM layer to keep track of the nested leféh@ ongoing interrupt.
For the internal events, our prototype sets a breakpoint@mnreel function that actually
performs context-switching. On Linux, the related funotis called__switchto and its
location is exported by kernel and can be found inSlystem.mafile.

With the above capabilities, our system essentially omgmihe kernel instruction
execution into a stream of system calls and each system aatihins a sequence of
kernel instructions executed within this specific contéxirthermore, to facilitate later
identification and analysis of kernel hooks, for each keim&tkuction in one particular
context, we further dump the memory locations as well assteds, if any, involved in
this instruction. The additional information is needed lfter kernel hook identifica-
tion, which we describe next.

4.2 Kernel Hook ldentification

Based on the collected sequence of kernel instruction&gitmel hook identifier locates
and analyzes those control-flow transtetl or jmp instructions (as HAP instructions)
to uncover relevant kernel hooks. As a concrete examplehaw & Table 1 a list of
identified HAPs, associated system call contexts, as weli@se kernel hooks that are
obtained by monitoring kernel-side execution of taeommand. Note that a (small)
subset of those identified kernel hooks have already be&hhys®otkits for file-hiding
purposes (more in Section 5).

As mentioned earlier, for an HAP instruction that will reachamory location and
jump to the function pointed by a memory location, we can $ym@cord the memory
location as a kernel hook. However, if an HAP instructioredily calls a register (e.g.,
call *%edy), we need to develop an effective scheme to trace back tooimee — a
kernel hook that determines the value of the register.

We point out that this particular problem is similar to thasdic problem addressed
by dynamic program slicing [5, 24]: Given an execution higtand a variable as the
input, the goal of dynamic program slicing is to extract @eslthat contains all the
instructions in the execution history that affected theugadf that variable. As such,
for the register involved in an identified HAP instructiorg apply the classic dynamic
program slicing algorithm [5] to find out a memory locatioraths associated with
a kernel object (including a global static variable) and séhcontent determines the
register value. To do that, we follow the algorithm by firstrquuting two sets for
each related instruction: one BEF[i] that contains the variable(s) defined by this
instruction, and another i§.SE[i] that includes all variables used by this instruction.
Each set can contain an element of either a memory locatiam@chine register. After
that, we then examine backwards to find out the memory lacdlkiat is occupied by
a kernel object and whose content determines the regisiige.via the following, we

8 A different version ofls can result in the execution sfsgetdents64nstead ofsysgetdents
which leads to one variation in the identified kernel hooksyscall_table[220] instead of
syscall_table[141]. A similar scenario also happens when identifying another set of kernel
hooks by monitoring thescommand (to be shown in Table 2).



Table 1. File-hiding kernel hooks obtained by monitoring tlse-alR / command in RedHat
Fedora Core 5

execution path

#

Hook Attach Points (HAPS)

Kernel Hooks

D)

address | instruction address
1 |0xc0102b38call *O0xc030f960(,%eax,4) syscall_table[4]
2 |0xc01l4eb5aB8  call *Oxec(%ecx) selinuxops[59]
3 |0xc014e5c9 call *%edi tty_fops[4]
4 |0xc01c63cfimp *Oxc02bfb40(,%eax,4) dummy.con[33]
syswrite 5 |0xc01fa9d2 call *Oxc(%esp) tty_Idisc.N_TTY.write_chan
6 |0xc01fd4f5 call *Oxc8(%ecx) con.ops|3]
7 |Oxc01fd51e call *Oxd0(%edx) conops|5]
8 | OxcO1fd5fal call *%edx conopsl[4]
9 |0xc01fd605 call *Oxc4(%ebx) con.ops[2]
10 |0xc0204caa  call *Ox1c(%ecx) vga.con[7]
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[5]
2 |0xc014f024 call *OxfO(%edx) selinuxops[60]
sysopen 3 |0xc015967FY call *%esi ext3 dir_inode operations[13] (ext3.kg
4 |0xc015969d  call *Oxbc(%ebx) selinuxops[47]
5 |0xc019ea9%6  call *Oxbc(%ebx) capability.ops[47]
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[6]
sysclose 2 |0xc014f190 call *%ecx ext3 dir_operations[14] (ext3.ko)
3 |0xc014f19a call *0xf4(%edx) selinuxops[61]
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[54]
2 |0xc015dbc call *%oesi tty_fops|[8]
sysioctl 3 |Oxc015delp  call *Oxf8(%ebx) selinuxops[62]
4 | 0xc01fchal call *%ebx con.ops|7]
5 |0xc01fc5cY call *%ebx tty_disc_N_TTY.n_tty_ioctl
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[192]
2 |0xc0143e0e  call *Oxfc(%ebx) selinuxops[63]
sysmmap?2 3 |0xc0143ebc  call *0x2c(%edx) selinuxops[11]
4 |0xc0144460 call *%esi mm—getunmappedarea
5 |0xc019dc50  call *0x18(%ecx) capability ops|[6]
6 |0xc019f5d5 call *Oxfc(%ebx) capability.ops[63]
sysfstat64 1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[197]
2 |0xc0155f33 call *Oxc4(%ecx) selinuxops[49]
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[141]
sysgetdents 2 |0xc015de80  call *Oxec(%ecx) selinuxops[59]
3 |Oxc015decc  call *0x18(%ebx) ext3.dir_operations[6] (ext3.ko)
4 |0xc016b711 call *%edx ext3 dir_inodeoperations[3] (ext3.ko
1 |0xc0102b38call *0xc030f960(,%eax,4) syscall_table[220]
sysgetdents64 2 |0xc015de80  call *Oxec(%ecx) selinuxops[59]
3 |0xc015dec¢  call *0x18(%ebx) ext3 dir_operations[6] (ext3.ko)
4 |0xc016b711 call *%edx ext3 dir_inode operations[3] (ext3.ko
sysfentl6a ; 0xc0102b38call *0xc030f960(,%eax,4) syscall_table[221]

0xc015d7ay  call *0x108(%ebx)

selinuxops[66]
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will walk-through the scheme with an example. (For the dtaatgorithm, interested
readers are referred to [5] for more details.)

#l i ne machi ne code instruction DEF USE

i-1: ...

i+0 : 89 c3 nov Yeax, Yebx Yebx Yeax

i+l : 83 ec 04 sub $0x4, Yesp Yesp Yesp

i+2 : 8b 80 c4 00 00 00 nov Oxc4( %eax), Yeax Yeax men| Yeax+0xc4], %eax
i+3 : f6 c2 03 t est $0x3, vdl ef | ags %al

i+4 : 89 04 24 nmov Y%eax, (Yesp) meni esp] Yeax

i+5 : 74 Oe je c016b713 ef | ags

i+6 : 8b 40 24 nov 0x24( %eax), ¥Yeax Yeax men|{ Y%eax+0x24], %Yeax
i+7 : 8b 50 Oc nov Oxc(%eax) , Yedx Yedx men| Yeax+0xc] , Yeax
i+8 : 85 d2 t est Y%edx, Yedx ef |l ags Yedx

i+9 : 74 04 je c016b713 ef | ags

i+10: 89 d8 nmov Yebx, Yeax Yeax Yebx

i+11: ff d2 cal | *%edx o%ei p Yedx

Fig. 3. Discovering a kernel hook based on dynamic program slicing

Figure 3 shows some sequential kernel instructiofha kernel function_mark inode.dirty
that are executed in thgysgetdent64ontext of thds command. In particular, the se-
guence contains an HAP instructiocall *%edx— at the memory locatiofc0166711
(line ¢ + 11 in Figure 3). Note that since we monitor at run-time, we caecigely
tell which memory locations/registers are defined and/edugs a result, we directly
derive the corresponding destination address (contaiméldei%edxregister), which
is 0xc885bcal — the entry point of a functioext3dirty_inodewithin a LKM named
ext3.ko Obviously, it is the destination address the HAP instarctwill transfer to,
not the relevant kernel hook. Next, our prototype further exjsathe associated se-
mantics of every executed instructiono compute the two set® EF[i| andU SE|i
and the results are shown in Figure 3. With the two sets defioeéach instruc-
tion, we can then apply the dynamic slicing algorithm. Speally, from the HAP
instruction (line: 4+ 11), the USE set contains thébedxregister, which is defined
by the instruction at ling + 7. This particular instruction is associated wittUs E
set having two member$beaxand mem[%eax+0xc] It turns out the%eax points
to the kernel objecext3dir_inodeoperationsand Ozc is an offset from the kernel
object. After identifying the responsible kernel objebg slicing algorithm then outputs
ext3dir_inode operations[3]as the corresponding kernel hook and terminates. In Table
1, this is the fourth kernel hook identified in tegsgetdent64context. Note that this
particular kernel object is a jump table containing a nundfdunction pointers. The
offset0zc indicates that it is the fourth member function in the obgeeach function
pointer is four bytes in size. (The first four member funcsiamthe kernel object are in
the offsets obx0, 024, 028, and0xc, respectively.)

5 Evaluation

In this section, we present the evaluation results. In galer, we conduct two sets
of experiments. The first set of experiments (Section 5.1 imonitor the execution

" These instructions are in the AT&T assembly syntax, where sourceesiihation operands,
if any, are in the reverse order when compared with the Intel assemtiigps
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of various security programs and identify those kernel Isothlat can be potentially
hijacked for hiding purposes. The second set of experim{@astion 5.2) is to empiri-
cally evaluate those identified hooks by analyzing a numbegai-world rootkits and
see whether the used kernel hooks are actually a part of shewdired ones.

5.1 Kernel Hooks

In our experiments, we focus on three types of resourcesatteamainly targeted
by rootkits: files, processes, and network connections. nianerate related kernel
hooks, we correspondingly chose three different utilityggams s, ps andnetstat
These three programs are from the default installation af Rat Linux Fedora Core
5 that runs as a guest VM (withl2M/ B memory) on top of our system. Our testing
platform was a modest system, a Dell PowerEdge 2950 sertieidgon 3.16Ghz and
4GB memory running Scientific Linux 4.4. As mentioned eayltee way to choose
these programs is based on the intuition that to hide a filepfoaess, or a network
connection), a persistent kernel rootkit needs to compserttie kernel-side execution
of thels (, ps or netstaj program.

In our evaluation, we focus on those portions of collectedds that are related to
the normal functionality of the security program (e.g., tjuerying of system states of
interest as well as the final result output) and exclude athezlated ones. For example,
if some traces are part of the loading routine that prepd&egrtocess memory layout,
we consider them not related to the normal functionalityhaf thosen program and
thus simply ignore them. Further, we assume that the chasamity program as well
as those dependent libraries are not compromised. Takifesid 3 contain our results,
including those specific execution contexts of relatedesystalls. Encouragingly, for
each encountered HAP instruction, we can always locate ¢heesponding kernel
hook and our manual analysis on Linux kernel source codadutonfirms that each
identified kernel hook is indeed from a meaningful kernekebpr data structure.

More specifically, these three tables show that most idedtkernel hooks are part
of jump tables defined in various kernel objects. In paréicuhere are three main kernel
objects containing a large collection of function pointénat can be hooked for hiding
purposes: the system call taldgscall_table the SELinux-related security operations
tableselinuxops as well as the capability-based operations tableability ops There
are other kernel hooks that belong to a particular dynamigedtebject. One example
is the function pointegetunmappedarea (in the sysmmap2execution path of Table
2) inside themmkernel object that manages the process memory layout. Natettis
particular kernel hook cannot be determined by static aaly

More in-depth analysis also reveals that an HAP instruotieecuted in different
execution contexts can be associated with different kdraeks. One example is the
HAP instruction located in the system call dispatcher (Fégl(a)) where aroung00
system call service routines are called by the same HARuctstn. A kernel hook can

8 Different versions ofps invokes different system calls to list files under a directory. In our
evaluation, the 3.2.7 version of ps uses $iyagetdentssystem call while the version 3.2.3
uses another system callsysgetdents64Both system calls work the same way except one
has a kernel hookyscall_table[141]while another hasyscall_table[220].
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Table 2. Process-hiding kernel hooks obtained by monitoring geeefcommand in RedHat

Fedora Core 5

execution path

# kernel hooks

Details

sysread

17

syscall_table[3], selinuxops[5], selinuxops[59],
capabilityops[5], kerntable[336], timerpmtmr[2],
proc.info_file_operations[2], prodile_operations[2],
procsysfile_operations[2], pradty_driversoperations[2],
tty_drivers.op[0], tty_driversop[1], tty_driversop[2],
tty_drivers.op[3], procinode.op.proaead,
simple.ones[1].reagoroc, simpleones[2].reagoroc

syswrite

11

syscall_table[4], selinuxops[59], dummycon[33], tty.-fops[4],
con.ops|2], conops[3], conops[4], conops[5],
vga.con[6], vgacon[7], tty_ldisc.N_TTY.write_chan

sysopen

20

syscall_table[5], selinuxops[34], selinuxops[46],
selinuxops[47], selinuxops[60], selinuxops[88],
selinuxops[112], capabilityops[46], capabilityops[47],
pid_basedentry operations[0], prosops|[0], procsops[2],
procrootinodeoperations[1], proalir_inode operations[1],
procself inode operations[10], prasysfile_operations[12] ,
proctgid_baseinode operations[1], prodty_driversoperations[12],
ext3.dir_inode operations[13] (ext3.ko), extBle_operations[12] (ext3.ko

sysclose

10

syscall_table[6], selinuxops[35], selinuxops[50],
selinuxops[61], piddentry.operations[3],
proc.dentryoperations[3], prodty_driversoperations[14],
proc.sops[1], procsops[6], procsops|[7]

[ systime |

syscall_table[13], timerpmtmr[2] |

| syslseek |

syscall_table[19], procfile_operations[1] |

sysioctl

AN

syscall_table[54], ttyfops[8], selinuxops[62],
conops[7], ttyldisc.N_TTY.n_tty_ioctl

sysmprotect |

syscall_table[125], selinuxops[64], capabilityops[64] |

syscall_table[141], selinuxops[59], procroot.operations[6] \

l
| sysgetdentS |
| sysgetdents64]

syscall_table[220], selinuxops[59], procroot operations[6] |

sysmmap?2

00| WI|| W|| W

syscall_table[192], selinuxops[63], selinuxops[11],
capability ops[6], capabilityops[63], ext3dir_inode operations[3] (ext3.ko),
ext3file_operations[11], mm>getunmappedarea

sysstat64

syscall_table[195], selinuxops[34], selinuxops[46], selinuxops[47],
selinuxops[49], selinuxops[88], selinuxops[112], capabilityops[46],
capability ops[47], ext3dir_inode operations[13] (ext3.ko),
pid_basedentry operations[0], piddentry operations[3],
proc.rootinodeoperations[1], proselfinodeoperations[10],
proc.sops[0], proctgid_baseinode operations[1]

| sysfstaté4 |

syscall_table[197], selinuxops[49] ]

| sysgeteuid32 |

syscall_table[201] |

| sysfentlé4 |

syscall_table[221], selinuxops[66] |
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Table 3. Network-hiding kernel hooks obtained by monitoring thetstat -atpcommand in

RedHat Fedora Core 5

execution path| # kernel hooks

Details

sysread 8

syscall_table[3], selinuxops[59], seps.start, segps.show,
seqops.next, se@ps.stop, pradty _driversoperations[2]

syswrite 12

syscall_table[4], selinuxops[59], dummycon[33],
con.ops|2], conops[3], conops[4], conops|[5],
tty_fops[4], tty_ldisc.N_TTY.write_chan,
vga.con[6], vgacon[7], vgaops[8]

sysopen 19

syscall_table[5], selinuxops[34], selinuxops[35],
selinuxops[47], selinuxops[50], selinuxops[60],
selinuxops[61], selinuxops[112], capabilityops[47],
ext3.dir_inode operations[13] (ext3.ko), pidentry operations[3],
procrootinodeoperations[1], prodir_inode operations[1],
procsops[0], procsops[1], procsops|2],
proc.sops[6], procsops[7], tcp4seqfops[12]

sysclose 9

syscall_table[6], selinuxops[35], selinuxops[50], selinuxops[61],
proc.dentryoperations[3], prodty _drivers operations[14],
proc.sops[1], procsops[6], procsops|[7],

|

sysmunmap | 2

|

syscall_table[91], mm—unmaparea

|

sysmmap?2 6

syscall_table[192], selinuxops[11], selinuxops[63], capabilityops[6],

capability ops[63], mm—getunmappecdarea

|

sysfstat64 | 2

syscall_table[197], selinuxops[49]

|

also be associated with multiple HAP instructions. Thisdsgible because a function
pointer (contained in a kernel hook) can be invoked at mleltipcations in a function.
One such example &elinuxops[47], a kernel hook that is invoked a humber of times
in the sysopenexecution context of thes command. In addition, we observed many
one-to-one mappings between an HAP instruction and itscagsd kernel hook. Un-
derstanding the relationship between HAP instructionskamdel hooks is valuable for
real-time accurate enforcement of kernel control-flowgnity [14].

5.2 Case Studies

To empirically evaluate those identified kernel rootkite,mvanually analyzed the source
code of eight real-world Linux rootkits (Table 4). For eadotkit, we first identified
what kernel hooks are hijacked to implement a certain hifiadure and then checked
whether they are a part of the results shown in Tables 1, 23alds encouraging that

for every identified kernel hodk there always exists an exact match in our results. In

the following, we explain two rootkit experiments in detail

9 Our evaluation focuses on those kernel data hooks. As mentionedr efaig&ernel code
hooks, they can be scattered over every kernel instruction in thespomding system call

execution path.
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Table 4. Kernel hooks used by real-world rootkitseans a code hook)

rootkit kernel hooks based on the hiding features
file-hiding | process-hiding | network-hiding
adore syscall_table[141] | syscall_table[141] syscall_table[4]
syscall_table[220] | syscall_table[220]
adore-ng |ext3.dir_operations[6procroot operations[6] tcpd.seqfops[12]
hideme.vfs| sysgetdentsé%4 |procrootoperations[6] N/A
override | syscall_table[220] | syscall_table[220] syscall_table[3]
Synapsys-0.4 syscall_table[141] | syscall_table[141] syscall_table[4]
Rial syscall_table[141] | syscall_table[141] |syscall_table[3], syscall_table[5]
syscall_table[6]
knark syscall_table[141] | syscall_table[141] syscall_table[3]
syscall_table[220] | syscall_table[220]
kis-0.9 syscall_table[141] | syscall_table[141] tcp4 seqfops[12]

The adore rootkit ~ This rootkit is distributed in the form of a loadable kernel
module. If activated, the rootkit will implant5 kernel hooks in the system call table
by replacing them with its own implementations. Among th&s@ooks, only three of
them are responsible for hiding purpoSeslore specifically, two system call table en-
tries —sysgetdentgsys call_table[141]) andysgetdents64sys call_table[220]) — are
hijacked for hiding files and processes while another oggswrite (sys.call_table[4])

— is replaced to hide network activities related to backdmmrcesses protected by
the rootkit. A customized user-space program ca#ed is provided to send hiding
instructions to the malicious LKM so that certain files orgesses of attackers’ choices
can be hidden. All these three kernel hooks are uncoveredibgystem, as shown in
Tables 1, 2, and 3, respectively.

The adore-ng rootkit As the name indicates, this rootkit is a more advanced suc-
cessor from the previowsdorerootkit. Instead of directly manipulating the system call
table, theadore-ngrootkit subverts the jump table of the virtual file system byglacing
the directory listing handler routines with its own onesclsueplacement allows it
to manipulate the information about theot file system as well as throc pseudo-
file system to achieve the file-hiding or process-hiding pags. More specifically, the
readdirfunction pointer €xt3 dir_operations[6) in the root file system operations table
is hooked for hiding attack files, while the similar functifproc_root_operations[6)
in the /proc file system operations table is hijacked for hiding attackcpsses. The
fact that the kernel hookxt3 dir_operations[6]is located in the loadable module space
(ext3.kg indicates that this rootkit is more stealthier and thepesyof kernel hooks are
much more difficult to uncover than those kernel hooks aicsta¢mory locations (e.g.,
the system call table). Once again, our system succesgfatyified these stealth kernel
hooks, confirming our observation in Section 1. Furtherctiraparisons between those

19 The other12 hooks are mainly used to provide hidden backdoor accesses. Qnelexa the
syscall_table[6] (sysclose), which is hooked to allow the attacker to escalate the privilege to
root without going through the normal authorization process.
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hooks used by rootkits (Table 4) and the list of hooks fromsystem (Tables 1, 2, and
3) indicate that only a small subset of them have been used.

6 Discussion

Our system leverages the nature of persistent kernel tedtksystematically discover
those kernel hooks that can potentially be exploited fomigigpurposes. However, as
a rootkit may implant other kernel hooks for other non-higfeatures as its payload,
our current prototype is ineffective in identifying themowever, the prototype can
be readily re-targeted to those non-hiding features antiyapp same techniques to
identify those kernel hooks. Also, our system by design @rdyks for persistent kernel
rootkits but could be potentially extended for other typégamtkits as well (e.g..
persistent user-level rootkits).

Our current prototype is developed to identify those keimmbks related to the
execution of a chosen security program, either an antkibebftware or a system
utility program. However, with different programs as thpun it is likely that different
running instances will result in different sets of kernebks. Fortunately, for the rootkit
author, he faces the challenge in hiding itself from all siggprograms. As a result, our
defense has a unique advantage in only analyzing a singenireted execution path
of a rootkit-detection program. In other words, a persiskennel rootkit cannot evade
its detection if the hijacked kernel hooks are not a part efdtrresponding kernel-side
execution path. There may exist some “in-the-wild” roatkhat take chances in only
evading selected security software. However, in respomsezan monitor only those
kernel hooks related to an installed security software. A&stioned earlier, to hide
from it, persistent kernel rootkits will hijack at least ookthese kernel hooks.

Meanwhile, it may be argued that our results from monitodnginning instance
of a security program could lead to false positives. Howeer fact that these kernel
hooks exist in the kernel-side execution path suggest thet ene could be equally
exploited for hooking purposes. From another perspectieepoint out that the scale
of our results is manageable since it contains tens, notriedsdof kernel hooks.

Finally, we point out that our current prototype only comsilthose kernel objects
or variables that may contain kernel hooks of interest takiteo However, there also
exist other types of kernel data such as non-control datgd®j., theuid field in
the process control block data structure or the doublyelihgrocess list), which can
be manipulated to contaminate kernel execution. Though thay not be used to
implement a persistent kernel rootkit for control-flow mfarhitions, how to extend the
current system to effectively address them (e.g., by ig@&-enforcing kernel control
flow integrity [10]) remains as an interesting topic for frgwvork.

7 Related Work

Hook Identification The first area of related work is the identification of kernabks

exploitable by rootkits for hiding purposes. ParticulatiookFinder [23] analyzes a
given rootkit example and reports a list of kernel hooks #y&t being used by the
malware. However, by design, it does not lead to the ideatifio of other kernel hooks
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that are not being used but could still be potentially exphbifor the same hiding
purposes. From another perspective, SBCFI [14] performscsanalysis of Linux
kernel source code and aims to build a kernel control-flovplgthat will be followed
by a legitimate kernel at run-time. However, the graph is exqplicitly associated
with those kernel hooks for rootkit hiding purposes. Fumhere, the lack of run-time
information could greatly limit its accuracy. In compars@ur system complements
them with the unique capability of exhaustively derivingdke kernel hooks for a given
security program, which could be potentially hijacked byeaspstent rootkit to hide
from it.

Hook-based Rootkit Detection The second area of related work is the detection of
rootkits based on the knowledge of those specific hookingtpdhat may be used by
rootkits. For example, existing anti-rootkit tools suchVa€E [8], IceSword [16], Sys-
tem Virginity Verifier [17] examine known memory regions apied by these specific
hooking points to detect any illegitimate modification. Gystem is designed with a
unigue focus in uncovering those specific kernel hooks. Asalt, they can be naturally
combined together to build an integrated rootkit-deferystesn.

Other Rootkit Defenses There also exist a number of recent efforts [12, 13, 15,
20-22] that defend against rootkits by detecting certaionalous symptoms likely
caused by rootkit infection. For example, The Strider GRaster system [21] and
VMwatcher [12] apply the notion of cross-view detection tqpese any discrepancy
caused by stealth rootkits. CoPilot [15] as well as the fellgp work [13] identify
rootkits by detecting possible violations in kernel codegnity or semantic constraints
among multiple kernel objects. SecVisor [20] aims to préwerauthorized kernel code
from execution in the kernel space. Limbo [22] characteriaenumber of run-time
features that can best distinguish between legitimate aditious kernel drivers and
then utilizes them to prevent a malicious one from being éobithto the kernel. Our
system is complementary to these systems by pinpointingjfgpkernel hooks that are
likely to be chosen by stealth rootkits for manipulation.

8 Conclusion

To effectively counter persistent kernel rootkits, we havesented a systematic ap-
proach to uncover those kernel hooks that can be potentiggked by them. Our
approach is based on the insight that those rootkits by tieinre will tamper with
the execution of deployed rootkit-detection software. Bstiumenting and recording
possible control-flow transfer instructions in the kersigle execution paths related to
the deployed security software, we can reliably derive eltited kernel hooks. Our
experience in building a prototype system as well as thergxpatal results with real-
world rootkits demonstrate the effectiveness of the preg@gpproach.
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