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Abstract. Kernel rootkits, as one of the most elusive types of malware, pose
significant challenges for investigation and defense. Among the most notable are
persistent kernel rootkits, a special type of kernel rootkits that implant persistent
kernel hooks to tamper with the kernel execution to hide their presence. To defend
against them, an effective approach is to first identify those kernel hooks and then
protect them from being manipulated by these rootkits. In this paper, we focus on
the first step by proposing a systematic approach to identify those kernelhooks.
Our approach is based on two key observations: First, rootkits by designwill
attempt to hide its presence fromall running rootkit-detection software includ-
ing various system utility programs (e.g.,ps and ls). Second, to manipulate OS
kernel control-flows, persistent kernel rootkits by their nature will implant kernel
hooks on the corresponding kernel-side execution paths invoked by thesecurity
programs. In other words, for any persistent kernel rootkit, either itis detectable
by a security program or it has to tamper with one of the kernel hooks on the
corresponding kernel-side execution path(s) of the security program. As a result,
given an authentic security program, weonly need to monitor and analyze its
kernel-side execution paths to identify the related set of kernel hooks that could be
potentially hijacked for evasion. We have built a proof-of-concept system called
HookMap and evaluated it with a number of Linux utility programs such asls, ps,
andnetstatin RedHat Fedora Core 5. Our system found that there exist35 kernel
hooks in the kernel-side execution path ofls that can be potentially hijacked for
manipulation (e.g., for hiding files). Similarly, there are85 kernel hooks forps
and 51 kernel hooks fornetstat, which can be respectively hooked for hiding
processes and network activities. A manual analysis of eight real-world rootkits
shows that our identified kernel hooks cover all those used in them.

1 Introduction

Rootkits have been increasingly adopted by general malwareor intruders to hide their
presence on or prolong their control of compromised machines. In particular, kernel
rootkits, with the unique capability of directly subverting the victim operating system
(OS) kernel, have been frequently leveraged to expand the basic OS functionalities
with additional (illicit) ones, such as providing unauthorized system backdoor access,
gathering personal information (e.g., user keystrokes), escalating the privilege of a
malicious process, as well as neutralizing defense mechanisms on the target system.

In this paper, we focus on a special type of kernel rootkits called persistent kernel
rootkits. Instead of referring to those rootkits that are stored as persistent disk files and
will survive machine reboots, the notion of persistent kernel rootkits here (inherited
from [14]) represents those rootkits that will make persistent modifications to run-
time OS kernel control-flow, so that normal kernel executionwill be somehow hijacked



to provide illicit rootkit functionality1. For example, many existing rootkits [1, 2] will
modify the system call table to hijack the kernel-level control flow. This type of rootkits
is of special interest to us for a number of reasons. First, a recent survey [14] of
both Windows and Linux kernel rootkits shows that96% of them are persistent kernel
rootkits and they will make persistent control-flow modifications. Second, by running
inside the OS kernel, these rootkits have the highest privilege on the system, making
them very hard to be detected or removed. In fact, a recent report [3] shows that, once
a system is infected by these rootkits, the best way to recover from them is to re-install
the OS image. Third, by directly making control-flow modifications, persistent kernel
rootkits provide a convenient way to add a rich set of malicious rootkit functionalities.

On the defensive side, one essential step to effectively defending against persistent
kernel rootkits is to identify those hooking points (or kernel hooks) that are used by
rootkits to regain kernel execution control and then inflictall sorts of manipulations
to cloak their presence. The identification of these kernel hooks is useful for not only
understanding the hooking mechanism [23] used by rootkits,but also providing better
protection of kernel integrity [10, 14, 20]. For example, existing anti-rootkit tools such
as [8, 16, 17] all can be benefited because they require the prior knowledge of those
kernel hooks to detect the rootkit presence.

To this end, a number of approaches [14, 23] have been proposed. For example,
SBCFI [14] analyzes the Linux kernel source code and builds an approximation of
kernel control-flow graph that will be followed at run-time by a legitimate kernel. Un-
fortunately, due to the lack of dynamic run-time information, it is only able to achieve
an approximation of kernel control-flow graph. From anotherperspective, HookFinder
[23] is developed to automatically analyze a given malware sample and identify those
hooks that are being used by the provided malware. More specifically, HookFinder
considers any changes made by the malware as tainted and recognizes a specific change
as a hooking point if it eventually redirects the execution control to the tainted attack
code. Though effective in identifying specific hooks used bythe malware, it cannot
discover other hooks that can be equally hijacked but are notbeing used by the malware.

In this paper, we present a systematic approach that, given arootkit-detection pro-
gram, discovers those related kernel hooks that could be potentially used by persistent
kernel rootkits to evade from it. Our approach is motivated by the following observation:
To hide its presence, a persistent kernel rootkit by design will hide from the given
security program and the hiding is achieved by implanting kernel hooks in a number
of strategic locations within the kernel-side execution paths of the security program.
In other words, for any persistent kernel rootkit, either itis detectable by the security
program or it has to tamper with one of the kernel hooks. Therefore, for the purpose of
detecting persistent kernel rootkits, it is sufficient to just identify all kernel hooks in the
kernel-side execution paths of a given rootkit-detection program.

To identify hooks in the kernel-side execution of a program,we face three main
challenges: (1) accurately identifying the right kernel-side execution path for monitor-
ing; (2) obtaining the relevant run-time context information (e.g., the ongoing system
call and specific kernel functions) with respect to the identified execution path; (3)

1 For other types of kernel rootkits that may attack kernel data, they arenot the focus of this
paper and we plan to explore them as future work.
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uncovering the kernel hooks in the execution path and extracting associated semantic
definition. To effectively address the first two challenges,we developed a context-aware
kernel execution monitor and the details will be described in Section 3.1. For the third
one, we have built a kernel hook identifier (Section 3.2) thatwill first locate the run-
time virtual address of an uncovered kernel hook and then perform OS-aware semantics
resolution to reveal a meaningful definition of the related kernel object or variable.

We have developed a prototype called HookMap on top of a software-based QEMU
virtual machine implementation [6]. It is appropriate for two main reasons: First, software-
based virtualization allows to conveniently support commodity OSes as guest virtual
machines (VMs). And more importantly, given a selected execution path, the virtual-
ization layer can be extended to provide the unique capability in instrumenting and
recording its execution without affecting its functionality. Second, since we are dealing
with a legitimate OS kernel in a clean system, not with a rootkit sample that may
detect the VM environment and alter its behavior accordingly, the use of virtualization
software will not affect the results in identifying kernel hooks.

To evaluate the effectiveness of our approach, we ran a default installation of Red-
Hat Fedora Core 5 (with Linux kernel 2.6.15) in our system. Instead of using any
commercial rootkit-detection software, we chose to test with three utility programs,
ls, ps andnetstatsince they are often attacked by rootkits to hide files, processes or
network connections. By monitoring their kernel-side executions, our system was able
to accurately identify their execution contexts, discoverall encountered kernel hooks,
and then resolve their semantic definitions. In particular,our system identified35, 85,
and51 kernel hooks, forls, ps and netstat, respectively. To empirically evaluate the
completeness of identified kernel hooks, we performed a manual analysis of eight real-
world kernel rootkits and found that the kernel hooks employed by these rootkits are
only a small subset of our identified hooks.

The rest of the paper is structured as follows: Section 2 introduces the background
on rootkit hooking mechanisms. Section 3 gives an overview of our approach, followed
by the description of HookMap implementation in Section 4. Section 5 presents the
experimental results and Section 6 discusses some limitations of the proposed approach.
Finally, Section 7 surveys related work and Section 8 concludes the paper.

2 Background

In this section, we introduce the hooking mechanisms that are being used by persistent
kernel rootkits and define a number of terms that will be used throughout the paper.

There exist two main types of kernel hooks:code hooksanddata hooks. To implant
a code hook, a kernel rootkit typically modifies the kernel text so that the execution
of the affected text will be directly hijacked. However, since the kernel text section is
usually static and can be marked as read-only (or not writable), the way to implant
the code hook can be easily detected. Because of that, rootkit authors are now more
inclined to implant data hooks at a number of strategic memory locations in the kernel
space. Data hooks are usually a part of kernel data that are interpreted as the destination
addresses in control-flow transition instructions such ascall andjmp. A typical example
of kernel data hook is the system call table that contains theaddresses to a number of
specific system call service routines (e.g.,sysopen). In addition, many data hooks may
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 int $0x80

Applications

ENTRY(system_call)

        SAVE_ALL
        ...

        ...

        pushl %eax                           # eax: syscall number

        call *0xc030f960(,%eax,4) # call sys_call_table[eax]

Userland

Kernel

A HAP instruction

(a) The system call dispatcher on Linux

#define REPLACE(x) o_##x = sys_call_table[__NR_##x];\
                        sys_call_table[__NR_##x] = n_##x

        REPLACE(getdents);
        REPLACE(write);

        ...

        REPLACE(kill);
        REPLACE(fork);
        REPLACE(clone);
        REPLACE(close);
        REPLACE(open);
        REPLACE(stat);
        REPLACE(lstat);        ...

{
int adore_init(void)

}

module_init(adore_init);

(b) The Linux adore rootkit

Fig. 1.A HAP instruction example inside the Linux system call dispatcher – the associated kernel
data hooks have been attacked by various rootkits, including the Linux adore rootkit [1].

contain dynamic content as they are mainly used to hold the run-time addresses of
kernel functions and can be later updated because of the loading or unloading of kernel
modules. For ease of presentation, we refer to the control-flow transition instructions
(i.e., call or conditional or un-conditional jumps) whose destinationaddresses are not
hard-coded constants ashook attach points(HAPs).

In Figure 1, we show an HAP example with associated kernel data hooks, i.e.,
the system call table, which is commonly attacked by kernel rootkits. In particular,
Figure 1(a) shows the normal system call dispatcher on Linuxwhile Figure 1(b) con-
tains the code snippet of a Linux rootkit – adore [1]. From thecontrol-flow transfer
instruction –call *0xc030f960(,%eax,4)2 in Figure 1(a), we can tell the existence of
a hook attach point inside the system call dispatcher. In addition, Figure 1(b) reveals
that the adore rootkit will replace a number of system call table entries (as data hooks)
so that it can intervene and manipulate the execution of those replaced system calls.
For instance, the code statementREPLACE(write)rewrites the system call table entry
syscall table[4] to intercept thesyswrite routine before its execution. The correspond-
ing run-time memory location0xc030f970 and the associated semantic definition of
syscall table[4] will be identified as a data hook. More specifically, the memory loca-
tion 0xc030f970 is calculated as0xc030f960 + %eax × 4 where0xc030f960 is the
base address of system call table and%eax = 4 is the actual number for the specific
syswrite system call. We defer an in-depth analysis of this particular rootkit in Section
5.2.

Meanwhile, as mentioned earlier, there are a number of rootkits that will replace
specific instructions (as code hooks) in the system call handler. For instance, the SucKit
[19] rootkit will prepare its own version of the system call table and then change the
dispatcher so that it will invoke system call routines populated in its own system call
table. Using Figure 1(a) as an example, the rootkit will modify the control-flow transfer
instruction or more specifically the base address of the system call table0xc030f960
to point to a rootkit-controlled system call table. Considering that (1) implanting a code

2 This instruction is in the standard AT&T assembly syntax, meaning that it will transfer its
execution to another memory location pointed to by0xc030f960 + %eax × 4.
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Fig. 2.A systematic approach to discovering kernel hooks

hook will inflict kernel code modifications, which can be easily detected, and (2) every
kernel instruction could be potentially overwritten for code hook purposes, we in this
paper focus on the identification of kernel data hooks. Without ambiguity, we use the
term kernel hooks to represent kernel data hooks throughoutthe paper.

Finally, we point out that kernel hooks are elusive to identify because they can be
widely scattered across the kernel space and rootkit authors keep surprising us in using
new kernel hooks for rootkit purposes [7, 18]. In fact, recent research results [23] show
that some stealth rootkits use previously unknown kernel hooks to evade all existing
security programs for rootkit detection. In this paper, ourgoal is to systematically
discover all kernel hooks that can be used by persistent kernel rootkits to tamper with
and thus hide from a given security program.

3 System Design

The intuition behind our approach is straightforward but effective: a rootkit by nature
is programmed to hide itself especially from various security programs including those
widely-used system utility programs such asps, ls, andnetstat. As such for an infected
OS kernel, the provided kernel service (e.g., handling a particular system call) to any
request from these security software is likely manipulated. The manipulation typically
comes from the installation of kernel hooks at strategic locations somewherewithin
the corresponding kernel-side execution path of these security software. Based on this
insight, if we can develop a system to comprehensively monitor the kernel-side exe-
cution of the same set of security programs within a clean system, we can use it to
exhaustively uncover all kernel hooks related to the execution path being monitored.
Figure 2 shows an architectural overview of our system with two main components:
context-aware execution monitorandkernel hook identifier. In the following, we will
describe these two components in detail.

3.1 Context-Aware Execution Monitor

As mentioned earlier, our system is built on top of an open-source virtual machine
implementation, which brings the convenient support of commodity OSes as guest
VMs. In addition, for a running VM, thecontext-aware execution monitoris further
designed to monitor the internal process events including various system calls made by
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running processes. As suggested by the aforementioned insight, we need to only capture
those kernel events related to security software that is running inside the VM. Note that
the main purpose of monitoring these events is to understandthe right execution context
inside the kernel (e.g., “which process is making the systemcall?”). With that, we can
then accurately instrument and record all executed kernel instructions that are relevant
to the chosen security software.

However, a challenging part is that modern OS kernels greatly complicate the cap-
ture and interpretation of execution contexts with the introduction of “out of order” ex-
ecution (mainly for improving system concurrency and performance reasons). The “out
of order” execution means that the kernel-side execution ofany process can be asyn-
chronously interrupted to handle an incoming interrupt request or temporarily context-
switched out for the execution of another unrelated process. Notice that the “out of
order” execution is considered essential in modern OSes forthe support of multi-tasking
and asynchronous interrupt handling.

Fortunately, running a commodity OS as a guest VM provides a convenient way to
capture those external events3 that trigger the “out of order” executions in a guest ker-
nel. For example, if an incoming network packet leads to the generation of an interrupt,
the interrupt event needs to be emulated by the underlying virtual machine monitor and
thus can be intercepted and recorded by our system. The tricky part is to determine when
the corresponding interrupt handler ends. For that purpose, we instrument the execution
of iret instruction to trace when the interrupt handler returns. However, additional com-
plexities are introduced for the built-in support ofnested interruptsin the modern OS
design where an interrupt request (IRQ) of a higher priorityis allowed to preempt IRQs
of a lower priority. For that, we need to maintain a shadow interrupt stack to track the
nested level of an interrupt.

In addition to those external events, the “out of order” execution can also be intro-
duced by some internal events. For example, a running process may voluntarily yield
the CPU execution to another process. For that, instead of locating and intercepting all
these internal events, we need to take another approach by directly intercepting context
switch events occurred inside the monitored VM. The interception of context switch
events requires some knowledge of the OS internals. We will describe it in more details
in Section 4.

With the above capabilities, we can choose and run a particular security program
(or any rootkit-detection tool) inside the monitor. The monitor will record into a local
trace file a stream of system calls made by the chosen program and for each system call,
a sequence of kernel instructions executed within the system call execution path.

3.2 Kernel Hook Identifier

The context-aware execution monitor will collect a list of kernel instructions that are
sequentially executed when handling a system call request from a chosen security
program. Given the collected instructions, the kernel hookidentifier component is de-
veloped to identify those HAPs where kernel hooks are involved. The identification of

3 Note that the external events here may also include potential debug exceptions caused from
hardware-based debugger registers. However, in this work, we do not count those related hooks
within the debug interrupt handler.
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potential HAPs is relatively straightforward because theyare the control-flow transfer
instructions, namely thosecall or jmp instructions.

Some astute readers may wonder “wouldn’t static analysis work for the very same
need?” By statically analyzing kernel code, it is indeed capable of identifying those
HAPs. Unfortunately, it cannot lead to the identification ofthe corresponding kernel
hooks. There are two main reasons: (1) A HAP may use registersor memory loca-
tions to resolve the run-time locations of the related kernel hooks. In other words, the
corresponding kernel hook location cannot be determined through static analysis. (An
example is already shown in Figure 1(a).) (2) Moreover, there exists another complexity
that is introduced by the loadable kernel module (LKM) support in commodity OS
kernels. In particular, when a LKM is loaded into the kernel,not only its loading
location may be different from previous runs, but also the module text content will be
updated accordingly during the time when the module is beingloaded. This is mainly
due to the existence of certain dependencies of the new loaded module on other loaded
modules or the main static kernel text. And we cannot resolvethese dependencies until
at run-time.

Our analysis shows that for some discovered HAPs, their run-time execution trace
can readily reveal the locations of associated kernel hooks. As an example, in the system
call dispatcher shown in Figure 1(a), the HAP instruction –call *0xc030f960(,%eax,4),
after the execution, will jump to a function which is pointedto from the memory
location:0xc030f960 + %eax × 4, where the value of%eaxregister can be known
at run-time. In other words, the result of the calculation atrun-time will be counted as a
kernel hook in the related execution path. In addition, there also exist other HAPs (e.g.,
call *%edx) that may directly call registers and reveal nothing about kernel hooks but
the destination addresses the execution will transfer to. For that, we need to start from
the identified HAP and examine in a backwards manner those related instructions to
identify the source, which eventually affects the calculated destination value and will
then be considered a kernel hook. (The detailed discussion will be presented in Section
4.2.) In our analysis, we also encounter some control-flow transfer instructions whose
destination addresses are hardcoded or statically linked inside machine code. In this
case, both static analysis and dynamic analysis can be used to identify the corresponding
hooks. Note that according to the nature of this type of hooks(Section 2), we consider
them as code hooks in this paper.

Finally, after identifying those kernel hooks, we also aim to resolve the memory
addresses to the corresponding semantic definitions. For that, we leverage the symbol
information available in the raw kernel text file as well as loaded LKMs. More specifi-
cally, for main kernel text, we obtain the corresponding symbol information (e.g., object
names and related memory locations) from the relatedSystem.mapfile. For kernel
modules, we derive the corresponding symbol information from the object files (e.g., by
running thenmcommand)4. If we use Figure 1(a) as an example, in an execution path
related to thesysopenroutine, the hook’s memory address is calculated as0xc030f974.
From the symbol information associated with the main kerneltext, that memory ad-

4 We point out that thenmcommand output will be further updated with the run-time loading
address of the corresponding module. For that, we will instrument the module-loading
instructions in the kernel to determine the address at run-time.
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dress is occupied by the system call table (with the symbol namesyscall table) whose
base address is0xc030f960. As a result, the corresponding kernel hook is resolved as
syscall table[5]5 where5 is actually the system call number for thesysopenroutine.

4 Implementation

We have built a prototype system called HookMap based on an open-source QEMU
0.9.0 [6] virtual machine monitor (VMM) implementation. As mentioned earlier, we
choose it due to the following considerations: (1) First, since we are dealing with normal
OS kernels, the VM environment will not affect the results inthe identified kernel
hooks; (2) Second, it contains the implementation of a key virtualization technique
called dynamic binary translation [6, 4], which can be leveraged and extended to select,
record, and disassemble kernel instruction sequences of interest; (3) Third, upon the
observation of VM-internal process events, we need to embedour own interpretation
logic to extract related execution context information. The open-source nature of the
VM implementation provides great convenience and flexibility in making our imple-
mentation possible. Also, due to the need of obtaining run-time symbols for semantic
resolution, our current system only supports Linux. Nevertheless, we point out that
the principle described here should also be applicable for other software-based VM
implementations (e.g., VMware Workstation [4]) and other commodity OSes (e.g.,
Windows).

4.1 Context-Aware Execution Logging

One main task in our implementation is that, given an executing kernel instruction, we
need to accurately understand the current execution context so that we can determine
whether the instruction should be monitored and recorded. Note that the execution
context here is defined as the system call context the current(kernel) instruction belongs
to. To achieve that, we have the need of keeping track of the lifetime of a system call
event. Fortunately, the lifetime of a system call event is well defined as the kernel
accepts only two standard methods in requesting for a systemcall service:int $0x80
andsysenter. Since we are running the whole system on top of a binary-translation-
capable VMM, we can conveniently intercept these two instructions and then interpret
the associated system call arguments accordingly. For thisspecific task, we leverage an
“out-of-the-box” VM monitoring framework called VMscope [11] as it already allows
to real-time capture system calls completely outside the VM. What remains to do is to
correlate a system call event and the related system call return event to form its lifetime.
Interested readers are referred to [11] for more details.

Meanwhile, we also face another challenge caused by the “out-of-order” execution
(Section 3). To address that, we monitor relevant external events (e.g., interrupts) as well
as internal events (e.g., context switches) to detect run-time changes of the execution
context. The main goal here is to avoid the introduction of “noises” – unnecessary kernel
executions – into the execution path for monitoring and analysis. Fortunately, with a
software-based VM implementation, we are able to interceptall these external events

5 The calculation is based on the following:(0xc030f974 − 0xc030f960)/4 = 5, where4
represents the number of bytes occupied by a function pointer.
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as they need to be eventually emulated by the underlying VMM.However, an interesting
part is to handle the nested interrupts scenario where a shadow interrupt stack should be
maintained at the VMM layer to keep track of the nested level of the ongoing interrupt.
For the internal events, our prototype sets a breakpoint on akernel function that actually
performs context-switching. On Linux, the related function is called switch to and its
location is exported by kernel and can be found in theSystem.mapfile.

With the above capabilities, our system essentially organizes the kernel instruction
execution into a stream of system calls and each system call contains a sequence of
kernel instructions executed within this specific context.Furthermore, to facilitate later
identification and analysis of kernel hooks, for each kernelinstruction in one particular
context, we further dump the memory locations as well as registers, if any, involved in
this instruction. The additional information is needed forlater kernel hook identifica-
tion, which we describe next.

4.2 Kernel Hook Identification

Based on the collected sequence of kernel instructions, thekernel hook identifier locates
and analyzes those control-flow transfercall or jmp instructions (as HAP instructions)
to uncover relevant kernel hooks. As a concrete example, we show in Table 1 a list of
identified HAPs, associated system call contexts, as well asthose kernel hooks that are
obtained by monitoring kernel-side execution of thels command. Note that a (small)
subset of those identified kernel hooks have already been used by rootkits for file-hiding
purposes (more in Section 5).

As mentioned earlier, for an HAP instruction that will read amemory location and
jump to the function pointed by a memory location, we can simply record the memory
location as a kernel hook. However, if an HAP instruction directly calls a register (e.g.,
call *%edx), we need to develop an effective scheme to trace back to the source – a
kernel hook that determines the value of the register.

We point out that this particular problem is similar to the classic problem addressed
by dynamic program slicing [5, 24]: Given an execution history and a variable as the
input, the goal of dynamic program slicing is to extract a slice that contains all the
instructions in the execution history that affected the value of that variable. As such,
for the register involved in an identified HAP instruction, we apply the classic dynamic
program slicing algorithm [5] to find out a memory location that is associated with
a kernel object (including a global static variable) and whose content determines the
register value. To do that, we follow the algorithm by first computing two sets for
each related instruction: one isDEF [i] that contains the variable(s) defined by this
instruction, and another isUSE[i] that includes all variables used by this instruction.
Each set can contain an element of either a memory location ora machine register. After
that, we then examine backwards to find out the memory location that is occupied by
a kernel object and whose content determines the register value. In the following, we

6 A different version ofls can result in the execution ofsysgetdents64instead ofsysgetdents,
which leads to one variation in the identified kernel hooks –syscall table[220] instead of
syscall table[141]. A similar scenario also happens when identifying another set of kernel
hooks by monitoring thepscommand (to be shown in Table 2).
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Table 1. File-hiding kernel hooks obtained by monitoring thels -alR / command in RedHat
Fedora Core 5

execution path # Hook Attach Points (HAPs) Kernel Hooks
address instruction address

syswrite

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[4]
2 0xc014e5a3 call *0xec(%ecx) selinuxops[59]
3 0xc014e5c9 call *%edi tty fops[4]
4 0xc01c63c6jmp *0xc02bfb40(,%eax,4) dummycon[33]
5 0xc01fa9d2 call *0xc(%esp) tty ldisc N TTY.write chan
6 0xc01fd4f5 call *0xc8(%ecx) con ops[3]
7 0xc01fd51e call *0xd0(%edx) con ops[5]
8 0xc01fd5fa call *%edx con ops[4]
9 0xc01fd605 call *0xc4(%ebx) con ops[2]
10 0xc0204caa call *0x1c(%ecx) vga con[7]

sysopen

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[5]
2 0xc014f024 call *0xf0(%edx) selinuxops[60]
3 0xc0159677 call *%esi ext3 dir inodeoperations[13] (ext3.ko)
4 0xc015969d call *0xbc(%ebx) selinuxops[47]
5 0xc019ea96 call *0xbc(%ebx) capabilityops[47]

sysclose
1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[6]
2 0xc014f190 call *%ecx ext3 dir operations[14] (ext3.ko)
3 0xc014f19a call *0xf4(%edx) selinuxops[61]

sys ioctl

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[54]
2 0xc015dbcf call *%esi tty fops[8]
3 0xc015de16 call *0xf8(%ebx) selinuxops[62]
4 0xc01fc5a1 call *%ebx con ops[7]
5 0xc01fc5c9 call *%ebx tty ldisc N TTY.n tty ioctl

sysmmap2

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[192]
2 0xc0143e0e call *0xfc(%ebx) selinuxops[63]
3 0xc0143ebc call *0x2c(%edx) selinuxops[11]
4 0xc0144460 call *%esi mm→get unmappedarea
5 0xc019dc50 call *0x18(%ecx) capabilityops[6]
6 0xc019f5d5 call *0xfc(%ebx) capabilityops[63]

sys fstat64
1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[197]
2 0xc0155f33 call *0xc4(%ecx) selinuxops[49]

sysgetdents6

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[141]
2 0xc015de80 call *0xec(%ecx) selinuxops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inodeoperations[3] (ext3.ko)

sysgetdents64

1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[220]
2 0xc015de80 call *0xec(%ecx) selinuxops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inodeoperations[3] (ext3.ko)

sys fcntl64
1 0xc0102b38call *0xc030f960(,%eax,4) syscall table[221]
2 0xc015d7a7 call *0x108(%ebx) selinuxops[66]
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will walk-through the scheme with an example. (For the classic algorithm, interested
readers are referred to [5] for more details.)

#line machine code       instruction             DEF        USE
====  =============    ====================    ========    =====
i-1 : ...
i+0 : 89 c3             mov    %eax,%ebx        %ebx       %eax                   
i+1 : 83 ec 04          sub    $0x4,%esp        %esp       %esp 
i+2 : 8b 80 c4 00 00 00 mov    0xc4(%eax),%eax  %eax       mem[%eax+0xc4], %eax
i+3 : f6 c2 03          test   $0x3,%dl         eflags     %dl  
i+4 : 89 04 24          mov    %eax,(%esp)      mem[esp]   %eax   
i+5 : 74 0e             je     c016b713                    eflags
i+6 : 8b 40 24          mov    0x24(%eax),%eax  %eax       mem[%eax+0x24], %eax  
i+7 : 8b 50 0c          mov    0xc(%eax),%edx   %edx       mem[%eax+0xc],  %eax    
i+8 : 85 d2             test   %edx,%edx        eflags     %edx 
i+9 : 74 04             je     c016b713                    eflags
i+10: 89 d8             mov    %ebx,%eax        %eax       %ebx 
i+11: ff d2             call   *%edx            %eip       %edx 
i+12: ...

Fig. 3.Discovering a kernel hook based on dynamic program slicing

Figure 3 shows some sequential kernel instructions7 of a kernel function mark inodedirty
that are executed in thesysgetdent64context of thels command. In particular, the se-
quence contains an HAP instruction –call *%edx– at the memory location0xc016b711
(line i + 11 in Figure 3). Note that since we monitor at run-time, we can precisely
tell which memory locations/registers are defined and/or used. As a result, we directly
derive the corresponding destination address (contained in the%edxregister), which
is 0xc885bca0 – the entry point of a functionext3dirty inodewithin a LKM named
ext3.ko. Obviously, it is the destination address the HAP instruction will transfer to,
not the relevant kernel hook. Next, our prototype further expands the associated se-
mantics of every executed instructioni to compute the two setsDEF [i] andUSE[i]
and the results are shown in Figure 3. With the two sets definedfor each instruc-
tion, we can then apply the dynamic slicing algorithm. Specifically, from the HAP
instruction (linei + 11), the USE set contains the%edx register, which is defined
by the instruction at linei + 7. This particular instruction is associated with aUSE

set having two members:%eaxand mem[%eax+0xc]. It turns out the%eaxpoints
to the kernel objectext3dir inodeoperationsand 0xc is an offset from the kernel
object. After identifying the responsible kernel object, the slicing algorithm then outputs
ext3dir inodeoperations[3]as the corresponding kernel hook and terminates. In Table
1, this is the fourth kernel hook identified in thesysgetdent64context. Note that this
particular kernel object is a jump table containing a numberof function pointers. The
offset0xc indicates that it is the fourth member function in the objectas each function
pointer is four bytes in size. (The first four member functions in the kernel object are in
the offsets of0x0, 0x4, 0x8, and0xc, respectively.)

5 Evaluation

In this section, we present the evaluation results. In particular, we conduct two sets
of experiments. The first set of experiments (Section 5.1) isto monitor the execution

7 These instructions are in the AT&T assembly syntax, where source and destination operands,
if any, are in the reverse order when compared with the Intel assembly syntax.
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of various security programs and identify those kernel hooks that can be potentially
hijacked for hiding purposes. The second set of experiments(Section 5.2) is to empiri-
cally evaluate those identified hooks by analyzing a number of real-world rootkits and
see whether the used kernel hooks are actually a part of the discovered ones.

5.1 Kernel Hooks

In our experiments, we focus on three types of resources thatare mainly targeted
by rootkits: files, processes, and network connections. To enumerate related kernel
hooks, we correspondingly chose three different utility programs –ls, ps, andnetstat.
These three programs are from the default installation of Red Hat Linux Fedora Core
5 that runs as a guest VM (with512MB memory) on top of our system. Our testing
platform was a modest system, a Dell PowerEdge 2950 server with Xeon 3.16Ghz and
4GB memory running Scientific Linux 4.4. As mentioned earlier, the way to choose
these programs is based on the intuition that to hide a file (, aprocess, or a network
connection), a persistent kernel rootkit needs to compromise the kernel-side execution
of the ls (, ps, or netstat) program.

In our evaluation, we focus on those portions of collected traces that are related to
the normal functionality of the security program (e.g., thequerying of system states of
interest as well as the final result output) and exclude otherunrelated ones. For example,
if some traces are part of the loading routine that prepares the process memory layout,
we consider them not related to the normal functionality of the chosen program and
thus simply ignore them. Further, we assume that the chosen security program as well
as those dependent libraries are not compromised. Tables 1,2, and 3 contain our results,
including those specific execution contexts of related system calls. Encouragingly, for
each encountered HAP instruction, we can always locate the corresponding kernel
hook and our manual analysis on Linux kernel source code further confirms that each
identified kernel hook is indeed from a meaningful kernel object or data structure.

More specifically, these three tables show that most identified kernel hooks are part
of jump tables defined in various kernel objects. In particular, there are three main kernel
objects containing a large collection of function pointersthat can be hooked for hiding
purposes: the system call tablesyscall table, the SELinux-related security operations
tableselinuxops, as well as the capability-based operations tablecapability ops. There
are other kernel hooks that belong to a particular dynamic kernel object. One example
is the function pointerget unmappedarea (in thesysmmap2execution path of Table
2) inside themmkernel object that manages the process memory layout. Note that this
particular kernel hook cannot be determined by static analysis.

More in-depth analysis also reveals that an HAP instructionexecuted in different
execution contexts can be associated with different kernelhooks. One example is the
HAP instruction located in the system call dispatcher (Figure 1(a)) where around300
system call service routines are called by the same HAP instruction. A kernel hook can

8 Different versions ofps invokes different system calls to list files under a directory. In our
evaluation, the 3.2.7 version of ps uses thesysgetdentssystem call while the version 3.2.3
uses another system call –sysgetdents64. Both system calls work the same way except one
has a kernel hooksyscall table[141]while another hassyscall table[220].

12



Table 2. Process-hiding kernel hooks obtained by monitoring theps -efcommand in RedHat
Fedora Core 5

execution path # kernel hooks Details
sys read 17 syscall table[3], selinuxops[5], selinuxops[59],

capabilityops[5], kerntable[336], timerpmtmr[2],
proc info file operations[2], procfile operations[2],

proc sysfile operations[2], proctty driversoperations[2],
tty driversop[0], tty driversop[1], tty driversop[2],

tty driversop[3], procinode.op.procread,
simpleones[1].readproc, simpleones[2].readproc

syswrite 11 syscall table[4], selinuxops[59], dummycon[33], tty fops[4],
con ops[2], conops[3], conops[4], conops[5],

vga con[6], vgacon[7], tty ldisc N TTY.write chan

sysopen 20 syscall table[5], selinuxops[34], selinuxops[46],
selinuxops[47], selinuxops[60], selinuxops[88],

selinuxops[112], capabilityops[46], capabilityops[47],
pid basedentryoperations[0], procsops[0], procsops[2],

proc root inodeoperations[1], procdir inodeoperations[1],
proc self inodeoperations[10], procsysfile operations[12] ,

proc tgid baseinodeoperations[1], proctty driversoperations[12],
ext3 dir inodeoperations[13] (ext3.ko), ext3file operations[12] (ext3.ko)

sysclose 10 syscall table[6], selinuxops[35], selinuxops[50],
selinuxops[61], piddentryoperations[3],

proc dentryoperations[3], proctty driversoperations[14],
proc sops[1], procsops[6], procsops[7]

sys time 2 syscall table[13], timerpmtmr[2]

sys lseek 2 syscall table[19], procfile operations[1]

sys ioctl 5 syscall table[54], tty fops[8], selinuxops[62],
con ops[7], tty ldisc N TTY.n tty ioctl

sysmprotect 3 syscall table[125], selinuxops[64], capabilityops[64]

sysgetdents8 3 syscall table[141], selinuxops[59], procroot operations[6]

sysgetdents64 3 syscall table[220], selinuxops[59], procroot operations[6]

sysmmap2 8 syscall table[192], selinuxops[63], selinuxops[11],
capabilityops[6], capabilityops[63], ext3dir inodeoperations[3] (ext3.ko),

ext3 file operations[11], mm→get unmappedarea

sysstat64 16 syscall table[195], selinuxops[34], selinuxops[46], selinuxops[47],
selinuxops[49], selinuxops[88], selinuxops[112], capabilityops[46],

capabilityops[47], ext3dir inodeoperations[13] (ext3.ko),
pid basedentryoperations[0], piddentryoperations[3],

proc root inodeoperations[1], procself inodeoperations[10],
proc sops[0], proctgid baseinodeoperations[1]

sys fstat64 2 syscall table[197], selinuxops[49]

sysgeteuid32 1 syscall table[201]

sys fcntl64 2 syscall table[221], selinuxops[66]
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Table 3. Network-hiding kernel hooks obtained by monitoring thenetstat -atpcommand in
RedHat Fedora Core 5

execution path # kernel hooks Details
sys read 8 syscall table[3], selinuxops[59], seqops.start, seqops.show,

seqops.next, seqops.stop, proctty driversoperations[2]

syswrite 12 syscall table[4], selinuxops[59], dummycon[33],
con ops[2], conops[3], conops[4], conops[5],

tty fops[4], tty ldisc N TTY.write chan,
vga con[6], vgacon[7], vgaops[8]

sysopen 19 syscall table[5], selinuxops[34], selinuxops[35],
selinuxops[47], selinuxops[50], selinuxops[60],

selinuxops[61], selinuxops[112], capabilityops[47],
ext3 dir inodeoperations[13] (ext3.ko), piddentryoperations[3],

proc root inodeoperations[1], procdir inodeoperations[1],
proc sops[0], procsops[1], procsops[2],

proc sops[6], procsops[7], tcp4seqfops[12]

sysclose 9 syscall table[6], selinuxops[35], selinuxops[50], selinuxops[61],
proc dentryoperations[3], proctty driversoperations[14],

proc sops[1], procsops[6], procsops[7],

sysmunmap 2 syscall table[91], mm→unmaparea

sysmmap2 6 syscall table[192], selinuxops[11], selinuxops[63], capabilityops[6],
capabilityops[63], mm→get unmappedarea

sys fstat64 2 syscall table[197], selinuxops[49]

also be associated with multiple HAP instructions. This is possible because a function
pointer (contained in a kernel hook) can be invoked at multiple locations in a function.
One such example isselinuxops[47], a kernel hook that is invoked a number of times
in thesysopenexecution context of thepscommand. In addition, we observed many
one-to-one mappings between an HAP instruction and its associated kernel hook. Un-
derstanding the relationship between HAP instructions andkernel hooks is valuable for
real-time accurate enforcement of kernel control-flow integrity [14].

5.2 Case Studies

To empirically evaluate those identified kernel rootkits, we manually analyzed the source
code of eight real-world Linux rootkits (Table 4). For each rootkit, we first identified
what kernel hooks are hijacked to implement a certain hidingfeature and then checked
whether they are a part of the results shown in Tables 1, 2, and3. It is encouraging that
for every identified kernel hook9, there always exists an exact match in our results. In
the following, we explain two rootkit experiments in detail:

9 Our evaluation focuses on those kernel data hooks. As mentioned earlier, for kernel code
hooks, they can be scattered over every kernel instruction in the corresponding system call
execution path.
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Table 4.Kernel hooks used by real-world rootkits (‡ means a code hook)

rootkit kernel hooks based on the hiding features
file-hiding process-hiding network-hiding

adore syscall table[141] syscall table[141] syscall table[4]
syscall table[220] syscall table[220]

adore-ng ext3 dir operations[6]proc root operations[6] tcp4 seqfops[12]
hideme.vfs sysgetdents64‡ proc root operations[6] N/A

override syscall table[220] syscall table[220] syscall table[3]
Synapsys-0.4 syscall table[141] syscall table[141] syscall table[4]

Rial syscall table[141] syscall table[141] syscall table[3], syscall table[5]
syscall table[6]

knark syscall table[141] syscall table[141] syscall table[3]
syscall table[220] syscall table[220]

kis-0.9 syscall table[141] syscall table[141] tcp4 seqfops[12]

The adore rootkit This rootkit is distributed in the form of a loadable kernel
module. If activated, the rootkit will implant15 kernel hooks in the system call table
by replacing them with its own implementations. Among these15 hooks, only three of
them are responsible for hiding purposes10. More specifically, two system call table en-
tries –sysgetdents(syscall table[141]) andsysgetdents64(syscall table[220]) – are
hijacked for hiding files and processes while another one –syswrite (syscall table[4])
– is replaced to hide network activities related to backdoorprocesses protected by
the rootkit. A customized user-space program calledava is provided to send hiding
instructions to the malicious LKM so that certain files or processes of attackers’ choices
can be hidden. All these three kernel hooks are uncovered by our system, as shown in
Tables 1, 2, and 3, respectively.

The adore-ng rootkit As the name indicates, this rootkit is a more advanced suc-
cessor from the previousadorerootkit. Instead of directly manipulating the system call
table, theadore-ngrootkit subverts the jump table of the virtual file system by replacing
the directory listing handler routines with its own ones. Such replacement allows it
to manipulate the information about theroot file system as well as the/proc pseudo-
file system to achieve the file-hiding or process-hiding purposes. More specifically, the
readdir function pointer (ext3dir operations[6]) in the root file system operations table
is hooked for hiding attack files, while the similar function(proc root operations[6])
in the /proc file system operations table is hijacked for hiding attack processes. The
fact that the kernel hookext3dir operations[6]is located in the loadable module space
(ext3.ko) indicates that this rootkit is more stealthier and these types of kernel hooks are
much more difficult to uncover than those kernel hooks at static memory locations (e.g.,
the system call table). Once again, our system successfullyidentified these stealth kernel
hooks, confirming our observation in Section 1. Further, thecomparisons between those

10 The other12 hooks are mainly used to provide hidden backdoor accesses. One example is the
syscall table[6] (sysclose), which is hooked to allow the attacker to escalate the privilege to
root without going through the normal authorization process.
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hooks used by rootkits (Table 4) and the list of hooks from oursystem (Tables 1, 2, and
3) indicate that only a small subset of them have been used.

6 Discussion

Our system leverages the nature of persistent kernel rootkits to systematically discover
those kernel hooks that can potentially be exploited for hiding purposes. However, as
a rootkit may implant other kernel hooks for other non-hiding features as its payload,
our current prototype is ineffective in identifying them. However, the prototype can
be readily re-targeted to those non-hiding features and apply the same techniques to
identify those kernel hooks. Also, our system by design onlyworks for persistent kernel
rootkits but could be potentially extended for other types of rootkits as well (e.g,.
persistent user-level rootkits).

Our current prototype is developed to identify those kernelhooks related to the
execution of a chosen security program, either an anti-rootkit software or a system
utility program. However, with different programs as the input, it is likely that different
running instances will result in different sets of kernel hooks. Fortunately, for the rootkit
author, he faces the challenge in hiding itself from all security programs. As a result, our
defense has a unique advantage in only analyzing a single instantiated execution path
of a rootkit-detection program. In other words, a persistent kernel rootkit cannot evade
its detection if the hijacked kernel hooks are not a part of the corresponding kernel-side
execution path. There may exist some “in-the-wild” rootkits that take chances in only
evading selected security software. However, in response,we can monitor only those
kernel hooks related to an installed security software. As mentioned earlier, to hide
from it, persistent kernel rootkits will hijack at least oneof these kernel hooks.

Meanwhile, it may be argued that our results from monitoringa running instance
of a security program could lead to false positives. However, the fact that these kernel
hooks exist in the kernel-side execution path suggest that each one could be equally
exploited for hooking purposes. From another perspective,we point out that the scale
of our results is manageable since it contains tens, not hundreds, of kernel hooks.

Finally, we point out that our current prototype only considers those kernel objects
or variables that may contain kernel hooks of interest to rootkits. However, there also
exist other types of kernel data such as non-control data [9](e.g., theuid field in
the process control block data structure or the doubly-linked process list), which can
be manipulated to contaminate kernel execution. Though they may not be used to
implement a persistent kernel rootkit for control-flow modifications, how to extend the
current system to effectively address them (e.g., by real-time enforcing kernel control
flow integrity [10]) remains as an interesting topic for future work.

7 Related Work

Hook Identification The first area of related work is the identification of kernel hooks
exploitable by rootkits for hiding purposes. Particularly, HookFinder [23] analyzes a
given rootkit example and reports a list of kernel hooks thatare being used by the
malware. However, by design, it does not lead to the identification of other kernel hooks
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that are not being used but could still be potentially exploited for the same hiding
purposes. From another perspective, SBCFI [14] performs static analysis of Linux
kernel source code and aims to build a kernel control-flow graph that will be followed
by a legitimate kernel at run-time. However, the graph is notexplicitly associated
with those kernel hooks for rootkit hiding purposes. Furthermore, the lack of run-time
information could greatly limit its accuracy. In comparison, our system complements
them with the unique capability of exhaustively deriving those kernel hooks for a given
security program, which could be potentially hijacked by a persistent rootkit to hide
from it.

Hook-based Rootkit Detection The second area of related work is the detection of
rootkits based on the knowledge of those specific hooking points that may be used by
rootkits. For example, existing anti-rootkit tools such asVICE [8], IceSword [16], Sys-
tem Virginity Verifier [17] examine known memory regions occupied by these specific
hooking points to detect any illegitimate modification. Oursystem is designed with a
unique focus in uncovering those specific kernel hooks. As a result, they can be naturally
combined together to build an integrated rootkit-defense system.

Other Rootkit Defenses There also exist a number of recent efforts [12, 13, 15,
20–22] that defend against rootkits by detecting certain anomalous symptoms likely
caused by rootkit infection. For example, The Strider GhostBuster system [21] and
VMwatcher [12] apply the notion of cross-view detection to expose any discrepancy
caused by stealth rootkits. CoPilot [15] as well as the follow-up work [13] identify
rootkits by detecting possible violations in kernel code integrity or semantic constraints
among multiple kernel objects. SecVisor [20] aims to prevent unauthorized kernel code
from execution in the kernel space. Limbo [22] characterizes a number of run-time
features that can best distinguish between legitimate and malicious kernel drivers and
then utilizes them to prevent a malicious one from being loaded into the kernel. Our
system is complementary to these systems by pinpointing specific kernel hooks that are
likely to be chosen by stealth rootkits for manipulation.

8 Conclusion

To effectively counter persistent kernel rootkits, we havepresented a systematic ap-
proach to uncover those kernel hooks that can be potentiallyhijacked by them. Our
approach is based on the insight that those rootkits by theirnature will tamper with
the execution of deployed rootkit-detection software. By instrumenting and recording
possible control-flow transfer instructions in the kernel-side execution paths related to
the deployed security software, we can reliably derive all related kernel hooks. Our
experience in building a prototype system as well as the experimental results with real-
world rootkits demonstrate the effectiveness of the proposed approach.
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