
HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow
Integrity

Zhi Wang
Department of Computer Science
North Carolina State University

zhi wang@ncsu.edu

Xuxian Jiang
Department of Computer Science
North Carolina State University

jiang@cs.ncsu.edu

Abstract— Virtualization is being widely adopted in today’s
computing systems. Its unique security advantages in isolating
and introspecting commodity OSes as virtual machines (VMs)
have enabled a wide spectrum of applications. However, a com-
mon, fundamental assumption is the presence of a trustworthy
hypervisor. Unfortunately, the large code base of commodity
hypervisors and recent successful hypervisor attacks (e.g., VM
escape) seriously question the validity of this assumption.

In this paper, we present HyperSafe, a lightweight approach
that endows existing Type-I bare-metal hypervisors with a
unique self-protection capability to provide lifetime control-
flow integrity. Specifically, we propose two key techniques.The
first one – non-bypassable memory lockdown – reliably protects
the hypervisor’s code and static data from being compromised
even in the presence of exploitable memory corruption bugs
(e.g., buffer overflows), therefore successfully providing hyper-
visor code integrity. The second one –restricted pointer indexing
– introduces one layer of indirection to convert the controldata
into pointer indexes. These pointer indexes are restrictedsuch
that the corresponding call/return targets strictly follow the
hypervisor control flow graph, hence expanding protection to
control-flow integrity. We have built a prototype and used it to
protect two open-source Type-I hypervisors: BitVisor and Xen.
The experimental results with synthetic hypervisor exploits
and benchmarking programs show HyperSafe can reliably
enable the hypervisor self-protection and provide the integrity
guarantee with a small performance overhead.

I. I NTRODUCTION

Recent years have witnessed the wide adoption of virtu-
alization in today’s computing systems. The unique security
advantages from virtualization, especially in isolating and
introspecting commodity OSes as virtual machines (VMs),
have prompted a wave of research [18], [23], [28], [34],
[36], [37], [40], [44], [53], [59]. For example, Livewire [18]
pioneers the concept of VM introspection and applies it for
system monitoring and malware detection. SecVisor [40],
NICKLE [36], VMwatcher [23], Lares [34], HookSafe [53],
and SIM [44] leverage virtualization to protect the guest OS
kernel integrity or enable reliable monitoring of OS kernel
behavior. Most recently, a number of virtualization-based
system debugging and analysis tools such as K-Tracer [28],
PoKeR [37] and AfterSight [12] have been developed to
examine system anomalies and study kernel-mode malware,

which is considered difficult or in some situations impossible
to do with conventional approaches.

One fundamental assumption shared by all these research
efforts is the need for a trustworthy hypervisor (or virtual
machine monitor - VMM). A typical supporting argument
is that the hypervisor has a code base that is much smaller
than conventional OSes and thus can be better scrutinized to
remove software bugs. Unfortunately, contemporary hyper-
visors such as Xen [5] and VMware [52] still have a large,
complex code base (e.g., Xen3.4.1 contains∼230K source
lines of code or SLOC). A recent study of the National
Vulnerability Database [33] indicates that in the last three
years, there were26 security vulnerabilities identified in
Xen, and18 in VMware ESX. Some of these vulnerabilities
can be directly exploited to execute arbitrary code in the
hypervisor. Furthermore, successful VM escape attacks [14],
[57] as well as the emerging hypervisor rootkits [7], [24]
greatly exacerbate the current situation. In light of these
attacks, there is a pressing need to investigate effective ways
to secure the hypervisor [38].

One natural but challenging approach is to formally verify
that the hypervisor is secure. For example, the L4.verified
[27] project aims to guarantee the functional correctness of
a micro-kernel implementation, i.e., seL4 [26], by formally
proving that the C code implementation (with∼8700 SLOC)
correctly and precisely follows the abstract specificationand
contains nothing more. This is very helpful as it can lead to
strong security guarantees, especially in proving the absence
of certain types of software bugs (e.g., buffer overflows and
null pointer dereferences). However, to perform a formal
proof, it imposes several stringent requirements on the
micro-kernel design and implementation. For example, the
kernel should run with interrupts mostly disabled and no
address-of operator (&) and function calls through function
pointers will be allowed. Also, the memory management
component is moved out of the kernel space and exempted
from being formally proved. Further, besides its inherent
scalability constraint, we also notice that the proven func-
tional correctness from a manually-specified specification
does not necessarily equal the actual safety properties of
the system. As a result, though it is an attractive approach,

significant efforts are still needed to make it suitable for
commodity hypervisors as their designs are not constrained
by these restrictions.

From another perspective, we can tackle this hard problem
by guaranteeing runtime hypervisor integrity despite the
presence of exploitable software bugs. Common wisdom
holds that to secure a running application, one runs mon-
itoring software a layer below the application. However,
this is not applicable here, simply because the hypervisor
already runs at the lowest level of the software stack. It
may be argued that a nested hypervisor can be developed
to run underneath and protect another hypervisor running
above. However, a fundamental question of the same nature
still remains: “how to protect the hypervisor running at the
lowest-level?”

Existing hardware-based technologies including TPM [48]
and measured late launch [21] are capable of effectively
establishing static/dynamic root of trust by guaranteeingthe
loading of a hypervisor in a trustworthy manner. In other
words, they can guarantee the load-time integrity of the
hypervisor. However, the main challenge ishow to maintain
the same level of integrity continuously throughout the
lifetime of the hypervisor.Due to the fact that we cannot rule
out the presence of software vulnerabilities in the hypervisor,
we have to address the threat that after the hypervisor is
securely loaded, these vulnerabilities may be immediately
exploited to sabotage its integrity.

In this paper, we present the design, implementation, and
evaluation of HyperSafe, a system that reliably establishes
the continuous integrity of the lowest-level software on a
system, i.e., the hypervisor. Specifically, continuous integrity
in this paper is enforced in the form of lifetime control-flow
integrity [1]. Our system is lightweight and can be integrated
into commodity hypervisors1 without requiring specialized
hardware support. And unlike the previously mentioned
common wisdom, even though HyperSafe is a natural part of
the hypervisor, it preserves via a self-protection mechanism
the lifetime hypervisor integrity.

In particular, HyperSafe implements two key techniques:
The first one isnon-bypassable memory lockdown, which
essentially serves as the cornerstone for the entire scheme
and enables the unique hypervisor self-protection. Specifi-
cally, once a memory page is locked down, this technique
guarantees that the page needs to be unlocked first – even
for legitimate hypervisor code – in order to modify the page.
And by design, the unlocking logic will simply disallow
any attempts that will either modify existing hypervisor
code or bring external (malicious) code for execution in the
hypervisor space. In other words, this technique locks down
those write-protected memory pages (containing hypervisor
code and read-only data) as well as their attributes (in

1Considering the various flavors of hypervisor implementations (Section
II), we focus on those Type-I hypervisors. Some examples of these
hypervisors are Xen [5], VMware ESX [52], and BitVisor [46].

the page tables) and prevents them from being changed at
runtime, thus effectively achieving hypervisor code integrity.
We highlight that the enforcement cannot be bypassed even
in the presence of potentially exploitable memory corruption
bugs such as buffer overflows.

The second key technique isrestricted pointer indexing,
which essentially leverages the memory lockdown technique
to expand the protection coverage from hypervisor code
to control data. Notice that when used in related control
transfer instructions (e.g.,call/jmp/ret), the control data can
directly impact the control-flow of hypervisor execution.
Their security implications become evident, especially with
the recent exposure ofreturn-oriented programming[20],
[43]. Unfortunately, we cannot directly apply the memory
lockdown technique to protect all the control data, as some
of them (e.g., return addresses in the stack) will be dynam-
ically generated. To address that, we observe the potential
control flow always follows the control-flow graph, which
can be predetermined ahead of time. With that, we can
convert the control data (also calledpointers in this paper)
into pointer indexes and restrict them to be conformant to
the control-flow graph. In other words, we can pre-compute
possible control flow targets, save them in the target tables,
and restrict the accesses from pointer indexes to them. Since
these target tables are static, we can directly leverage the
memory lockdown technique to protect them. Consequently,
the protection of the hypervisor integrity is expanded from
the code to the control data for control-flow integrity.

To the best of our knowledge, HyperSafe is the first
system that is capable of providing hypervisor control-flow
integrity. To validate our approach, we have implemented
a proof-of-concept prototype and applied it to the protec-
tion of two open source Type-I hypervisors, i.e., BitVisor
[46] and Xen [5]. Specifically, the first key technique is
implemented by directly modifying the hypervisor source
code while the second key technique is implemented as a
compiler extension to the re-targetable LLVM framework
[30], which is thus hypervisor-transparent. As a result, the
BitVisor/HyperSafe prototype is a full implementation with
both key techniques. For the Xen port, since the current
LLVM release does not support compiling Xen yet, our
current prototype only enables the non-bypassable memory
lockdown, which still guarantees the nontrivial code integrity
of Xen. Our prototyping experience indicates that Hyper-
Safe’s code size is small and its integration with commodity
hypervisors is straightforward. Evaluation with synthetic hy-
pervisor attacks as well as a number of performance micro-
benchmarks and user applications show that the integrity
protection can be effectively enabled with less than5%

performance overhead.
The rest of the paper is structured as follows. We first

show the overall system design, discuss the threat model,
and present the two key techniques in Section II. We
show implementation details in Section III and present our

lifetime hypervisor control−flow integrity

run−time control−flow integrity

load−time integrity
trusted booting

(e.g., tboot)

hypervisor code integrity

hypervisor control−data integrity

restricted pointer indexingnon−bypassable memory lockdown
(Sec II.B) (Sec II.C)

Figure 1. A break-down of hypervisor integrity guarantees and the
corresponding key techniques in HyperSafe

evaluation results in Section IV. We discuss the support
of Type-II hypervisors as well as possible limitations and
improvements in Section V. After that, we describe related
work in Section VI and conclude our paper in Section VII.

II. H YPERSAFE DESIGN

A. Goals and Assumptions

In order to provide lifetime hypervisor control-flow in-
tegrity, we have three main design goals.First, the proposed
techniques should enable the self-protection of commodity
hypervisors. As the name indicates, self-protection may not
introduce new lower level mechanisms. Further, the self-
protection mechanism needs to bereliable in the presence of
exploitable memory corruption bugs (e.g., buffer overflows
or format string bugs) andeffectivein proactively preventing
attacks from gaining execution control over the hypervisor.

Second, the proposed techniques should not require re-
structuring or impacting the original hypervisor design while
still providing the desired integrity guarantee. In other
words, the proposed techniques need to be generic and
amenable to commodity hypervisors without limiting the de-
sign choices or imposing implementation restrictions (e.g., in
disabling certain programming language features). We may
need to tolerate some minor modifications to commodity
hypervisors, but the modifications should be minimal. Also,
based on the traditional classification between Type-I bare-
metal and Type-II hosted hypervisors and the fact that Type-
II hypervisors require a hosted OS kernel, our focus in this
paper is the support of Type-I hypervisors.

Third, the proposed techniques can be efficiently im-
plemented on commodity hardware, i.e., without relying
on sophisticated hardware support to achieve the integrity
guarantee or obtain reasonable performance for deployment.
Given this requirement, the challenge is to ensure that
the proposed techniques can be implemented on top of
commodity hardware, have a small footprint, and remain
lightweight with respect to performance impact.

Threat model and system assumption In this work,
we assume an adversary model where attackers are able to
exploit software vulnerabilities in an attempt to overwrite

any location in memory. However, to successfully launch
an attack, attackers will have to either inject and execute
their own code or leverage and misuse existing code. Note
this represents a powerful adversary model as attackers can
attempt to inject code, modify existing code, and exercise
more sophisticated attacks such as return-oriented ones [20].

In the meantime, we do assume trustworthy hardware,
especially the TPM [48]-assisted static/dynamic root of trust
[49], which can be leveraged to guarantee load-time hyper-
visor integrity. Due to the unsafe programming language
used in the implementation, we do assume the presence of
vulnerabilities in the hypervisor. However, the attackersare
restricted in their attempts to subvert the hypervisor integrity
by only exploiting these vulnerabilities, not by out-of-band
attacks (e.g., TLB cache or SMM exploitation [55], [56])
or layer-below attacks (including physical-level attacks).
Malicious DMAs [57] are not considered as they can be
readily blocked with hardware-based IOMMUs [21]. Notice
that our attack model is similar to that used in SecVisor
[40]; however, one key distinction is that HyperSafe is
designed to protect the hypervisor itself while SecVisor aims
to protect the guest kernel code integrity using a small
trustedhypervisor.

Based on this threat model, we propose two key tech-
niques, i.e.,non-bypassable memory lockdownandrestricted
pointer indexing, to enable the self-protection of commodity
hypervisors. Figure 1 shows a break-down of the required
hypervisor integrity guarantees as well as the corresponding
key techniques we propose to achieve them. Next, we will
describe in detail these two key techniques.

B. Key Technique I: Non-Bypassable Memory Lockdown

As mentioned earlier, this technique serves as the cor-
nerstone for the proposed hypervisor integrity protection. In
the following, we first give a brief overview of the available
memory protection mechanisms in the Intelx86 architec-
ture on which our system is developed. In essence, the
x86 architecture supports two types of memory protection:
segmentationandpaging. With the introduction of the new
64-bit mode of thex86 processor, segmentation has been
mostly disabled in favor of paging.2 Because of that, our
discussion will be focusing on paging and our system relies
on paging-based memory protection.

Specifically, the paging-based memory protection divides
the virtual address space into pages, and physical memory
into frames of the same size. The translation from the virtual
page to the physical frame is facilitated by the page tables.
Each page table has a number of page table entries (512

in x86 64). Each entry contains certain bits to specify the
corresponding page protection attributes, such as whetherthe
page is writable (theR/W bit), executable (theNX bit), or

2Some specific segments such as FS and GS may still be retained to
facilitate the addressing of local data or certain OS data structures.

requires privileged access (theU/S bit). Different from the
virtual page’s privilege levels, the CPU has four privilege
levels (or rings) from0 to 3 with 0 being the highest
privilege. The code running in privilege level3 can only
access user pages while the code running in privilege levels
0, 1 and2 is considered to be supervisor code and can access
both user pages and supervisor pages.

With these protection attributes, paging-based memory
protection allows for flexible customization to each and
every individual page. For example, one common usage of
these attributes in commodity OS kernels (e.g., Windows,
Linux, and OpenBSD) is to write-protect their code and
read-only data. Another similar one is to establish the W⊕X
property of the OS kernel to ensure its code integrity as
demonstrated in a few recent systems [36], [40].

Similarly, we are motivated to enforce the W⊕X for
hypervisor integrity protection. However, there are several
notable pitfalls. First, for historical reasons [36], commodity
OS kernels may allow the presence of mixed memory pages
that contain both code and data. Certainly, the presence of
such pagesdirectly violates theW ⊕X property and should
be avoided in the hypervisor. Second, for performance and
efficient resource sharing purposes, existing OS kernels
typically allow the mapping of several virtual pages to the
same physical frame and different virtual pages may possibly
have conflicting protection attributes. Such double mapping
indirectly breaks the W⊕X property and should not be
allowed in the hypervisor either. Third, most importantly,
the W⊕X-based integrity enforcement largely relies on the
integrity of page tables. For a write-protected page to be
modifiable, the corresponding page table entries will need to
set in a way to allow it. Unfortunately, in current hypervisors
(e.g., Xen and KVM) and OS kernels (e.g., Windows and
Linux), their page tables are allwritable! This implies that
even if a hypervisor ideally sets these memory protection
attributes, the enforcement can be easily bypassed since the
page tables are writable. Our experience indicates that the
ability to modify even one bit in a page table entry could
well be enough to subvert the entire protection.

From another perspective, if we assume the proper initial-
ization of the hypervisor page tables (i.e., no mixed pages,
no double mapping, and a correct W⊕X setup for each
memory page), the attacker will be forced to first manipulate
the page tables in order to bypass the W⊕X protection.
This observation motivates us to also write-protect the page
tables. By doing so, we can ensure thatno code including
legitimate code will be able to modify the write-protected
hypervisor code (and related control data – Section II-C). As
mentioned earlier, in order to proceed with any modification,
the page tables need to be changed to allow it. But the
write-protection of page tables disallows such a change.
Consequently, any write attempt to them (including the page
tables) will be hardware-trapped into the page fault handler,
which, as a part of legitimate code, is unable to modify them

either. This is a strong guarantee that serves as the basis to
establish and sustain hypervisor runtime integrity.

The above strong guarantee is desirable for hypervisor
protection as it can effectively prevent malicious updatesto
page tables. Unfortunately it will also trap and block all
benign updates. Again, the reason is that once paging is
enabled, the hypervisor can only access its memory through
virtual addresses, which will be translated and subjected
to protection checks by the page tables.3 As a result, the
creation of read-only page tables immediately leads to an
unsolvable paradox: read-only page tables can detect and
deny any malicious manipulation but they also make the
benign changes impossible.

To accommodate benign page table updates, we need to
design a secure way to temporarily bypass the enforcement
without being misused (e.g., by return-oriented attacks).This
is how our technique – non-bypassable memory lockdown –
comes into play. Specifically, our technique uses a hardware
feature called theWP bit (i.e., the Write Protect bit in
the machine control register CR0 [58]), which has existed
in all x86 CPUs since the Intel Pentium. TheWP bit
controls how the supervisor code interacts with the write
protection bits in page tables: If the WP bit is turned off, the
supervisor code has unfettered access to any virtual memory
(i.e., the write-protection is ignored). Otherwise, the write
protection attributes in page table entries will decide whether
the supervisor code can write to the memory page or not.
Note theWP bit was originally introduced to facilitate the
Copy-On-Write (COW) implementation of forking a new
process. More specifically, in Linux, when a process forks,
memory pages are COW-shared (or marked as read-only)
between parent and child processes. Therefore, any write to
a COW-shared page leads to the creation of a new copy of
the page and the sharing can then be removed. As a result,
OS kernel can simply set theWP bit to trap its own writes
to these pages, which greatly simplifies the COW design
and implementation. (Otherwise, OS kernel must check for
COW every time it writes to user space.)

With that, we can initially mark the page tables read-
only and turn on theWP bit to lock down any page
table updates, regardless of their intent being benign or
malicious. To allow benign ones to proceed, we can instead
escort them by temporarily clearing the WP bit right before
each update and re-enabling the bit right after. Naturally,
the entire escort operation needs to be atomic (e.g., with
interrupts disabled). Otherwise the attackers may potentially
interrupt the operation and leave the WP protection off.
Within the escort operation, HyperSafe can further validate
that the new page table entries conform to the security policy,
which can be specified by the hypervisor developer. In our

3Note that although the CPU’s hardware translates virtual addresses with
page tables, the hardware’s accesses are not translated as the CPU uses
physical addresses directly. Therefore the CPU has no trouble at all to read
and update them, e.g., to setA (accessed) andD (dirty) bits.

Benign

Malicious

Writeable page tables

(a) Traditional page table updates

OFF
WPBenign

Malicious

WP
ON

Page Fault

Read−only page tables

(b) New page table updates

Figure 2. Traditional page table updates vs. new page table updates in HyperSafe (Note theWP bit is ON by default)

implementation, we enforce a simple invariant that denies
page table updates that attempt to change the protection
attributes of hypervisor’s code and data or introduce a double
mapping. Though it may appear that this security check
is redundant once the hypervisor’s control-flow integrity is
protected, we show that this is not the case in Section IV-A.
Figure 2 shows the comparison between traditional page
table updates and the new page table updates in HyperSafe.

It is worth mentioning that to protect the hypervisor page
tables, we also need to protect related machine control
registers and data structures. For example, the hypervisor’s
page table base address is contained inCR3, which should
not change after the initialization. The same also applies for
the entries in the GDT (Global Descriptor Table) and the
IDT (Interrupt Descriptor Table). In addition, the hypervisor
virtualizes the guest’s memory by using either shadow page
tables (SPTs) or nested page tables (NPTs). The updates
to them need to be protected in a similar way to prevent
the attacker from gaining the control over the hypervisor’s
memory (e.g., by mapping it to a compromised guest).

To summarize, our technique effectively locks down
hypervisor memory pages to strictly specify and manage
memory protection attributes. Most importantly, the enforce-
ment of these memory attributes such as W⊕X is non-
bypassable (Section IV-A). As a result, we can reliably
provide hypervisor code integrity. Next, we will present
another key technique that essentially expands the protection
coverage to control-data and enables control-flow integrity.

C. Key Technique II: Restricted Pointer Indexing

Control flow integrity (CFI) is a powerful security mea-
sure, which strictly dictates the software’s runtime execution
paths. If the software’s runtime paths follow the statically
determined control flow graph, attackers can be prevented
from arbitrarily controlling the execution flow of the system.
Based on how control is transferred, there are two types
of control flow transfer instructions: direct and indirect.A
direct control transferis initiated by a direct function call
where the destination is encoded in the machine code in
the form of an absolute address or a relative offset. Accord-
ingly, control-flow integrity from direct control transfers is
maintained as long as the code integrity is guaranteed.

An indirect control transfer, which is our main focus,
can be caused by two sets of instructions: indirectcall/jmp

instructions (where the destinations may be specified in
registers or memory) and theret instructions. Eachret has
an implicit destination on the top of the current stack. Cor-
respondingly, there are two types of control data: function
pointers and return addresses. For simplicity, we also call
them pointers. Due to the dependence of indirect control
flow on these pointers, we need to protect their integrity to
preserve indirect control flow integrity.

Unfortunately, we face three main challenges:First, con-
trol data can be widely scattered in memory and can co-
exist together with other dynamic data on the same pages
[53]. Naive page level protection will likely lead to huge
performance overhead.Second, some control data can be
dynamically generated and thus their locations cannot be
determined a priori. A representative example is the return
address. This implies any protection scheme that requires
their locations to be static will fail.Third, some control data
such as return addresses can be updated at a high frequency.
This invalidates any approach that requires write-protecting
frequently updated control data. Our experience with a local
build of the Xen hypervisor (version3.4.1) for the x86-
64 architecture indicates that there is acall instruction on
average for every23 machine instructions in the binary and a
ret instruction for every79 instructions. At runtime, eachcall
instruction will push a return address onto the stack, which
will then be popped off by the correspondingret instruction.

From another perspective, we notice that though the
control data may be dynamically generated or frequently
updated, their contents always fall in a data set that can
be determined offline. As such, we can aggregate them into
individual target tables and, by introducing one layer of in-
direction, replace each control data with a restricted index to
the target table (hence the namerestricted pointer indexing).
More specifically, the target table contains all the legitimate
destinations for an indirect control flow instruction allowed
by the hypervisor program’s control flow graph (CFG). For
each indirectcall/jmp, its table contains the function entry
points it may enter. Similarly, the target table for aret
includes all the return addresses it may return to.

Based on the target tables, HyperSafe can essentially
replace all the runtime control data in the hypervisor pro-
gram with their indexes in the target tables. To perform a
control transfer, the indirect control flow instruction will be

func_j

Ri

call *%eax

Ri:

func_j:

ret

[esp]

eax

Call Site i Callee j

(a) Traditional indirection call

Ri:

call *%eax

 Ri

func_j

ret

func_j:

Target Table i

eax

[esp]

Target Table j

Call Site i Callee j

(b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call inHyperSafe (NoteRi is the return address of the indirectcall)

instrumented to convert the index back to the destination
address (e.g., by looking up the index in the table). For that,
we need to take the following two steps:

First, the instructions that introduce the control data into
the hypervisor program must be converted to use the indexes
instead. For simplicity, we call these instructionssource
instructions. The source instruction for a return address is
the relatedcall that pushes the return address onto the stack.
As a result, the call instruction will be instrumented into
two instructions: onepushes the index onto the stack and
another jmps to the function entry point. For an indirect
call, its source instruction is an earlier instruction that loads
the function address to the register or memory. Unlike the
return address case, the function pointer can possibly appear
in the data section (e.g., as a member of an initialized global
object or variable). As a result, we can leverage the compiler
to identify and convert them.

Second, the instructions that consume the control data
from the hypervisor program must be converted to translate
the indexes back to their destination addresses. Similarly,
we call these instructionssink instructions. Return addresses
will be used by theret instructions while function pointers
will be consumed by indirectcall/jmp instructions. During
instrumentation, aret will be converted to a sequence of
instructions to pop the index off the stack, convert it into the
return address, and then return to it. An indirectcall/jmpwill
be converted to use the index to locate the function entry
point and then continue execution there.

Based on the above instrumentation, an indirectcall acts
as a sink instruction for the consumed function pointer
and a source instruction for the dynamically-pushed return
address. Therefore, it will be instrumented twice. There may
also exist other instructions that access the control data but
are not the source and sink instructions. Among them, some
instructions can be left intact if the contents of the control
data are not explicitly examined by them. One example
is the mov instruction that copies the index to and from
registers or memory. Instructions that compare two function
addresses do not need instrumentation either if we assign the
pointer indexes in the order of their addresses. On the other
hand, instructions that examine the contents of control data
must be expanded to convert indexes into original control
data. A general solution is to discover and convert all such
instructions, ideally by the compiler. Fortunately, very few

instructions will touch return addresses on the stack. If they
do, most likely they are implemented in assembly and thus
we can instrument them manually. For function pointers,
most accessing instructions aremov or cmp. In this case,
the contents of the function pointers are not examined and
we can safely keep these instructions as is.

In Figure 3, we show the control flow for an instrumented
call/ret pair in HyperSafe when compared to the original
pair. In the figure, the originalcall has been instrumented
to fetch the index fromeax, convert it to a function entry
point by indexing into its target table, and then jump
to the function. By substituting indexes for control data,
HyperSafe limits the destination of a runtime control transfer
to only those explicitly specified in the target table. In
other words, indirect instructions can only transfer control
to the targets allowed by the CFG. Moreover, because all
the destination addresses are known beforehand from the
hypervisor program binary, these target tables can be pre-
computed offline. At runtime, they are protected by directly
applying the memory lockdown technique.

Furthermore, with the help of the target tables, HyperSafe
can flexibly control the precision of control-flow integrity.
In one extreme case, we can simply use two big tables:
one is for all the ret instructions (with all valid return
addresses) and the other one is for all the indirectcall
instructions (with all possible indirectly-called functions’
entry points). This scheme provides the least precision,
resulting in coarse protection: namely aret can return to
any valid return address in the hypervisor program; and an
indirect call can call any indirectly-called function. On the
other extreme, each indirectcall has its own target table,
and all ret instructions inside the same function share one
target table. In other words, each function has a dedicated
table for all of its returns. By doing so, we can provide
the finest control over what targets indirect instructions can
transfer control to. Note that there is no need to use one
target table per return instruction since all theret instructions
in a function always have the same set of return addresses.

As pointed out in [1], the major factor that impairs the
precision of control-flow integrity is the so calleddestination
equivalenceeffect. That is, two destinations are considered
to be equivalent if they connect to a common source in
the CFG. Further, the equivalence relation is transitive. In
Figure 4, we show an example of the destination equivalence

ret

func_j:

ret

func_i:

R2:

call func_j
R3:

R1:
call %eax

call func_i

Figure 4. Destination equivalence effect onret instructions (a dashed line
represents an indirectcall while a solid line stands for a directcall)

effect on theret instructions. In this figure, there are one
indirect call instruction and two directcall instructions.
The indirectcall may invoke both functionsfunc i and
func j while the two directcalls executefunc i and
func j, respectively.R1, R2 andR3 are the corresponding
three return addresses. From the figure, the functionfunc i
can return toR1 and R2, and the functionfunc j can
return toR1 andR3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, sinceR2 is equivalent toR1 and R1 is
equivalent toR3, based on the transitivity of the equivalence
relation,R2 is equivalent toR3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example,R1, R2 and R3 forms one equivalent
group, and tworet instructions infunc i andfunc j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction infunc i, and another table
“R1, error, R3” for the ret instruction infunc j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], whereR1, R2 and
R3 will bear the same label ID and bothret instructions
can legitimately transfer control to all of them. In particular,
in [1], the functionfunc i can legally return toR3 and
func j can legally return toR2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. I MPLEMENTATION

We have implemented a prototype of HyperSafe and
applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with∼190K SLOC)4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard64 bit Ubuntu9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown

The key novelty of our system is the non-bypassable
memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit inCR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed521 lines of C code
and9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.

In our prototype, we reserved the top128MB physical
memory for BitVisor. This memory is mapped1 : 1 to
the virtual address0x40200000. A 32MB memory range,
starting at the virtual address0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on theWP protection in theCR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updatesto
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.

After the page tables have been write-protected, any
write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to

update its page tables without violating the W⊕X property.
For example, the hypervisor may need to map part of
guest memory pages or device memory for its access. This
mapping is typically temporary as it will be removed imme-
diately after the hypervisor has accessed it. For that, instead
of triggering a page fault, the hypervisor first turns off the
WP protection, updates related page table entries, and turns
it back on. The BitVisor implementation provides several
helper routines, i.e.,pmap wr64 and pmap wr32, that are
used to update page table entries. Our prototype wraps
these routines by adding additional inline assembly code to
turn WP protection on and off. To ensure that such escort
operations are atomic, our prototype disables the interrupts
when an escort operation is in progress. Further, in order
to prevent the misuse of these routines, HyperSafe validates
whether the change is benign. Our current prototype simply
denies any change to the permission of the hypervisor’s code
and data sections after initial setup. Also, it disallows the
double mapping of the hypervisor’s code and data sections.
This check can be implemented efficiently by verifying
the page table update against various address ranges (e.g.
physical or virtual address ranges of hypervisor’s code and
data sections). As discussed in Section IV-A, this check is
not redundant even in the presence of a control-flow integrity
guarantee.

In our prototype, we use the memory lockdown feature
to write-protect not only the hypervisor’s code, but also
its static data. Some examples of this data include the
entries in the GDT, the IDT, and various target tables.
As mentioned earlier, all these data structures are security-
critical and should be write-protected by HyperSafe. For
guest page tables, there are two main virtualization modes:
shadow page table (SPT) and nested page table (NPT). In
the SPT mode, hypervisor “shadows” the guest page tables
by maintaining a corresponding copy, i.e., the shadow page
tables. The CPU translates the guest virtual address directly
to the host physical address using these shadow page tables.
The hypervisor also traps updates to the guest page tables
and synchronizes shadow page tables with them. In the
NPT mode, there are two levels of page tables used by the
hardware. The CPU first translates a guest virtual address to
a guest physical address with the guest page tables, and then
maps that guest physical address to a host physical address
based on nested page tables maintained by the hypervisor.
Note that the shadow page tables (if running in the SPT
mode) or the nested page tables (if running in the NPT
mode) need to be protected so that the hypervisor memory
will not be accidently mapped and accessible to the guest.

B. Restricted Pointer Indexing

Our second technique replaces all the control data with
their indexes and essentially leads to the protection of control
data to enforce control-flow integrity. Specifically, it first ag-
gregates all the possible destination addresses (functionentry

points and return targets) in a few read-only target tables,and
then replaces the destination addresses used by the program
with their indexes. By doing so, we can guarantee that an
indirect control flow transfer instruction that utilizes one of
these protected pointers will transfer the controlonly to the
addresses specified in the target tables. As discussed earlier,
we can also flexibly control the precision by adjusting these
target tables to handle the destination equivalence effect.
In our prototype, we implemented a scheme that uses one
table for each indirectcall/jmp instruction and one table
for each function (applicable for all theret instructions
contained in the function). The table per indirectcall/jmp
instruction contains all the function entry points it may call.
Similarly, the table per function has all the valid return
addresses for this function. As such, the target tables reflect
the hypervisor’s control flow graph.

Our technique is implemented as a compiler extension to
the re-targetable LLVM framework. We choose it because it
is a production-quality open source compiler infrastructure
that has a modular design and can be flexibly extended. In
particular, our extension includes a program analysis and
optimization phase that can be applied to the intermediate
representation (IR) of a program. In essence, it integrates
the supported alias analysis to build and generate the target
tables while extending the compiler back-end to instrument
instructions for the use of target tables. Note the target tables
contain information for both direct and indirect calls. The
control flow graph for the direct calls is simple to extract
because their targets are already encoded in the instructions.
For the control flow graph of indirect calls, we extend the
existing alias analysis in LLVM. Specifically, we leverage
the data structure analysis implemented in LLVM to identify
possible call targets. Note that the data structure analysis is
a context-sensitive, field-sensitive unification-based pointer
analysis. As a result, it is considered conservative. During
our implementation, we found that it is relatively effective to
analyze C code. However, it is unable to handle assembly,
which is one common limitation of existing alias analysis
tools.

In our prototype, we realize that one specific way BitVisor
saves and utilizes function pointers foils the data struc-
ture analysis. In particular, to facilitate multi-core support,
BitVisor keeps a per-cpu data structure and accesses it with
the help of thegs segment. (Notegs is one of the two
segments thatx86 64 keeps to allow for such access.)
With that, each processor can set itsgs segment’s base
or gs base to a location different from other processors.
And the hypervisor can conveniently access the per-cpu
data with thegs : offset addressing mode, which will be
translated by the current CPU into thegs base + offset.
As assembly code is required to load the per-cpu data, the
data structure analysis in LLVM is unfortunately unable to
uncover all the call targets. To handle that, we manually went
through the indirect calls that were not able to be analyzed

ret

push $index

call pmap_read

and $0x3f, %r8 # limit the index
pop %r8 # pop index off stack

jmp *%r8 # jmp to destination
mov RT_pmap_read (,%r8,8), %r8 # load destination

jmp pmap_read

is instrumented as:

Figure 5. The instrumentedcall to pmap read and the correspondingret (note the instrumentation is done inx86 64)

and then leveraged our domain knowledge to resolve them.
Our experience shows that there are126 indirectly called
functions and360 indirect call sites in BitVisor, and the data
structure analysis was able to extract indirect call targets for
about three fourths of them. Therefore, we had to manually
analyze the rest. We point out that most of these manual
efforts only need to be done once, though ideally we still
need an automated approach. For that, the recent efforts
[8] on alias analysis at the assembly level can be naturally
integrated and extended.

Once the complete call graph is derived, it is a rather
straightforward process to generate the target tables. In our
prototype, we use the standard union-find algorithm to locate
the equivalent targets and assign the same index to the
destinations if they appear in multiple target tables. Also,
our prototype assignserror to certain target table entries if
they are not reachable in the call graph. In our build of the
hypervisor, it turns out that there are681 target tables for
ret instructions and360 target tables for indirectcalls. If we
include direct calls, there are4100 call sites in total.

After building the control-flow graph and generating the
target tables, we extend the compiler back-end to instru-
ment relevant source and sink instructions. In our build
environment, the compiler first compiles the C source into
assembly code, and then generates the executable binary
with GAS, the GNU Assembler. Our prototype extends
a LLVM component called AsmPrinter to generate the
instrumented assembly code. Specifically, acall instruction
is instrumented to push the index of its return address to the
stack, while aret is instrumented to pop the index off the
stack, fetch the actual return address from its target table,
and continue execution there.

To better describe the scheme and discuss one possible
optimization we identified and implemented in our system,
we consider the instrumentation of a directcall. In Figure
5, we present the results after instrumenting a directcall to
the functionpmap read and the correspondingret in that
function. Basically, the instrumentedcall instruction pushes
the index of the return address to the stack followed by a
jump to the target function. Theret instruction is rewritten
to first pop the index off the stack, then load the actual return
address from its target table (RT pmap read) and resume
execution to it. In this example,RT pmap read is defined
as a static global variable to contain the return addresses of
58 calls to pmap read. For alignment purposes, the table

actually contains64 elements and invalid elements are filled
in with error – the address of an error reporting routine to
trap illegal control flows. In the meantime, it also allows
HyperSafe to prevent possible index overflows with one
and instruction (the second instruction in the instrumented
ret as shown in the figure). To reduce the performance
overhead, we use a caller-saved register, i.e.,r8, to facilitate
the instrumentation and avoid unnecessary register spilling.

Furthermore, in the case that a target table only contains
a single entry, we apply an optimization that avoids the
instrumentedret instruction to read the target address from
the target table. Specifically, the instrumentedret will be a
simple add that increments thersp register by8 bytes to
remove the return address index from the stack, followed
by another directjmp to the corresponding target. Note this
optimization has performance benefits and is made possible
because the function is only called from a particular call
site. When compared to the unoptimized case (Figure 5), this
optimization saves two memory accesses (inpop and mov,
respectively) and replaces the indirectjmp with a direct
jmp. In our prototype, we found that291 out of 681 target
tables for return instructions contain only one entry and their
optimizations greatly contribute to reducing the performance
overhead of the system.

The indirect calls are handled in a similar way. Since the
targets for these indirect calls are function entry points,we
need to convert the uses of function entry points to their
indexes. Accordingly, we convert those source instructions
(e.g.mov) that load function addresses into registers to load
their indexes instead. Note the locations of these source
instructions are easy to identify in the compiler since one
of its operands is actually the symbol of the function. After
that, we replace the function addresses in data structures
with their corresponding indexes. Our system instruments
the corresponding sink instructions (at the correspondingin-
direct call sites) to examine the indexes from their operands
and convert them back to the function entry points (i.e., by
indexing into the target tables). Similarly, we can also apply
the previous optimization if a particular indirect call hasonly
one target in the target table. By doing so, we can replace the
indirect call with a direct call and improve performance by
avoiding one memory read (of the function pointer). In our
prototype, we found294 out of 360 target tables for indirect
calls contain only a single entry and can thus be optimized.
Further investigation shows that most of these optimized

indirect calls are due to the specific way taken by BitVisor
to support the two existing X86 hardware virtualization
architectures, namely Intel VT and AMD SVM. In particular,
BitVisor defines a common interface for the support of Intel
VT and AMD SVM. The common interface contains a
set of function pointers to abstract the difference between
them so that the upper layer software can be shielded from
low level details. With that, since only one architecture is
possible at runtime, we optimized these function pointers at
the compiler time according to the CPU used. Besides these
source and sink instructions, we do not observe the presence
of any other instructions that examine the function pointers’
content. In other words, there is not a single arithmetic
operation on function pointers.

It is also interesting to mention that in the early devel-
opment of our second technique, we explored another way
to handleret instructions: shadow stack. Specifically, each
call pushes a copy of the return address to the shadow stack
and eachret fetches the return addresses from both the
shadow stack and the original stack and then compares them
to detect any corruption. However, one challenge we realized
is how to effectively protect the shadow stack. One feasible
approach on thex86 architecture is to use segmentation: the
shadow stack is kept on an isolated segment from the seg-
ments used by the normal code and will be only accessible
by instrumented instructions. Unfortunately, segmentation
support is largely disabled on thex86 64 platform. Another
possibility is to make the shadow stack read-only with the
same memory lockdown technique (i.e., by wrapping the
call/ret instruction with the code to dynamically switch
the WP bit on and off). We have actually implemented
this approach but our experiments show that it incurs a
performance penalty of more than300%. This is rather
disappointing. The reason is that the return addresses are
frequently generated and the instructions to read and write
CR0 (to change theWP bit) are more expensive than
other regular instructions. After these failed attempts, we
eventually ended up with the current scheme that achieves
the desired security properties with a small performance
overhead (Section IV).

To summarize, our second technique effectively protects
the control data and allows for a stronger hypervisor control-
flow integrity guarantee from the original code integrity.

IV. EVALUATION

In this section, we first analytically examine the security
guarantees provided by HyperSafe. Then we present our
experiments with synthetic hypervisor exploits and measure
the performance overhead.

A. Security Analysis

As mentioned earlier, HyperSafe implements two key
techniques: non-bypassable memory lockdown and restricted
pointer indexing. The first technique essentially guarantees

the hypervisor code integrity and the second technique
expands the protection to enforce control-flow integrity. In
the following, we systematically examine possible threatsto
these security guarantees.

To subvert the hypervisor’s integrity, an attacker’s main
goal is to modify existing hypervisor code or introduce
and execute its own attack code in the hypervisor space.
Since the modifiability of existing hypervisor code and
executability of introduced attack code are governed by the
hypervisor page tables, the attacker needs to first subvert
the page tables. Due to non-bypassable memory lockdown
in HyperSafe, these page tables are write-protected with the
WP bit on. In the following, we examine two possible
attacks to subvert the protected page tables.

Disabling the WP bit The first attack aims to turn
off the WP bit. Since the attackers are not yet able to
inject and execute their own attack code, they must misuse
existing hypervisor code. To accommodate benign page
table updates, HyperSafe does introduce additional code to
temporarily turn off theWP bit. Specifically, to legitimately
update a page table, HyperSafe uses an atomic function
that disables interrupts and turns off theWP protection
before updating the page table. Immediately after the update,
the WP protection is turned back on again. With that, in
order to disable theWP bit, the attacker must divert the
normal execution flow (i.e., by hijacking control data) before
the WP bit is turned on again. Based on the control-data
protection by the second key technique of HyperSafe, such
a diversion attempt is effectively defeated.

Another possible method is to compromise a previously
saved runtime context. For example, the hypervisor may save
important control registers (such asCR0 with the WP bit
andCR3 as the page table base address) to writable memory
and later restore them. The attacker could potentially gain
full control of the execution if these saved states can be
tampered with. In our prototype, we ensure the correctness
of these states before restoring them, i.e., their values are
not changed after being initialized.

Subverting the page tables Alternatively, the attackers
could subvert the page tables. As before, due to their
inability to directly execute their own code, the attackers
have to misuse existing code. For that, the attackers may
attempt to introduce a double mapping (Section II) to bypass
the protection. Specifically, they can change or provide mali-
cious parameters to those normal routines that handle benign
page table updates. Based on our current adversary model,
this attack is possible (even if we can faithfully enforce
control-flow integrity) due to the presence of exploitable
software bugs. Fortunately, our memory lockdown technique
enforces a simple invariant by disallowing double mapping
and any changes to the permission bits (e.g.,R/W and
NX) associated with the hypervisor code and data. A more
subtle attack is that the attacker might map the hypervisor’s
memory to a compromised guest VM (another variant of

double mapping) by manipulating shadow page table entries.
HyperSafe effectively blocks this by write-protecting the
shadow page tables and preventing it from happening.

Also, instead of focusing on subverting page tables, the
attacker may simply misuse existing code for malicious
computations – as demonstrated by recent return-oriented
programming [20], [43]. We point out the recently-surfaced
return-oriented attacks are the very reason behind the ex-
panded HyperSafe protection from the code integrity to the
control-flow integrity. Specifically, with restricted pointer
indexing, HyperSafe protects the control-data and ensures
their uses will always adhere to the control flow graph that
is pre-computed a priori. It may be argued that aret may
be manipulated to return to another return address that is
contained in its target table but not in the last call site.
However, such an attack is seriously limited in its scope
and capability due to the need to follow the pre-determined
control flow graph. Also, recent efforts (e.g., WIT [2]) can
be naturally integrated for improved precision and protection
coverage.

To the best of our knowledge, HyperSafe is the first sys-
tem that is able to provide hypervisor control-flow integrity.
This guarantee is achieved by creating an unbreakable dead-
lock for the attackers. Specifically, the deadlock is centered
on the need to subvert the page table for the attackers: On the
one hand, to manipulate the page table, the attackers need
to execute a turn-off-WP instruction injected or misused out
of the normal control flow. On the other hand, to execute
the turn-off-WP instruction injected or misused out of the
normal control flow, they need to hijack the execution and
tamper with write-protected code or control-flow data, which
in turn requires manipulating the page table. By integrating
recent TPM-assisted static/dynamic root of trust [21], [48]
that establishes load-time integrity, HyperSafe effectively
enables non-subvertable enforcement for lifetime integrity.

B. Synthetic Experiments

To further validate the HyperSafe’s design, we empirically
evaluated its effectiveness against several powerful synthetic
attacks. Specifically, we deliberately introduced a hyper-
call interface with various buffer overflow vulnerabilities
and ported the Wilander’s buffer overflow benchmark test-
suite [54] for a number of realistic attack scenarios. By
exploiting these vulnerabilities, the attacker can write to
arbitrary memory locations with any value of choice. In
our experiments, we have conducted four different types
of attacks: the first one modifies the hypervisor code, the
second one executes from the injected code, the third one
modifies the page table, and the fourth one tampers with a
return pointer. Note these attacks mimic the key techniques
of the real world attacks against hypervisors as shown in
the National Vulnerability Database [33]. Our experiments
show that HyperSafe successfully prevented all of them.

More specifically, in the first experiment, we tried to over-
write one of the hypervisor’s instructions with the instruction
to reload theCR0 register so that theWP bit can be turned
off. The write operation immediately triggered a page fault
exception with the error code0x03. This error code indicates
that the fault was caused by an illegal memory write and the
registerCR2 contains the address of the faulting memory
write. In the second experiment, we spilled a sequence of
code (that turns off theWP protection) to a global array in
the heap and the exploit triggered the execution of the spilled
code. This attack is successfully foiled by the HyperSafe’s
NX protection as the execution attempt leads to a page fault
exception with an error code0x11. This error code reports
that the page fault was caused by an NX violation. In the
third experiment, we targeted the page table by attempting to
make the previously mentioned array executable. We point
out this attack challenges the HyperSafe’s key technique –
non-bypassable memory lockdown – andwill be successful
in a hypervisor if not protected by HyperSafe. Fortunately,
with HyperSafe, the hypervisor’s page tables are write-
protected, and the page table update attempt triggered a
page fault with the error code0x03. As compared to the
first experiment, the faulting address (contained inCR2)
in this case now pointed to one of the page table entries.
Lastly, in our fourth experiment, we attempted to alter the
hypervisor’s control flow by modifying a return pointer
on the stack. Interestingly, HyperSafe silently defeated and
recovered from the attack. A further investigation showed
that the attacked return pointer belongs to a function, which
is called only from one location. Recall the optimization
that avoids the unnecessary memory reads for performance
(Section III-B), the instrumented code essentially ignores the
return pointer on the stack and uses a directjmp instruction
to return to its (single) caller. When the optimization is
not applied, the modified return pointer (or more precisely
pointer index) will return back to either the original caller
or error. In either case, this attack is foiled.

Also, we point out that once an attack is detected, we can
easily combine the knowledge of the page fault’s error code,
the faulting address, and the hypervisor’s memory layout
to infer the nature of captured attacks. For example, if the
faulting addressCR2 points to an entry in a page table and
the error code is0x03, we can tell that the attacker intended
to manipulate the hypervisor’s page tables. Based on the
nature of the captured attack, we can then determine the
most appropriate response. In our prototype, we simply issue
an alert message, dump the machine context, and recover the
execution if possible by ignoring the page faults.

C. Performance Evaluation

To evaluate the performance overhead introduced by Hy-
perSafe, we measured the runtime overhead with standard
benchmark programs including LMbench [31], UnixBench
[51], ApacheBench [4], and two other real world applica-

Table I
SOFTWARECONFIGURATIONS FOREVALUATION

Item Version Configuration/command
Ubuntu Desktop 9.10-AMD64 standard installation

Clang/LLVM 2.6 pre-release2 default configuration
LMbench 3.0-a9 make results see

UnixBench 4.10 ./Run
Kernel Build 2.6.31.4 (59MB) make allnoconfig && make

bzip2 1.0.5 tar -jxf <kernel file>
Apache Server 2.2.12 Ubuntu package
ApacheBench 2.3 ab -c3 -t 60<url>

HS−2
HS−m

 50%

 60%

 70%

 80%

 90%

 100%

Decompress KernelBuild ApacheBench

Figure 6. Normalized performance of application benchmarks with the
original BitVisor as the baseline

tions. Our testing platform is a Dell Optiplex755 desktop
with a 3.0GHz Intel E8400 Core2Duo processor and3GB
memory. The machine runs a default installation of the
Ubuntu9.10 desktop with the official2.6.31.14 kernel. Table
I shows the configurations of our evaluation platform.

We tested the guest OS’s performance under BitVisor in
two scenarios:with and without the HyperSafe protection.
In order to further evaluate the impact from the improved
precision, we tested two different implementations of Hyper-
Safe: one has the least precise implementation with two big
target tables (one for return instructions and one for indirect
calls), and another has the most precise implementation
with one target table for each function and one target table
for each indirect call instruction. For simplicity, the former
prototype is represented asHyperSafe-2, and the latter as
HyperSafe-m. Note that theHyperSafe-mprototype includes
the optimization mentioned in Section III-B.

In our evaluation with the application benchmarks, we
calculated the running time with the Linuxtime com-
mand and reported the system time plus user time. In
the ApacheBench test, we run the Apache server inside
the Ubuntu 9.10 desktop and the ApacheBench client on
another Dell machine with the same hardware configuration
to measure the web server’s throughput. These two machines
were interconnected by a Gigabit Ethernet switch. All the
test results reported here were the average of 10 runs. The
deviations among these 10 runs are small (< 3%).

Application Benchmarks: We first performed
application-level tests to measure HyperSafe’s impacts on
real world programs. For that, we decompressed the official
Linux 2.6.31.4 kernel source tarball, and then compiled
the kernel. Conceptually, the kernel decompression is

Table II
LM BENCH PERFORMANCE RESULTS(IN µs – SMALLER IS BETTER)

VMM ctx stat mmap sh proc 10K file Bcopy
BitVisor 31.0 0.86 5379 5976 28.8 1377

HyperSafe-2 32.7 0.87 5411 6181 30.1 1451
overhead 5.5% 1.2% 0.6% 3.4% 4.5% 5.4%

HyperSafe-m 31.2 0.86 5249 5844 29.8 1416
overhead 0.6% 0% -2.4% -2.2% 3.5% 2.8%

a computation-oriented task which will involve less
hypervisor intervention, while the kernel compilation
involves lots of device I/Os that will be intercepted by the
hypervisor. As a result, we anticipate that the impact on
the kernel compilation is more significant than the impact
on the kernel decompression. The third test is the standard
ApacheBench program that measures the throughput of an
Apache web server running inside the Ubuntu system.

Figure 6 shows the normalized performance results of
HyperSafe-2 and HyperSafe-m when compared to the un-
modified BitVisor. Overall, HyperSafe-m introduces less
than 5% performance overhead. Interestingly, in all these
tests,HyperSafe-m outperforms HyperSafe-2!This sounds
counter-intuitive as HyperSafe-m achieves better precision
than HyperSafe-2 likely at the cost of higher performance
overhead. A further investigation indicates that the presence
of multiple target tables and the optimization that avoids
unnecessary memory reads when performing indirect con-
trol transfers both lead to improved performance. More
specifically, the finer destination tables can improve cache
utilization due to better locality. Also, the optimizationin
HyperSafe-m avoids the execution of additional memory-
reading instructions.

Micro-benchmarks: We also used the standard micro-
benchmark suites to evaluate HyperSafe’s impacts on various
aspects of OS operations. Here, we focus on the context
switch and memory operation overheads as they are known
to cause most performance impacts [46]. In Table II, we
show the LMbench results. Specifically, the columnctx
shows the latency of performing a context switch; the
columnsstat andmmapare the latency required to execute
the corresponding system call;sh proc is the time spent to
execute the C library functionsystem; and 10K file reports
the time to create a 10KB file; and the columnBcopy
shows the time to copy 1MB data using the C library
function bcopy. For the UnixBench results, the final scores
for BitVisor, HyperSafe-2, and HyperSafe-m, are865.9,
844.5 (2.5%), and849.6 (1.9%), respectively.

In general, BitVisor without the HyperSafe protection per-
forms better than the two HyperSafe-based implementations.
However, for two specific tests, i.e., themmapandsh proc
tests, HyperSafe-m actually performs better than BitVisor
by a small margin, likely caused by the variations in our
experiments. And consistent with the previous application-
level tests, HyperSafe-m always beats HyperSafe-2 for the
same reason as mentioned earlier: HyperSafe-m can achieve

better cache utilization and avoid unnecessary memory reads
in certain control flow transfers. In other words, HyperSafe-
m is not only more precise than HyperSafe-2, but also runs
faster. As a result, the benefits in achieving an enhanced
security guarantee and improving system performance are
worth the extra development and debugging efforts to im-
plement the more precise HyperSafe-m.

In conclusion, HyperSafe is a lightweight hypervisor
protection mechanism that incurs less than5% performance
overhead, thus satisfying our third design goal (Section II).

V. D ISCUSSION

In this paper, we have so far discussed the protection
of Type-I bare-metal hypervisors by proposing two key
techniques. In the following, we examine the possibility of
porting them to support other Type-II hosted hypervisors or
commodity OS kernels. Note a type-II hypervisor requires
a hosted OS kernel. Therefore, similar challenges will be
encountered to enable their support. In the following, we
discuss the challenges we may face in the process and
examine possible limitations in the current prototype.

At first glance, Type-I hypervisors and commodity OSes
(including the Type-II hypervisors) are both system software
that directly run on top of the bare-metal hardware and
can be similarly supported. However, certain choices made
in commodity OS design and implementation present addi-
tional challenges to achieve the intended security guarantees.
For instance, the design of modern OSes such as Linux put
much emphasis on the performance. Developers use all kinds
of hacks to squeeze more performance from the hardware.
And unfortunately, not all of these techniques are sound
in security. This is especially true in the area of memory
management. Issues such as double mapping and mixed
pages are quite common in commodity OS kernels (e.g.,
the Linux kernel always doubly-maps the lower memory).
To implement the similar memory lockdown technique in
HyperSafe, we need to remove all the doubly-mapped and
mixed pages. In this process, the presence of doubly-mapped
pages will likely cause more difficulties as it will require
to overhaul the way the kernel accesses its memory. And
conceivably, it is a challenging task to ensure the re-
designed memory management can still achieve comparable
performance while accommodating the much more frequent
(benign) page table updates. Considering the need to escort
page table updates and the associated overhead, the OS
might consider implementing a batch mode for page table
updates so that the cost can be amortized.

Additional challenges are also present to enforce the ker-
nel’s control-flow integrity, mainly due to the asynchronous
nature of context switching and interrupt handling as well as
the support of (potentially closed-source) third-party drivers.
In particular, when a running process is being interrupted,
the machine states are saved to memory so that they can
be re-used later for resumption. Note these saved states can

be potentially tampered with by the attacker to hijack the
control flow. For that, there is a need to carefully examine
all possible situations that may lead to states being saved to
memory and ensure their correctness before being restored.
Fortunately, most of these efforts are required only once.
However, the support of loadable kernel modules, espe-
cially closed-source third-party drivers, remains a challenge.
Specifically, for the enforcement of control-flow integrity,
our second key technique requires a precise alias analysis.
How to improve its precision when handling a large-scale
system software such as commodity OS kernels as well as
assembly instructions (or binary code) is still an ongoing
research topic.

Also note that in its current form, our CFI enforcement
is not as restrictive as possible because impossible paths [1]
are still tolerated. For example, the indirect call site R1 in
Figure 4 is allowed to transfer control to functionsfunc i
andfunc j. However, there may exist certain execution paths
where only one of them is the valid target. Similarly, a return
instruction may return to call sites other than its most recent
caller. In Figure 4, the attacker may force functionfunc i
to return to call siteR2 by manipulating the return index
on the stack, even that the function should return toR1. To
address impossible paths, one possible way is to make our
CFI enforcement context sensitive. For instance, the shadow
stack provides a viable way to enforce strict control transfer
for returns. Unfortunately, our implementation experience
(Section III-B) shows that performance overhead of write-
protected shadow stack is high. However, despite these lim-
itations, CFI still severely limits what attackers can achieve
and is able to provide protection against a wide spectrum of
attacks [1], [25].

For the very same reason, in our prototype, for some
specific indirect function calls, we were forced to manually
compute their call targets to handle the imprecision of the
existing alias analysis tool we used. Manual analysis is
tedious, time-consuming and error-prone. For the support
of commodity OSes, there is a need to completely eliminate
the need of manual involvement. To achieve that, we need to
(1) scale the current field-and-context-sensitive unification-
based alias analysis method and make it applicable for com-
modity OS kernels; and (2) enhance it for better precision
by allowing for inclusion-based or flow-sensitive alias anal-
ysis and supporting assembly code. Note some promising
progresses in this direction have been made by existing
research efforts [6], [8], [11], [19] and the integration of
these techniques remains an interesting direction for future
work.

VI. RELATED WORK

Program Analysis and Formal Proof The first area of
related work is recent efforts in applying static analysis to
identify and remove software bugs or using formal methods
to prove certain security properties. For example, static

analysis, model checking, and symbolic execution have long
been explored in the area of security research [2], [9], [10],
[15], [17]. These systems are designed to uncover bugs in the
source code [10], [15]; prevent the bug from being exploited
[2]; reason about the safety of one facet of the software [9];
or demonstrate the absence of some kind of bugs [17]. Some
of these systems can be scaled to analyze commodity OS
kernels. However, they typically focus on a small subset of
security vulnerabilities or properties. For example, Bugrara
et al. [9] validates the safety of Linux kernel’s pointer
dereferences in system call arguments, where the safety is
defined by the presence of sanity checks of pointers, not the
proper use of the dereferenced contents.

There also exist parallel research efforts [3], [16], [26]
that aim to formally prove the safety of system software.
Among them, seL4 [26] recently made significant progress.
In particular, it proves that the C code of the seL4 micro-
kernel (∼8700 SLOC) implements the behaviors specified
in the abstract specification and contains nothing more.
As mentioned earlier, the proof is achieved by imposing
several restrictive requirements on the micro-kernel’s design
and implementation. Specifically, it requires interrupts being
disabled for most of the time and instead schedules the
interrupt polling at a small number of carefully-placed
interrupt points. Further, it moves the memory management
out of the kernel and avoids the need of verifying it as part
of seL4. Due to these restrictions, it is still an open question
of how well formal methods can be applied to commodity
hypervisors such as Xen. (Note Xen3.4.1 has∼230K SLOC
and its memory management alone has>14K SLOC). In
comparison, HyperSafe takes a different approach to provide
control-flow integrity even in the presence of exploitable
memory corruption bugs. As such, both approaches are
complementary in nature and our system can be leveraged
to ensure the runtime integrity of a seL4 micro-kernel.

Protection of OS Kernels or Running Applications
The second category of related work aims to protect the
integrity of OS kernels or running applications. Systems
such as [34], [35], [36], [40], [44], [53] take advantage of
the isolation and dominant control provided by a trusted
hypervisor to secure the integrity of guest OS kernels.
With their assumption of a layer-below trusted entity to
provide the base, the techniques in these systems cannot be
directly applied for the hypervisor protection. In other words,
HyperSafe can not enjoy the luxury of such an one-layer-
below approach since it already runs at the lowest layer.

There also exist a number of other systems that have been
developed to protect the control data from being hijacked.
For example, StackGuard [13], StackShield [47], and others
[29], [54] protect the return addresses from being hijacked
or misused. Lares [34] and HookSafe [53] instead protect
kernel hooks (or function pointers) inside the kernel space
from being manipulated by rootkits. Note each system only
partially meets the need in enforcing the entire control-flow

integrity and their enforcement usually relies on a trusted
entity. In contrast, our system enables the self-protection
of hypervisors and provides non-bypassable enforcement of
control-flow integrity.

The notion of control-flow integrity is initially proposed
to protect user-level applications [1] by assuming two
fundamental assumptions, i.e., non-writable code and non-
executable data, from the underlying OS kernel. As a
comparison, HyperSafe eliminates these two assumptions by
proposing a non-bypassable memory lockdown technique.
Without relying on external or layer-below components
to provide the intended integrity guarantee, this technique
serves as the foundation of our scheme and is thus one key
contribution of this paper.

Hardware Support for Static and Dynamic Root
of Trust Also closely related, the Trusted Computing
Group [50] has provided foundational work such as Trusted
Platform Module (TPM) [48] and Core Root of Trust for
Measurement (CRTM) [50] that enabled trusted computing
in commodity hardware. The recent Intel TXT technology
[21] has provided a reliable way called measured late launch
to securely load a clean hypervisor (or OS kernel). They have
been leveraged to provide secure loading (with the guaran-
teed load-time integrity) [49], [32], integrity measurement
[39], [22], and attestation [41], [42], [45]. HyperSafe relies
on these works to ensure hypervisor load-time integrity and
further complements them by effectively providing runtime
integrity to the hypervisor.

VII. C ONCLUSION

We have presented HyperSafe, a lightweight approach
to provide lifetime control-flow integrity for commodity
Type-I hypervisors. HyperSafe achieves its goal by two key
techniques: The first technique locks down write-protected
memory pages and prevents them from being manipulated
at runtime, thus effectively protecting the hypervisor’s code
integrity; The second key technique converts the control data
into pointer indexes by introducing one layer of indirection
and thus expands protection to include control-flow enforce-
ment. A proof-of-concept system has been developed to pro-
tect two open-source Type-I hypervisors: BitVisor and Xen.
Experimental results with a number of (synthetic) hypervisor
attacks as well as benchmarking programs show HyperSafe
can reliably provide the intended security guarantee with a
small performance overhead.

Acknowledgments The authors would like to thank the
anonymous reviewers for their numerous, insightful com-
ments that greatly helped improve the presentation of this
paper. The authors are also grateful to Jinku Li, Michael
Grace, Sina Bahram, Deepa Srinivasan, and Minh Q. Tran
for useful discussions. This work was supported in part by
the US Army Research Office (ARO) under grant W911NF-
08-1-0105 managed by NCSU Secure Open Systems Ini-
tiative (SOSI) and the US National Science Foundation

(NSF) under Grants 0852131, 0855297, 0855036, 0910767,
and 0952640. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the ARO
and the NSF.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.Control-
Flow Integrity: Principles, Implementations, and Applica-
tions. In Proceedings of the 12th ACM Conference on
Computer and Communications Security, November 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing Memory Error Exploits with WIT. InProceedings
of the 29th IEEE Symposium on Security and Privacy, May
2008.

[3] E. Alkassar, M. Hillebrand, D. Leinenbach, N. Schirmer,
A. Starostin, and A. Tsyban. Balancing the Load: Lever-
aging Semantics Stack for Systems Verification.Journal of
Automated Reasoning, 2009.

[4] ApacheBench - Apache HTTP Server Benchmarking Tool.
http://httpd.apache.org/docs/2.2/programs/ab.html.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. InProceedings of the 19th ACM
Symposium on Operating Systems Principles, October 2003.

[6] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee.
Points-To Analysis Using BDDs. InProceedings of the
2003 ACM SIGPLAN conference on Programming Language
Design and Implementation, June 2003.

[7] The Blue Pill Project. http://bluepillproject.org/.

[8] D. Brumley and J. Newsome. Alias Analysis for Assem-
bly. Technical report, Carnegie Mellon University School of
Computer Science, 2006. CMU-CS-06-180.

[9] S. Bugrara and A. Aiken. Verifying the Safety of User Pointer
Dereferences. InProceedings of the 29th IEEE Symposium
on Security and Privacy, May 2008.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. InProceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation,
December 2008.

[11] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping Kernel Objects to Enable Systematic In-
tegrity Checking. InProceedings of the 16th ACM Conference
on Computer and Communications Security, November 2009.

[12] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling Dynamic
Program Analysis from Execution in Virtual Environments.
In Proceedings of the 2008 USENIX Annual Technical Con-
ference, June 2008.

[13] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, , and Q. Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. InProceedings of the 7th USENIX Security Symposium,
August 1998.

[14] CVE-2008-0923. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2008-0923.

[15] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. InProceedings of the 18th ACM
Symposium on Operating Systems Principles, October 2001.

[16] R. J. Feiertag and P. G. Neumann. The Foundations of a
Provably Secure Operating System (PSOS). InProceedings
of the National Computer Conference, 1979.

[17] J. S. Foster, M. Fhndrich, , and A. Aiken. A Theory of Type
Qualifiers. InProceedings of the 1999 ACM SIGPLAN confer-
ence on Programming Language Design and Implementation,
May 1999.

[18] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. In
Proceedings of the 10th Network and Distributed System
Security Symposium, Febuary 2003.

[19] B. Hardekopf and C. Lin. Semi-Sparse Flow-Sensitive
Pointer Analysis. InProceedings of the 2009 ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages, January 2009.

[20] R. Hund, T. Holz, and F. Freiling. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In
Proceedings of the 18th USENIX Security Symposium, August
2009.

[21] Intel Trusted Execution Technology. http://www.intel.com/
technology/security/.

[22] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-
Reduced Integrity Measurement Architecture. InProceedings
of the 11th ACM Symposium on Access Control Models and
Technologies, June 2006.

[23] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection
Through VMM-based ”Out-Of-the-Box” Semantic View Re-
construction. InProceedings of the 14th ACM Conference on
Computer and Communications Security, October 2007.

[24] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing Malware
with Virtual Machines. InProceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006.

[25] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. InProceedings of the
11th USENIX Security Symposium, August 2002.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
Verification of an OS Kernel. InProceedings of the 22nd
ACM Symposium on Operating Systems Principles, October
2009.

[27] L4.verified. http://ertos.nicta.com.au/research/l4.verified/.

[28] A. Lanzi, M. Sharif, and W. Lee. K-Tracer: A System for
Extracting Kernel Malware Behavior. InProceedings of the
16th Network and Distributed System Security Symposium,
February 2009.

[29] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
Return-Oriented Rootkits with “Return-less” Kernels. In
Proceedings of the 5th ACM SIGOPS EuroSys Conference,
April 2010.

[30] The LLVM Compiler Infrastructure. http://llvm.org/.

[31] LMbench - Tools for Performance Analysis. http://www.
bitmover.com/lmbench/lmbench.html.

[32] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An Execution Infrastructure for TCB
Minimization. In Proceedings of the 3rd ACM SIGOPS
EuroSys Conference, April 2008.

[33] National Vulnerability Database. http://nvd.nist.gov/.

[34] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee. Lares:
An Architecture for Secure Active Monitoring Using Virtu-
alization. In Proceedings of the 29th IEEE Symposium on
Security and Privacy, May 2008.

[35] N. L. Petroni, Jr. and M. Hicks. Automated Detection of
Persistent Kernel Control-Flow Attacks. InProceedings of
the 14th ACM Conference on Computer and Communications
Security, October 2007.

[36] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing.
In Proceedings of the 11th Recent Advances in Intrusion
Detection, September 2008.

[37] R. Riley, X. Jiang, and D. Xu. Multi-Aspect Profiling of
Kernel Rootkit Behavior. InProceedings of the 4th ACM
SIGOPS EuroSys Conference, April 2009.

[38] T. Roscoe, K. Elphinstone, and G. Heiser. Hype and Virtue. In
Proceedings of the 11th Workshop on Hot Topics in Operating
Systems, May 2007.

[39] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. InProceedings of the 13th USENIX Security
Symposium, August 2004.

[40] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity
for Commodity OSes. InProceedings of the 21st ACM ACM
Symposium on Operating Systems Principles, October 2007.

[41] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems. InPro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles, October 2005.

[42] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
SoftWare-based ATTestation for Embedded Devices. In
Proceedings of the 2004 IEEE Symposium on Security and
Privacy, May 2004.

[43] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-Into-Libc without Function Calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer and
Communications Security, October 2007.

[44] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM
Monitoring Using Hardware Virtualization. InProceedings of
the 16th ACM Conference on Computer and Communications
Security, November 2009.

[45] E. Shi, A. Perrig, and L. van Doorn. BIND: A Fine-
Grained Attestation Service for Secure Distributed Systems.
In Proceedings of the 2005 IEEE Symposium on Security and
Privacy, May 2005.

[46] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
BitVisor: A Thin Hypervisor for Enforcing I/O Device Se-
curity. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments,
March 2009.

[47] Stack Shield. http://www.angelfire.com/sk/stackshield/info.html.

[48] Trusted Computing Group: Trusted Platform Module.
http://www.trustedcomputinggroup.org/developers/trusted
platform module.

[49] Trusted Boot. http://tboot.sourceforge.net.

[50] Trusted Computing Group. http://www.trustedcomputing
group.org/.

[51] UnixBench. http://ftp.tux.org/pub/benchmarks/System/unixbench.

[52] VMware ESXi: Bare Metal Hypervisor. http://www.vmware.
com/products/esxi.

[53] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel
Rootkits with Lightweight Hook Protection. InProceedings of
the 16th ACM Conference on Computer and Communications
Security, November 2009.

[54] J. Wilander and M. Kamkar. A Comparison of Publicly
Available Tools for Dynamic Buffer Overflow Prevention.
In Proceedings of the 10th Annual Network and Distributed
System Security Symposium, Febuary 2003.

[55] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory
via Intel CPU Cache Poisoning. http://invisiblethingslab.com/
resources/misc09/smmcache fun.pdf.

[56] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted
Execution Technology. InBlack Hat DC, Febuary 2009.

[57] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Xen 0wning
Trilogy. http://invisiblethingslab.com/itl/Resources.html.

[58] Intel 64 and IA-32 Architectures Software Developer’sMan-
ual Volume 3A: System Programming Guide, Part 1, 2009.

[59] H. Yin, Z. Liang, and D. Song. HookFinder: Identifying and
Understanding Malware Hooking Behaviors. InProceedings
of the 16th Network and Distributed System Security Sympo-
sium, Febuary 2008.

