
Taming Hosted Hypervisors with (Mostly) Deprivileged Execution

Chiachih Wu †, Zhi Wang ∗, Xuxian Jiang †

†Department of Computer Science ∗Department of Computer Science

North Carolina State University Florida State University

cwu10@ncsu.edu, jiang@cs.ncsu.edu zwang@cs.fsu.edu

Abstract

Recent years have witnessed increased adoption of

hosted hypervisors in virtualized computer systems. By

non-intrusively extending commodity OSs, hosted hypervi-

sors can effectively take advantage of a variety of mature

and stable features as well as the existing broad user base of

commodity OSs. However, virtualizing a computer system

is still a rather complex task. As a result, existing hosted

hypervisors typically have a large code base (e.g., 33.6K

SLOC for KVM), which inevitably introduces exploitable

software bugs. Unfortunately, any compromised hosted hy-

pervisor can immediately jeopardize the host system and

subsequently affect all running guests in the same physical

machine.

In this paper, we present a system that aims to dramati-

cally reduce the exposed attack surface of a hosted hypervi-

sor by deprivileging its execution to user mode. In essence,

by decoupling the hypervisor code from the host OS and

deprivileging its execution, our system demotes the hyper-

visor mostly as a user-level library, which not only substan-

tially reduces the attack surface (with a much smaller TCB),

but also brings additional benefits in allowing for better de-

velopment and debugging as well as concurrent execution

of multiple hypervisors in the same physical machine. To

evaluate its effectiveness, we have developed a proof-of-

concept prototype that successfully deprivileges ∼ 93.2%

of the loadable KVM module code base in user mode while

only adding a small TCB (2.3K SLOC) to the host OS ker-

nel. Additional evaluation results with a number of bench-

mark programs further demonstrate its practicality and ef-

ficiency.

1 Introduction

Based on recent advances on hardware virtualization

(e.g., Intel VT [19] and AMD SVM [1]), hosted hypervi-

sors non-intrusively extend the underlying host operating

systems (OSs) and greatly facilitate the adoption of virtual-

ization. For example, KVM [22] is implemented as a load-

able kernel module that can be conveniently installed and

launched on a commodity host system without re-installing

the host system. Moreover, hosted hypervisors can read-

ily benefit from a variety of functionalities as well as latest

hardware support implemented in commodity OSs. As a re-

sult, hosted hypervisors have been increasingly adopted in

today’s virtualization-based computer systems [32].

Unfortunately, virtualizing a computer system with a

hosted hypervisor is still a complex and daunting task. De-

spite the advances from hardware virtualization and the

leverage of various functionality in host OS kernels, a

hosted hypervisor remains a privileged driver that has a

large code base with a potentially wide attack surface. For

instance, the KVM kernel module alone contains 33.6K

source lines of code (SLOC) that should be a part of trusted

computing base (TCB). Moreover, within the current code

base, several components – inherent to its design and im-

plementation – are rather complex. Examples include the

convoluted memory virtualization and guest instruction em-

ulation. These components occupy half of its code base and

are often the home to various exploitable vulnerabilities.

Using the popular hosted hypervisors – KVM and

VMware Workstation – as examples, if we examine the Na-

tional Vulnerability Database (NVD) [35], there are more

than 24 security vulnerabilities reported in KVM and 49 in

VMware Workstation in the last three years. Some of these

vulnerabilities have been publicly demonstrated to “facili-

tate” the escape from a confined but potentially subverted

(or even malicious) VM to completely compromise the hy-

pervisor and then take over the host OS [24, 31]. Evidently,

having a compromised hosted hypervisor is not just a hypo-

thetical possibility, but a serious reality.

Moreover, once a hypervisor is compromised, the at-

tacker can further take over all the guests it hosts, which

could lead to not only disrupting hosted services, but also

leaking potentially confidential data contained within guest

VMs. It has been reported that the data confidentiality and

auditability problem is a main obstacle for the continued

growth and wide adoption of cloud computing [2]. Conse-

quently, there is a pressing need to develop innovative so-

lutions to protect the host system and running guest VMs

from a compromised (hosted) hypervisor.

To address the above need, researchers have explored

various approaches. For example, systems have been pro-

posed to formally verify small micro-kernels (e.g., seL4

[23]) so that they do not contain certain software vulnera-

bilities. Others (e.g., HyperSafe [49]) admit the presence of

exploitable software bugs in hypervisors, but develop new

techniques to protect the runtime hypervisor integrity. Ad-

ditional systems are also developed to re-visit (bare-metal)

hypervisor design by proposing new architectures so that

the hypervisor TCB can be minimized [30, 43]. However,

these systems typically require a new bare-metal hypervi-

sor design such that their applicability to commodity hosted

hypervisors remains to be shown.

In another different vein, a number of systems have been

proposed to isolate buggy or untrusted device drivers such

as [7, 16, 39, 42, 53]. However, it is unclear how they can be

applied to protect hosted hypervisors. In particular, they do

not address host-guest mode switches and hardware-based

memory virtualization (e.g., EPT [19]), which are unique

and essential to hosted hypervisors. HyperLock [51] simi-

larly creates a separate address space in host OS kernel so

that the execution of KVM as a loadable module can be iso-

lated. However, it still runs in privileged mode and requires

additional complex techniques to avoid possible misuse of

privileged code.

In this paper, we present DeHype, a system that applies

the least privilege principle to hosted hypervisors so that

the attack surface can be dramatically reduced. Specifically,

by deprivileging the execution of (most) hypervisor code in

user mode, we can not only reduce the exposed attack sur-

face, but also protect the host system even in the presence

of a compromised hypervisor.1 However, challenges exist

to deprivilege hosted hypervisor execution. In particular,

hosted hypervisors are typically tightly coupled with the

host OSs. Accordingly, we propose a dependency decou-

pling technique to break the tight dependency of hosted hy-

pervisors on host OSs. In other words, the related kernel in-

terfaces leveraged by hosted hypervisors are abstracted and

provided at the user space. As a result, the related function-

alities such as memory management and signal handling

could be re-provisioned to the hypervisor without the help

of the host OS. Moreover, to allow for hardware virtualiza-

tion support (e.g. Intel VT-x [19]), there are certain instruc-

tions that cannot be deprivileged. To accommodate them,

we define a minimal subset of privileged hypervisor code

1Although the hosted hypervisor includes the host OS in its TCB, we

greatly narrow down the interface exposed by the host OS to untrusted

(guest) code.

into an OS extension, called HypeLet. When the (deprivi-

leged) hypervisor demands to issue a privileged instruction,

it traps to the HypeLet by system calls and executes the re-

lated instruction in privileged mode. In addition, as hard-

ware support for memory virtualization such as EPT [19]

requires mapping virtual addresses into physical addresses,

when DeHype deprivileges the related memory virtualiza-

tion functionality to user mode, we accordingly propose an-

other technique called memory rebasing for efficient trans-

lation in user mode.

We have developed a proof-of-concept prototype to

deprivilege the popular hypervisor KVM (version kvm-

2.6.32.28). Specifically, our prototype runs ∼ 93.2% of

the loadable KVM module code base in user mode while

adding a small TCB (2.3K SLOC) to the host OS kernel.

By decoupling the hypervisor code from the host OS and

deprivileging its execution, our system essentially demotes

the hypervisor as a user-level library (e.g., together with the

original companion program – QEMU [3]). This brings ad-

ditional benefits for its development, extension, and main-

tenance. For example, since it runs as a user mode process,

we can use various feature-rich tools (e.g. GDB [18] and

Valgrind [47]) to facilitate its development and debugging.

Moreover, the DeHype design naturally supports running

multiple (deprivileged) hypervisors independently on the

same host and also opens new opportunities in readily ap-

plying recent “out-of-VM” monitoring methods or security

mechanisms (e.g., VMwatcher [20] and Ether [13]). The

evaluation with a number of benchmark programs show that

our system is effective and lightweight (with a performance

overhead of less than 6%).

The rest of the paper is organized as follows: In Sec-

tion 2, we present the overall system design, followed by its

implementation in Section 3. After that, we report the eval-

uation results in Section 4. We then discuss possible im-

provements in Section 3. Finally, we describe related work

in Section 6 and conclude the paper in Section 7.

2 System Design

By effectively deprivileging the execution of hosted hy-

pervisors, we aim to significantly reduce the attack surface

possibly exposed from them. To elaborate our design, we

use the popular KVM hypervisor as the example. Specifi-

cally, KVM is an open-source host hypervisor that has been

integrated into mainstream Linux kernel. It is implemented

as a loadable kernel module, which once loaded extends

the host OS to make use of hardware virtualization support.

Each KVM-based guest has a user-mode companion pro-

gram called QEMU. It facilitates bootstrapping guest ma-

chines and emulating certain hardware devices (e.g., net-

work cards) by directly interacting with KVM via system

calls. For instance, the companion QEMU program may

OS

Guest VM

App

OS

Guest VM

App

OS

Guest VM

App

OS

Guest VM

App

KVM

OS

Guest VM

App

KVM

OS

Guest VM

App

KVM

Host OS

(a) Original KVM Architecture (b) Deprivileged KVM Architecture

User + Guest

De−Privilege

KVM
HypeLet

................
Kernel

.....

Host OS

Figure 1. An overview of DeHype to deprivilege hosted hypervisor execution

issue an ioctl command, say KVM RUN, to KVM to per-

form a host-to-guest world switch. By design, each guest

VM is paired with an instance of the user-mode QEMU pro-

gram while sharing the same privileged KVM hypervisor

instance with other guest VMs.

With DeHype, we decompose the KVM into two parts:

the deprivileged KVM hypervisor running in user mode and

a minimal loadable kernel module called HypeLet running

in kernel mode. The deprivileged KVM essentially runs as a

user-level library that provides necessary functionalities to

interact with HypeLet. In our current design, we naturally

integrate the deprivileged KVM into its user-mode compan-

ion program QEMU. By doing so, when QEMU issues an

ioctl command to KVM, the deprivileged hypervisor re-

ceives it as a user-mode function call and then processes it

locally. If the processing involves certain privileged code

that cannot be deprivileged, it relays the request to HypeLet

through a system call. As a result, if a host runs multiple

VMs, each VM is paired with its own instance of deprivi-

leged KVM and the original QEMU instance while sharing

the same HypeLet OS extension. In Figure 1, we show the

comparison between the original KVM and the deprivileged

KVM. In the rest of this section, we describe our system in

detail with a focus on key challenges and related solutions.

2.1 Dependency Decoupling

To deprivilege a hosted hypervisor, our first challenge is

to delineate the tight dependency between the hosted hyper-

visor and the host OS for decoupling. Particularly, KVM in-

tensively leverages several key functionalities implemented

in the host OS. For example, KVM allocates kernel mem-

ory based on the default slab allocator [6] provided by Linux

kernel. Also, the scheduling API, cond resched, is in-

voked to relinquish the processor such as when the hypervi-

sor is pending for certain inputs or events. Accordingly, we

need to supply those related functionalities to the hypervi-

sor in user space.

Our approach starts from performing a breakdown of the

KVM hypervisor. By decomposing it into multiple compo-

nents, we gain necessary insights and take different ways to

deprivilege them. Specifically, there are a few components

that involve little or no interaction with the host OS and

thus can be largely moved into user space in a straightfor-

ward manner. One such example is guest instruction emula-

tion component in KVM. Although the component itself is

rather complex and will be invoked to interpret and execute

certain guest instructions, its interaction with the host OS is

minimal and can be largely deprivileged to user mode.

Meanwhile, there also exist certain components that may

rely on host OS for their functionalities. A representative

example is the kernel memory management that depends

on the host OS kernel by utilizing known kernel APIs for

memory allocation and deallocation. To deprivilege it, we

need to provide a user-mode counterpart. In certain cases

where a privileged operation may be involved, a user-mode

replacement may not be sufficient and it becomes necessary

to split the functionality into two parts: one in user mode

and the other in kernel mode. As the user-mode part is de-

privileged, there is a need to minimize the kernel-mode part,

which eventually becomes part of HypeLet. One example is

the guest memory virtualization where basic operations on

updating guest page tables may be performed in user mode

but critical ones on instantiating or putting them into effect

should be performed in kernel space only.

Last but not least, there also exist certain components in

KVM that may not be demoted to user space. For exam-

ple, kernel-side event handling and notification as well as

hardware virtualization support (e.g., Intel VT-x [19]) will

remain inside the host OS kernel and become part of Hy-

peLet. We highlight that HypeLet should contain only the

privileged hypervisor code that simply cannot be executed

in user space. Being part of TCB, it is desirable to keep

HypeLet minimal. In our current prototype, it mainly con-

tains those privileged instructions introduced for hardware

virtualization support (e.g. Intel VT-x [19]). When the de-

privileged hypervisor running in user mode demands to is-

sue such a privileged instruction, it traps to the HypeLet by

a system call, which then executes the corresponding in-

struction in the privileged kernel space. In addition, other

than those privileged instructions, there also exist kernel-

side routines in HypeLet to facilitate the inquiries from the

deprivileged hypervisor. For example, a MAP HVA TO PFN

service is provided to translate the host virtual address to the

related physical memory frame, which is needed to deprivi-

lege hardware-assisted memory virtualization (Section 2.2).

To further restrict the deprivileged KVM and user-mode

QEMU, we also limit the exposed system call interface and

available resources with system call interposition. By doing

so, we can effectively mediate the runtime interaction from

deprivileged KVM (and QEMU) with HypeLet. As the sys-

tem call interposition mechanism is a well-studied topic, we

omit the details in the paper.

2.2 Memory Rebasing

Our next challenge is to efficiently support hardware-

assisted memory virtualization such as Intel’s EPT [19].

Specifically, with hardware-assisted memory virtualization,

a hosted hypervisor requires to directly manage memory

pages in physical address space so that those addresses

stored in the nested page tables can be accessed by guest

VMs. In the original KVM design as a loadable kernel mod-

ule, it can simply enjoy feature-rich APIs in the host OS

kernel to perform the translation between virtual and phys-

ical address spaces. However, once deprivileged, it poses

challenges in two main aspects: First, a memory page allo-

cated by a user-level program may be paged out at runtime.

Second, a user-level program does not have the mapping

information for virtual-to-physical translation.

In our current prototype, we solve these problems by al-

locating pinned memory blocks in Linux kernel and map-

ping them to user space. Specifically, through HypeLet, we

pre-allocate a contiguous pinned memory block for each hy-

pervisor. The pre-allocated memory block is then mapped

to user space through the mmap system call so that the (de-

privileged) hypervisor can access and use it to build the

memory pool for its internal memory management (Sec-

tion 2.1). By passing the base address of the pre-allocated

memory to it, the hypervisor though running in user mode

can still obtain the necessary mapping to translate a host vir-

tual address of the memory chunk allocated from its mem-

ory pool into a physical address. Accordingly, we propose

a memory rebasing technique that allows for simply calcu-

lating the offset from the memory pool in virtual space and

adding it to the base of the pre-allocated block in physi-

cal space. Since the memory pool mapped from a pinned

memory block is allocated in kernel, we can ensure that any

memory page allocated from the pool is always present.

Therefore, the hypervisor can safely assign those memory

pages into the nested page tables with the corresponding

physical addresses.2

In essence, by applying the memory rebasing mecha-

nism, we can allow the deprivileged hypervisor to maintain

nested page tables (NPTs) in user mode. With that, these

NPTs become the interface for guest VMs to access actual

physical memory pages. It has a caveat though: if the hy-

pervisor is compromised, despite the fact that it runs in user

mode, a guest VM might still be able to access memory be-

yond the permitted range. In other words, these NPTs may

be exploited to subvert the host OS. Fortunately, as NPTs

are only used in guest mode, we can postpone all NPT up-

dates (requested by the hypervisor) until the next VM entry

occurs. Since each single VM entry is handled by the privi-

leged HypeLet, we can apply a sanity check to ensure only

memory pages that belong to the hypervisor or the guest

VM are eligible to be mapped (right before HypeLet up-

dates NPTs for actual use).

In our prototype, when the user-mode hypervisor is

about to update an NPT entry, the entry address and the

value to be stored are recorded in a buffer, which is later

batch-processed until the hypervisor traps to the HypeLet.

During the sanity check, if a malicious address is identi-

fied in the buffer, HypeLet simply suspends its execution

of the affected hypervisor and the guest VM. By doing

so, a compromised hypervisor cannot access those memory

pages that belong to other guest VMs or the host OS.

2.3 Optimizations

When compared with the original KVM running in ker-

nel mode, a deprivileged one needs to trap to HypeLet for

privileged operations. This naturally introduces a system

call latency and potentially becomes a source of perfor-

mance overhead. In our prototype, we monitor the boot-

strap process of a guest VM to understand the number of

traps (to HypeLet) caused by the privileged instructions ex-

ecuted within each KVM RUN session. Our results show

that thousands of privileged instructions are executed within

most KVM RUN sessions when the guest VM is booting up.

As an example, we observe 195, 187 privileged instruc-

tions executed within a particular KVM RUN session. If we

naively invoke a system call for each privileged instruction,

it would translate to 195, 187 system calls for the particular

KVM RUN session.

To minimize the performance overhead, we propose

a cache-based batch-processing mechanism to reduce the

2For simplicity, our current prototype assumes that the hypervisor

makes static physical memory allocation in its initialization phase. How-

ever, it could be readily extended to support dynamic physical memory

allocation (e.g., by maintaining multiple pinned memory blocks and asso-

ciated base addresses).

number of unnecessary system calls. In particular, by pro-

filing the runtime behavior of deprivileged KVM (another

benefit from running it in user mode), we notice that most

system calls are triggered by the instructions to access vari-

ous fields in the virtual-machine control structure (VMCS).

Also, we notice that it is not necessary to make those VMCS

fields always synchronized. In fact, while running in host

mode, as far as these fields are updated before the next

guest-to-host world switch, we can ensure the correctness

of guest execution. Based on the above observations, we

maintain a cached VMCS copy in user mode for the de-

privileged hypervisor to access without invoking any sys-

tem calls. The cached copy will be synchronized to the real

one (maintained in kernel) on demand when there is a need

to issue a world switch.

Beside the cache-based VMCS optimization, our sys-

tem also implements another optimization that is related to

another frequently invoked privileged service in HypeLet,

i.e., MAP HVA TO PFN. This privileged service fulfills the

queries to translate a host virtual address into the corre-

sponding physical frame number. Different from the pre-

vious memory rebasing mechanism, this service could be

used to translate memory pages allocated by the QEMU,

which are not from the hypervisor’s memory pool. Al-

though these memory pages are not managed by the hyper-

visor, it still needs the physical address to handle related

NPT faults. We notice that the mapping of these mem-

ory pages is always consistent throughout the QEMU life-

time, we can therefore cache the mappings that are already

queried inside the hypervisor to reduce the number of sys-

tem call traps into HypeLet.

3 Implementation

We have implemented a proof-of-concept prototype to

deprivilege the KVM execution (version 2.6.32.28). Our

current prototype is developed on a Dell desktop (with

the Intel CoreTM i7 860 CPU and 3GB memory) running

Ubuntu 11.10 and Linux kernel 2.6.32.28. Next we present

our prototype in more details.

3.1 Dependency Decoupling

To deprivilege the KVM execution, our prototype ab-

stracts the host OS interface that is being used by KVM

and provides a similar one in user mode. Specifically, our

prototype provides a slab-based memory allocator in user

mode to fulfill the need of allocating and releasing memory

to satisfy KVM needs. But different from the default mem-

ory allocator in Linux kernel that prepares its memory pool

in boot-up time with the pre-defined kernel heap, our ver-

sion of memory allocator can be flexibly configured to set

its heap to an arbitrary memory block in user space, which

Table 1. Ten Privileged Services in DeHype

Name Function Description

VMREAD read VMCS fields

VMWRITE write VMCS fields

GUEST RUN perform host-to-guest world switches

GUEST RUN POST perform guest-to-host world switches

RDMSR read MSR registers

WRMSR write MSR registers

INVVPID invalidate TLB mappings based on VPID

INVEPT invalidate EPT mappings

INIT VCPU initialize vCPU

MAP HVA TO PFN translate host virtual address to physical frame

becomes one key step to enable the memory rebasing mech-

anism (Section 2.2).

Our prototype also provides necessary function routines

to emulate original kernel memory access APIs. For ex-

ample, virt to page has been widely used in KVM to

translate a virtual address to the corresponding memory

frame. As the deprivileged hypervisor allocates memory

pages from an internal memory allocator, the original mem-

ory accesses cannot be directly used but need to be adjusted

for conforming to a different memory layout of the memory

heap. Moreover, our prototype also leverages the default

support in GLIBC [17] for a variety of issues, such as han-

dling signals, performing process scheduling-related oper-

ations, and invoking system calls to trigger the privileged

HypeLet services. As these library routines are ready-to-

use, we found integrating them together with the deprivi-

leged KVM hypervisor is a rather straightforward process.

As mentioned earlier, there also exist some privileged

instructions that cannot be demoted to user space. To

accommodate them, our prototype introduces HypeLet

to support a minimal set of privileged hypervisor code

that can be invoked from the deprivileged KVM. In Ta-

ble 1, we show those privileged services being supported

in HypeLet. In total, there are 10 privileged services.

Six of them, i.e., VMREAD, VMWRITE, GUEST RUN,

GUEST RUN POST, INVVPID, INVEPT, are services

for executing privileged instructions that are introduced for

hardware virtualization support. INIT VCPU is another

service that basically initializes essential data structures

for a virtualized guest VM, including vCPU. RDMSR and

WRMSR are two other services to access model-specific reg-

isters with privileged instructions. Our profiling results in-

dicate that RDMSR and WRMSR are mainly used in the VM

initialization phase and do not frequently occur in normal

hypervisor execution. The last service, MAP HVA TO PFN,

does not contain any privileged instruction but is included

to answer requests (from the deprivileged KVM) about the

mapping from a host virtual address to its physical address.

Since the hypervisor requires the mapping to handle possi-

ble NPT faults, MAP HVA TO PFN is a frequently requested

service that should be optimized (Section 2.3).

memory in kernel space

1. Pre−allocating pinned

m
em

o
ry

 to
 u

ser sp
ace

2
. R

em
ap

p
in

g
 th

e p
in

n
ed

physical

k_base

u_base

u_addr

k_addr

virtual

3. u_addr −> k_addr

4. k_addr −> p_addr

p_addr

Figure 2. The memory management in De
Hype. The solid lines mark the ways to gen

erate the memory blocks in different address
spaces while the dotted lines mark the trans
lation between memory address spaces.

3.2 Memory Rebasing

With deprivileged KVM, the support of hardware-

assisted memory virtualization poses unique challenges.

Unlike prior software based approaches that require the hy-

pervisor to frequently update the shadow page tables, the

hardware-assisted memory virtualization enables the guest

to maintain guest page tables (GPTs) while the hypervisor

maintains nested page tables (NPTs) to regulate the trans-

lation from guest physical addresses to host physical ad-

dresses. To maintain NPTs, the hypervisor requires allocat-

ing memory pages and storing the associated physical ad-

dresses into NPTs for proper translation. For the traditional

KVM as a loadable kernel module, allocating new memory

pages and translating their virtual addresses into physical

addresses are relatively straightforward. However, with De-

Hype, the deprivileged hypervisor runs in user mode and

does not have the knowledge of the physical addressing

space. Moreover, the deprivileged hypervisor cannot pre-

vent the host OS kernel from paging out the memory pages

it allocated.

To address these problems, our prototype implements a

memory rebasing mechanism to facilitate the deprivileged

hypervisor to maintain NPTs correctly. In essence, our so-

lution (shown in Figure 2) involves allocating pinned mem-

ory pages in kernel space and then remapping them to user

space. Specifically, in the initialization phase (line 1), we

have the HypeLet pre-allocate a pinned memory block (base

address: k base) for each hypervisor.3 With a simple

driver interface implemented in HypeLet, we can allow the

user-mode hypervisor to remap the pinned memory block

to user space. In particular, a mmap call effectively trans-

lates k base to u base – so that the pinned memory block

based at k base in kernel memory can be accessed by

u base in user space (line 2). After that, the mmap’ed

memory block combined with the (k base, u base) can

be used to build the memory pool for the deprivileged hy-

pervisor’s memory allocator in user space. By doing so, we

can guarantee that each memory page allocated from the

pool can be efficiently translated to physical address space

with our scheme.

As an example, suppose the hypervisor allocates a new

NPT table for NPT violation handling. Whenever an

NPT violation occurs, a memory page (located at u addr)

is allocated from the memory pool for filling the page

table entry. To do that, we need to locate the corre-

sponding physical address, namely p addr. As the map-

ping of a userspace address to physical address cannot be

conveniently retrieved, we choose to use the correspond-

ing kernel space address, namely k addr, and rely on

the virt to phys(x) function, which in our x86-32

Linux-based prototype is a simple calculation, i.e., (x) -

PAGE OFFSET, to perform the translation. Further, be-

cause u addr is allocated from the memory pool based

at u base that has a corresponding kernel space address

k base, we can simply calculate k addr by u addr -

u base + k base (line 3). With that, we can further

calculate p addr by virt to phys (line 4) and use it

to update the NPT entry.

To securely update NPT entries (Section 2.2), each de-

privileged hypervisor instance saves the pairs of address and

value to be updated into a local buffer for batch processing.

Note that the NPT consists of four levels of page tables. If

the hypervisor needs to update an entry in the level-1 table

(the lowest level), the parent table or level-2 as well as all

the ancestor tables – level-3 and level-4 – need to be tra-

versed before reaching the level-1 table. Since our hypervi-

sor runs in the user mode and is prohibited from performing

NPT updates, there are no actual NPTs for traversal from

the hypervisor standpoint. To accommodate that, we choose

to construct pseudo NPTs.

Specifically, when an NPT violation occurs, the hypervi-

sor allocates two memory pages, page P from the mmap’ed

memory pool and page P ′ from the process’ heap while a

hash table is used for bookkeeping the relationship. The hy-

pervisor will use P to update the real NPT and P ′ to update

the pseudo NPT. In particular, as illustrated in Figure 3, we

first initialize a root-level or level-4 pseudo page table R′.

The NPT traversals are redirected to the pseudo page table

3In the kernel configuration, CONFIG FORCE MAX ZONEORDER can

be adjusted for allocating a larger-sized block.

j

kA

B

C
i

R

VM Entry

R’

i

j

A’ k

B’

C’

User

Kernel

Allocate A;

Time

Privileged Service Request

Pseudo NPT

(R[i]=A)

Real NPT

(A[j]=B)

Allocate B

Allocate C

(B[k]=C)
Buffer

Figure 3. An example of constructing pseudo NPTs for the deprivileged hypervisor to traverse.

and the updates go to the real root-level table R. When the

first NPT violation occurs, all NPTs except the root-level

one are empty. We then allocate a page A′ to modify some

entry, say i, of R′. At the same time, we also allocate a page

A and issue an update to the ith entry in R. Therefore, a fur-

ther update on the jth entry of the level-3 table A′ could be

done by (1) finding A′ from R′, (2) allocating two page B′

and B, (3) book keeping the two pages on the hash table,

(4) updating the jth entry of A′ with B′, and (5) adding a

record of updating the jth entry of A with B. For further

updates to an existing entry on the pseudo NPT (e.g. flush-

ing page B′), the corresponding log for the page B on the

real NPT could be obtained with the help of the hash table.

As a result, the hypervisor can traverse the pseudo NPT and

generate accurate records for updating the real NPT.

Our pseudo NPT design is similar to the traditional

shadow paging but differs in two aspects: First, pseudo NPT

only shadows the NPT tables while shadow paging needs to

mirror a much larger number of guest page tables; Second,

our scheme batch-updates the real NPT tables thus incurs

less performance overhead than shadow paging, which is

required to trap on the guest’s updates to their page tables

and synchronize the updates to the real page tables. Our ex-

periments show that pseudo NPT enables the hypervisor to

securely manage NPT with a small performance overhead.

Although pseudo NPT introduces additional memory over-

head, it is necessary to secure NPT updates as we assume

that the hypervisor is untrusted.

3.3 Optimizations

As elaborated in Section 2.3, our system design requires

a system call to invoke any privileged service in HypeLet,

which could introduce extra performance overhead. To mit-

igate that, we provide a cache-based batch processing mech-

anism to reduce the number of unnecessary system calls.

In particular, our prototyping experience shows that around

90% of invoked privileged instructions are related to access-

ing the virtual machine control structure (VMCS). There-

fore, our prototype aims to reduce the overhead from the

large number of VMCS accesses.

To elaborate our implementation, we briefly review how

VMCS is accessed in a virtualized system. For each guest

VM, the hypervisor needs to allocate memory to initialize

the corresponding VMCS. Before the guest launches and

between each of its guest-mode runs, two privileged instruc-

tions, VMREAD and VMWRITE, will be executed to access

VMCS (for the purpose of either monitoring or controlling

the behavior of the guest VM). Throughout the running pe-

riod in guest mode, the guest VM execution indirectly af-

fects related VMCS fields that can be later retrieved by hy-

pervisor when it switches back to host mode (e.g., triggered

by a VMEXIT)

In our implementation, we maintain a VMCS copy in

user mode so that VMREAD calls can simply be redirected to

read update-to-date results from the cache without issuing

any system call. To avoid synchronizing the large VMCS

structure (over 140 fields inside), we profile the KVM exe-

cution to locate the top 28 most frequently accessed VMCS

fields and save them in the cache. By caching those 28

fields, we found that we can effectively reduce 99.86% of

the extra system calls caused by VMREAD requests. For

VMWRITE, we apply the similar caching scheme. By choos-

ing to save the 8 frequently VMWRITE’ed VMCS fields,

we can reduce 98.28% of extra system calls caused by

VMWRITE requests. In total, our prototype caches 31

VMCS fields4 and achieves a good balance between the

synchronization cost and the system call latency. The de-

tailed list of cached fields is shown in Table 2.

4There are five overlapping VMCS fields common in cached VMREAD

and VMWRITE fields.

Table 2. Cached VMCS Fields
VMREAD

GUEST INTERRUPTIBILITY INFO GUEST CS BASE

IDT VECTORING INFO FIELD GUEST ES BASE

GUEST PHYSICAL ADDRESS HIGH GUEST CR3

VM EXIT INTR INFO GUEST RFLAGS

GUEST PHYSICAL ADDRESS VM EXIT REASON

VM EXIT INSTRUCTION LEN GUEST CR4

EXIT QUALIFICATION GUEST DS BASE

CPU BASED VM EXEC CONTROL GUEST RSP

GUEST CS SELECTOR GUEST RIP

GUEST CS AR BYTES GUEST CR0

GUEST PDPTR0 HIGH GUEST PDPTR0

GUEST PDPTR1 HIGH GUEST PDPTR1

GUEST PDPTR2 HIGH GUEST PDPTR2

GUEST PDPTR3 HIGH GUEST PDPTR3

VMWRITE

GUEST RFLAGS GUEST RSP

CPU BASED VM EXEC CONTROL GUEST RIP

VM ENTRY INTR INFO FIELD EPT POINTER

EPT POINTER HIGH GUEST CR3

Further, in order to maintain the same hardware protec-

tion scheme of VMCS, we have a dirty bit associated with

each cached VMWRITE field. When a VMWRITE is re-

quested by the deprivileged hypervisor in user mode for up-

dating a cached VMWRITE field, the dirty bit would be set.

On the other hand, if a cached VMWRITE field is somehow

written via other ways (e.g., MOV) instead of VMWRITE,

the dirty bit would not be set and the content would not

be flushed to the hardware. To avoid potential attacks that

overwrite a dirty cached VMWRITE field, we also store the

hash value of the legitimate VMWRITE’d value in a sep-

arate array. Therefore, we can invalidate the illegal cache

fields while performing synchronization.

3.4 Lessons Learned

In this subsection, we share additional experiences or

frustrations we learned when implementing the prototype.

The first one is about missing interrupt events in our ear-

lier unsuccessful prototype. In particular, QEMU issues the

KVM RUN ioctl command to enter guest mode. If there

is no event occurred (e.g., a pending interrupt), the main

thread keeps doing VM entry and VM exit in a loop. When

QEMU is about to inject an interrupt to the guest, it sig-

nals the main thread (by pthread kill) so that the main

thread knows that it needs to exit the loop and returns to

QEMU for interrupt handling (by checking the existence

of pending signal after each VM exit). In the current KVM

code base, it sets the signal masks to ensure that specific sig-

nals are allowed to be delivered only when the main thread

is in its KVM RUN session to kernel. More specifically, a

kernel API sigprocmask is used in the entry point of the

KVM RUN ioctl to allow only SIG IPI and SIGBUS to be

delivered. Before returning back to QEMU, KVM restores

the signal mask so that those signals would not be delivered

when the main thread is running in userspace.

Our earlier prototype intercepts KVM RUN ioctl from

the deprivileged hypervisor and handles it in user mode with

real ioctls issued for privileged instructions. If the sig-

nal mask is set as the original KVM, SIG IPI and SIGBUS

would be delivered even when the KVM RUN is handled in

user mode. Therefore, after each VM exit, the signal pend-

ing condition would not be accurate since some signals are

now delivered in user mode. This is the culprit why our

earlier prototype misses interrupt events and fails to main-

tain accurate system time. To solve this problem, we shrink

the allowed signal delivery window to each ioctl han-

dler of VMLAUNCH/VMRESUME instruction. Since KVM

checks the signal pending condition after VM exit, it would

not affect the QEMU by sending signals but keeps the signal

pending condition until the next VM entry. This mechanism

ensures our system to have a similar interrupt injection fre-

quency as the original KVM architecture has.

Another implementation detail is related to a privileged

instruction – VMPTRLD. This instruction is used to load the

guest states before switching to guest mode when the hy-

pervisor is handling the KVM RUN request. In many cases,

especially when the guest is running a CPU intensive work-

load, a VMPTRLD could be followed by multiple runs of

(VMRESUME,VMEXIT). The reason is that it does not need

to handle those VM exits in QEMU. Instead, the hypervi-

sor handles the VM exit and continues the guest’s execution

by another VMRESUME. However, in some extreme cases

such as running an IO intensive workload in the guest, most

VM exits need to be handled in QEMU (e.g. IO instruc-

tions). Since VMPTRLD and VMRESUME are executed as

separate system calls in our system, it requires at least one

more system call than the original KVM to handle a sin-

gle KVM RUN request. If the time running in guest mode is

extremely short (e.g., the guest is frequently interrupted by

IO accesses), the extra system call latency could introduce

significant overheads. Notice that the guest states are only

used in guest mode, we can then postpone the VMPTRLD in-

struction until the first VMRESUME instruction to eliminate

the extra system call.

4 Evaluation

In this section, we evaluate our system by first analyzing

security and other related benefits from DeHype and then

measuring the performance overhead of our prototype with

several standard benchmarks.

4.1 Security Benefits

Reducing the attack surface In this work, we assume

host hypervisors, either before or after being deprivileged,

contain software vulnerabilities that might be exploited by

attackers. Accordingly, the traditional “VM escape” attack

from a compromised or malicious VM to the hypervisor will

still happen in our system. Fortunately, thanks to the de-

privileged execution, potential damages that may be caused

from such attacks are mostly limited to the hypervisor itself

(i.e., including the QEMU process). In particular, with De-

Hype, all the interactions between the hypervisor and the

guest VM occur in the user space. The host OS kernel in-

stead is not directly accessible to a compromised hypervi-

sor, but must be accessed through the system call interfaces

exported by HypeLet, which is the only privileged compo-

nent added by current hypervisor code base.

In our prototype, HypeLet contains 2.3K SLOC and de-

fines 10 system calls in total. To further restrict the access to

these system calls, our system adopts the known system call

interposition technique (Section 2.1) to mediate their access

and block the default system call interface in host OS kernel

from being accessible (that has more than 300 system calls

in recent 3.2 Linux kernels). As a result, our system effec-

tively reduces the previously exposed wide attack surface to

these 10 system calls. Moreover, the added TCB by KVM

is reduced from 33.6K to 2.3K – a ∼ 93.2% reduction.

It is worth mentioning that in DeHype, each guest is

paired with its own deprivileged hypervisor. The hypervi-

sor keeps the guest’s states in pre-allocated memory pages

mapped exclusively in its address space. Therefore, it can

only access its own guest; other guests are strictly isolated

in other processes and not accessible by default. This has

the additional benefit of DeHype by protecting other unre-

lated guest VMs from the compromised hypervisor.

Testing real-world vulnerabilities To illustrate De-

Hype’s security benefits, we explain how real world vul-

nerabilities from NVD [35] could be mitigated by our sys-

tem. In the following, we elaborate three of them. The first

one we examined is CVE-2009-4031, a vulnerability that

is caused by interpreting wrong-size instructions (with too

many bytes) in KVM’s guest (x86) instruction emulation.

This vulnerability can be exploited by the guest to launch

a denial-of-service attack against the host OS kernel. Since

DeHype performs instruction emulation in the user space,

its exploitation, even successful, is strictly confined within

a user-space process. Thus our system effectively mitigates

such attack.

The second vulnerability we examine is CVE-2010-

0435, which allows the guest kernel to cause a NULL

pointer dereference in KVM as some function pointers in its

Intel-VT support are uninitialized.5 Because KVM is orig-

inally running in privileged mode, this vulnerability can be

exploited to crash the host OS. In DeHype, the vulnerabil-

ity could still be exploited to crash the hypervisor. However,

5Note that these function pointers are part of the internal data struc-

ture of KVM. The guest kernel may trigger NULL pointer dereference by

tricking the KVM to emulate some specific instructions instead of crafting

the pointers for other purposes (e.g., running shellcode to access privileged

KVM system call interfaces).

only the hypervisor that is paired with the malicious guest

will be affected. With the isolation provided by process

boundary, other hypervisors and the host OS are still not

affected. This test case is a good example to show the dif-

ference from other related work [15, 29, 51], which leverage

software fault isolation techniques to confine memory cor-

ruption bugs. Specifically, the difference is that DeHype en-

ables the isolation from hardware (i.e., page tables) instead

of rather complex software-based fault isolation techniques.

The third vulnerability is CVE-2010-3881, a vulnerabil-

ity in KVM that leaks kernel data to user space when cer-

tain data structures are copied to the user land but without

clearing the paddings. A QEMU process could potentially

obtain sensitive information from the kernel stack. In De-

Hype, such “system call” would be intercepted and handled

in the user space as a function call. Therefore, the leaked

information would only come from the stack of the hyper-

visor paired with that QEMU process, not from the kernel

or other guest VMs.

4.2 Other Benefits

By moving the hypervisor to the user space, DeHype also

enables some unique benefits and opportunities. In this sec-

tion, we elaborate two of them.

Facilitating hypervisor development In DeHype, the

hypervisor is deprivileged to the user space. This makes

it possible to develop and debug the hypervisor with tools

such as GDB that are convenient and familiar to most pro-

grammers. For example, when developing our prototype,

we used GDB to debug its pseudo NPT component (Fig-

ure 3 – Section 3), which is one of the most complicated

components in the system.

In Figure 4, we show one debug session with

GDB. In this session, we set up a breakpoint at the

tdp page fault function, the NPT fault handler in

KVM. When the KVM execution hits the breakpoint, we

can further display the stack trace with the where com-

mand, or use the step/stepi command to single step the

code and examine changes in machine registers and mem-

ory contents (e.g., pseudo NPT table) after each step. We

can also use the continue command to resume the exe-

cution until the next NPT fault to monitor how the pseudo

NPT table is built up. During our development, we also

used Valgrind [47], a dynamic instrumentation tool, to de-

tect memory leaks in our prototype (Figure 5).

To understand the distribution of modifications in new

KVM releases that may be related to DeHype, we manu-

ally examined three recent releases of KVM (2.6.32, 2.6.33,

and 2.6.34) and attributed each change to either HypeLet

or the deprivileged hypervisor. Specifically, we reviewed

changes in the arch/x86/kvm and virt/kvm direc-

tories of the Linux kernel which contain the main body

Figure 4. A GDB session that debugs KVM

code with the environment familiar to most
programmers.

of KVM. According to our examinations, 71.7% changes

in KVM-2.6.33 (vs. KVM-2.6.32) and 60.9% changes in

KVM-2.6.34 (vs. KVM-2.6.33) can be confined in the user

space. With DeHype, their development can benefit sig-

nificantly from the abundant user-space debugging tools.

While the results still show 28.3% changes in KVM-2.6.33

(or 39.1% in KVM-2.6.34) may impact DeHype, this is

largely because current KVM development freely uses the

large body of host OS kernel APIs without restriction. Once

the interface between the deprivileged KVM and HypeLet

is defined, we found these changes can be dramatically re-

duced in HypeLet.

Running multiple hypervisors DeHype also naturally

allows for multiple mutually isolated hypervisors to concur-

rently run on the same host and each may have different se-

curity features (e.g., in different versions). To illustrate this,

we executed two deprivileged KVM hypervisors on our test

machine: one has the secure NPT updating feature enabled,

while the other has the feature disabled. A guest is then cre-

ated for each hypervisor. Since both hypervisors share the

same HypeLet, we successfully check all NPT updates is-

sued by the guest running on the hypervisor with the feature

turned on while the updates of the other guest are handled

by the hypervisor itself.

Figure 5. A Valgrind session that checks pos
sible KVM memory leaks.

This unique capability of DeHype can be potentially

leveraged in several different settings. For example, we

can apply certain security services such as virtual machine

introspection ([39, 20]) to monitor the execution of some

guests in a host, while running other guests with the nor-

mal hypervisor. Moreover, when a new vulnerability is re-

ported and fixed in the deprivileged hypervisor, we can live-

migrate all the guests in a host one-by-one to the patched

hypervisor at runtime. Under the original KVM, we need to

migrate all the guests to another machine altogether, patch

the hypervisor, and migrate them back again.

4.3 Performance

To evaluate the performance overhead introduced by De-

Hype, we install a number of standard benchmark programs

such as SPEC CPU2006 [40] and Bonnie++ (a file system

benchmark) [5]. In addition, we use two application bench-

marks to decompress and compile Linux kernel. We mea-

sured the elapsed time in the guest with the time com-

mand. Our test platform is a Dell OptiPlexTM 980 desktop

with a 2.80GHz Intel CoreTM i7 860 CPU and 3G memory.

The host runs a default installation of Ubuntu 11.10 desk-

top with the 2.6.32.31 Linux kernel. The guest runs Ubuntu

10.04.2 LTS server. Table 3 summarizes the software pack-

ages and configurations in our experiments.

Table 3. Software Packages used in Our Eval

uation

Software Package Version Configuration

Benchmarks

SPEC CPU2006 v1.0.1 reportable int

Bonnie++ 1.03e bonnie++ -f -n 256

linux kernel 2.6.39.2 make defconfig vmlinux

Host/Guest Installation

Ubuntu Desktop 11.10 default

Ubuntu Server 10.04.2 LTS default

 90%

 92%

 94%

 96%

 98%

 100%

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

untar_kernel

m
ake_kernel

bonnie++−w
rite

DeHype

DeHype−C

DeHype−CN

Figure 6. Relative Performance of DeHype

Figure 6 shows the relative performance of running

the benchmarks. The first 12 groups of bars present

the relative performance of DeHype running the integer

benchmarks of SPEC CPU2006 compared with the vanilla

KVM while the last three groups present decompressing

Linux kernel (untar kernel), compiling Linux kernel

(make kernel), and the sequential output performance

of Bonnie++. In each group, there are three different De-

Hype configurations. The DeHype bar denotes the vanilla

DeHype system; DeHype-C reports the optimization ben-

efits from cache-based batch-processing of certain VMCS

fields (e.g., VMREAD/VMWRITE); while DeHype-CN in-

dicates additional overhead by performing secure NPT up-

dates (Section 3.2). As shown in the figure, the overall over-

head introduced by DeHype is less than 6%. This overhead

is inevitable since DeHype by design invokes more system

calls than the original KVM.

5 Discussion

In this section, we re-examine our system design and im-

plementation for possible improvements as well as explore

new opportunities enabled by our approach. First, we as-

sume an adversary model where attackers try to compro-

mise the hypervisor from a guest VM. The privileged Hy-

peLet and its host OS kernel are a part of the TCB. Although

the total TCB (with the host OS kernel) may not be greatly

reduced, our system still provides strong protection against

malicious or compromised guests by securely confining the

hypervisor in the user space. This is particularly true in the

cloud environment where the highly constrained HypeLet is

the main attack surface exposed to a guest VM. To improve

the security level of our system, our prototype performs nec-

essary sanity check on the new 10 system calls introduced

by HypeLet to prevent bugs inside the user-level hypervisor

from affecting the HypeLet (e.g., including explicit checks

for NPT update – Section 2.2).

Second, our current prototype is still limited in pinning

the guest memory. This limitation can be readily addressed

by integrating the Linux MMU notifier [10]. Specifically,

HypeLet registers a set of callback functions to the kernel’s

MMU notifier interface, which will notify HypeLet when

important memory management events are about to hap-

pen. For example, when a “memory swapped out” event

takes place, HypeLet will be notified and further reflect the

event to the user-level hypervisor. The user-level hypervi-

sor can decide whether to prevent (by marking the page as

recently accessed in the age page mmu notifier) or allow

the page swapping according to whether the page is cur-

rently in-use or not, respectively. Other events can be sim-

ilarly handled. By integrating the MMU notifier, we can

avoid pinning the guest memory. Meanwhile, the perfor-

mance of DeHype might be negatively affected slightly due

to the overhead in managing these events.

Third, our current prototype is limited in not support-

ing all full-fledged KVM features. Notable ones are SMP

and para-virtualized I/O (e.g., virtio [38]). To retrofit our

prototype with their support, it is necessary to make a few

adjustments that mainly involve additional engineering ef-

forts. Specifically, to support SMP, HypeLet needs to be

aware of the presence of multiple virtual CPUs in a guest so

that it can schedule VCPUs to physical CPUs, and provide a

mechanism (e.g., inter-processor interrupt [19]) for VCPUs

to interrupt and synchronize with one another. The SMP

support in the original KVM can be leveraged for this pur-

pose and make the implementation likely straight-forward.

To support para-virtualized I/O, we only need to migrate

the virtio [38] virtual device in the original KVM from

kernel space to user space. This will likely reduce the per-

formance benefit of virtio because kernel functions used

by virtio are not directly accessible and must be replaced

by system calls. Still, para-virtualized I/O will perform bet-

ter than emulated I/O (e.g., virtual Intel e1000 PCI network

card in KVM) because it does not involve expensive I/O

memory and I/O registers emulation.6

6We also point out that with the wide adoption of hardware virtualiza-

tion, for obvious performance reasons [25], we choose our prototype in

favor of hardware-assisted memory virtualization (i.e., NPT), instead of

shadowing-based memory virtualization (i.e., SPT). However, we do not

envision any technical challenges in supporting the software-based mem-

ory shadowing in our prototype.

From another perspective, the deprivileged hypervisor

architecture as demonstrated in DeHype also introduces

some unique capabilities or new opportunities. In particular,

as the DeHyped KVM runs as a normal user-mode process,

the system can be developed and debugged with the help of

many existing tools that are familiar to most programmers.

For example, we used GDB [18] to debug our prototype by

setting breakpoints, inspecting variables, and executing the

code in single-steps. We also used the dynamic instrument

tool Valgrind [47] to detect possible memory leaks in KVM.

This is a significant improvement over the kernel-level de-

bugging, in which irregular control flow (e.g., interrupts,

task switching, and asynchronous events) makes debugging

highly challenging.

In addition, our architecture also naturally makes it fea-

sible to run different versions of the KVM hypervisor (as

user-level processes) on the same machine. This capability

could be useful in several scenarios, for example, to balance

performance and security: for virtual machines requiring

higher level of security guarantee, we can use an instru-

mented hypervisor with dynamic information flow track-

ing [33] to detect attacks against the hypervisor. At the

same time, we can use a normal hypervisor to manage other

virtual machines for better performance. By enabling the

suspend/resume support of KVM, virtual machines could

be live-migrated between these hypervisors, making the

performance-security trade-off dynamically configurable.

We leave it as future work.

Moreover, our architecture can facilitate the design and

implementation of a variety of virtualization-based security

services (e.g., virtual machine introspection [20]). Some

of these services might require modifications to the hyper-

visor code, which leads to concerns of increased TCB and

new vulnerabilities. In DeHype, such changes will most

likely be limited to the unprivileged user-mode hypervisor

code. Vulnerabilities will still be confined in the process

and mediated with the traditional system call interposition

approaches (Section 2.1).

6 Related Work

Improving hypervisor security The first area of re-

lated work is recent systems that are developed to improve

hypervisor security. For example, seL4 [23] is proposed

to formally verify the absence of certain types of software

vulnerabilities in a customized small hypervisor. Verve [56]

mechanically verifies every instruction in the software stack

so that the hypervisors running over it could also be verified

to ensure type and memory safety. HyperSafe [49] instead

admits the presence of exploitable software bugs in hyper-

visors but proposes solutions to protect the runtime (bare-

metal) hypervisor integrity. Others re-architect the hypervi-

sor design for a minimized TCB. Specifically, NOVA [43]

implements a thin bare-metal hypervisor that moves the vir-

tualization support to user level. Xoar [9] modifies the orig-

inal Xen design by breaking the control VM into single-

purpose service VMs. Xen disaggregation [30] decomposes

Xen by moving the privileged domain builder into a mini-

mal trusted compartment for trusted virtualization. Min-V

[34] disables non-critical virtual devices by minimizing the

codebase of the virtualization stack with the so-called delu-

sional boot approach. By using formal verification, MinVi-

sor [11] provides integrity guarantees. Notice that such ef-

forts require a new design of bare-metal hypervisors. Their

applicability and effectiveness remain to be demonstrated

to protect hosted hypervisors (e.g., KVM) that run together

with a commodity host OS.

From another perspective, NoHype [45] works in a con-

trolled cloud setting by eliminating the bare-metal hypervi-

sor after preparing the virtualization environment. Specif-

ically, it strictly partitions the hardware resource among

guest VMs so that there is no need for the guest VM to

interact with the hypervisor during its execution. Due to

the close interaction between a hosted hypervisor and the

host OS, the NoHype approach cannot be applied for hosted

hypervisor protection. In addition, DeHype transparently

supports commodity OS kernels (e.g., Linux and Windows)

while NoHype still requires minor modifications on the

guest OS.

KVM-L4 [37] is a closely related system that enables a

modified Linux kernel (i.e., L4Linux with the KVM module

loaded) to run in user mode over the customized L4/Fiasco

microkernel. With that, in order for QEMU to interact with

KVM, it has to go through the IPC mechanism implemented

in the L4/Fiasco microkernel. In comparison, as KVM is

largely demoted as a user-level library with DeHype, the

interaction between QEMU and KVM is simply achieved

with a user-mode function call – instead of expensive L4

IPC in KVM-L4. Also, DeHype naturally supports running

multiple KVM instances on the same host while KVM-L4

requires starting a new L4Linux to host another KVM in-

stance on the same host.

HyperLock [51] is another closely related system that

creates a separate address space in host OS kernel to confine

the loadable KVM module execution. However, since it still

executes in privileged mode, additional complex techniques

still need to be proposed to prevent potential misuse of its

privileged code (e.g., enforcing instruction alignment rules

through the compiler). In comparison, by deprivileging the

KVM execution to user mode, DeHype naturally leverages

the user-kernel mode separation (or the process boundary)

to protect the host system (or other unrelated guest VMs)

from a compromised KVM.

User-mode Linux [12] is a system to run virtual Linux

systems as applications of a normal Linux system. As such,

the guest of UML is limited to the Linux while DeHype

does not have such a limitation. On the other hand, UML

can potentially be leveraged by DeHype for kernel function

supports similar to SUD [7]. However, our prototype shows

that a full-fledged Linux is not required as DeHype only

relies on a small number of kernel functions that are simple

to recreate in the user-space.

The Turtles project [4] enables nested virtualization sup-

port for KVM. Since the deprivileged hypervisor in our

system to some extent emulates certain privileged instruc-

tions such as VMREAD/VMWRITE (Section 3.3), it has a

similar role as an L1 hypervisor. Therefore, our VMCS

caching approach shares the idea of the VMCS shadowing

they proposed. The mechanism of Pseudo NPT is also sim-

ilar to the EPT0→2. However, the L0 hypervisor in the Tur-

tles project is a full-fledge hypervisor while HypeLet has a

much smaller privileged code base which could be used to

better secure the lowest level hypervisor.

Isolating untrusted device drivers The second area

of related work includes systems that isolate device drivers

from the host OS kernel. For example, Gateway [42],

HUKO [53], and SIM [39] leverage a trustworthy hyper-

visor to isolate kernel device drivers or security monitors.

Zhou et. al [58] builds a verifiable trusted path to ensure

data transfers between devices and user programs with the

leverage of a small hypervisor. In comparison, our goal here

is to deprivilege the hosted hypervisor, which is assumed

to be trusted in these systems. Inside the host OS kernel,

Nooks [44] improves the OS reliability by isolating device

drivers in the light-weight protection domain. By assuming

the drivers to be faulty but not malicious, Nooks by design

cannot handle malicious or compromised device drivers.

From another perspective, researchers also proposed so-

lutions to isolate device drivers in user space. For example,

L3 [26] enables user-level device drivers based on a micro-

kernel architecture. SUD [7] executes existing drivers as un-

trusted user-level processes to prevent misbehaving drivers

from crashing the rest of the system. MicroDrivers [16]

splits drivers to a privileged kernel part and an unprivileged

user part at the cost of increased performance overhead.

RVM [52] executes device drivers with limited privilege in

user space, where all the interactions between the driver and

the device is constrained by the reference monitor built with

a customized device safety specification.

When deprivileging the KVM execution, we share a sim-

ilar motivation behind those efforts. However, a hosted

hypervisor module is more than a traditional device driver

and its deprivileged execution poses additional challenges.

Particularly, a hosted hypervisor has a richer set of special

privileged instructions to execute than a driver. As a result,

the earlier approach such as the way IOMMU is being em-

ployed in SUD [7] may not be applicable to hypervisors. In

addition, the host hypervisor differs from traditional device

drivers with its unique host-guest world switching opera-

tions and the need for hardware-assisted memory virtualiza-

tion. Their support requires new design and implementation

considerations (Sections 2 and 3). Specifically, the VMCS

caching and memory rebasing are unique in our DeHype

system to allow for efficient deprivileged execution without

sacrificing security.

Applying virtualization to host security The third

area of related work is a long stream of research [8, 13, 14,

20, 21, 27, 28, 36, 41, 46, 48, 50, 54, 55, 57] that applies

virtualization to address various host security issues. For

example, Proxos [46] divides the existing system call in-

terface between the untrusted commodity OS and a trusted

private OS to protect security-sensitive data. Patagonix [27]

can detect and identify covertly executing binaries in an OS-

agnostic way by relying only on the hardware features and

binary formats. Overshadow[8] protects the privacy and in-

tegrity of application data even if the OS is compromised

by interposing transitions between the guest OS and an ap-

plication to present a different view of application data to

them. HookSafe [50] and Lares [36] protect kernel function

pointers from being hijacked by rootkits. Lycosid [21] de-

tects and identifies hidden processes using hypervisor sup-

port. Lockdown [48] partitions resources across time with a

light-weight hypervisor to isolate the trusted and untrusted

environments. Such systems all require a trusted hypervisor

that is being addressed in this work as well as other systems

in the first area of related work.

7 Conclusion

We have presented the design, implementation and eval-

uation of DeHype, a system to deprivilege hosted hypervi-

sor execution to user mode. Specifically, by decoupling the

hypervisor code from the host OS and deprivileging most

of its execution, our system not only substantially reduces

the attack surface for exploitation, but also brings additional

benefits in allowing for better development and debugging

as well as concurrent execution of multiple hypervisors in

the same physical machine. We have implemented a De-

Hype prototype for the open source KVM hypervisor. The

evaluation results show that our system successfully depriv-

ileged 93.2% of the loadable KVM module code base to

user mode while only adding a small TCB (2.3K SLOC) to

the host OS kernel. Additional experiments with a number

of benchmark programs further demonstrate its practicality

and efficiency.

Acknowledgments

We would like to thank our shepherd, Heng Yin, and the

anonymous reviewers for their numerous, insightful com-

ments that greatly helped improve the presentation of this

paper. This work was supported in part by the US Na-

tional Science Foundation (NSF) under Grants 0855297,

0855036, 0910767, and 0952640. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the NSF.

References

[1] Advanced Micro Devices. AMD64 Architecture Program-

mer’s Manual Volume 2: System Programming, September

2007.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia. A View of Cloud Computing. Commun.

ACM, 53(4), April 2010.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.

In USENIX Annual Technical Conference, FREENIX Track,

April 2005.

[4] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,

N. HarEl, A. Gordon, A. Liguori, O. Wasserman, and B.-A.

Yassour. The Turtles Project: Design and Implementation

of Nested Virtualization. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Implementa-

tion, October 2010.

[5] Bonnie++. http://www.coker.com.au/bonnie+

+/.

[6] J. Bonwick. The Slab Allocator: An Object-Caching Kernel

Memory Allocator. In Proceedings of the USENIX Summer

1994 Technical Conference - Volume 1, June 1994.

[7] S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious

Device Drivers in Linux. In Proceedings of the 2010

USENIX Annual Technical Conference, June 2010.

[8] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.

Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-

shadow: a Virtualization-based Approach to Retrofitting

Protection in Commodity Operating Systems. In Proceed-

ings of the 13th International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, March 2008.

[9] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Dee-

gan, P. Loscocco, and A. Warfield. Breaking Up is Hard to

Do: Security and Functionality in a Commodity Hypervisor.

In Proceedings of the 23rd ACM Symposium on Operating

Systems Principles, October 2011.

[10] J. Corbet. Memory Management Notifiers.

http://lwn.net/Articles/266320/.

[11] M. Dahlin, R. Johnson, R. Krug, M. McCoyd, S. Ray, and

B. Young. Toward the Verification of a Simple Hypervi-

sor. In 10th International Workshop on the ACL2 Theorem

Prover and its Applications, November 2011.

[12] J. Dike. A user-mode port of the Linux kernel. In Pro-

ceedings of the 4th annual Linux Showcase & Conference,

October 2000.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Mal-

ware Analysis via Hardware Virtualization Extensions. In

Proceedings of the 15th ACM Conference on Computer and

Communications Security, October 2008.

[14] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual Environ-

ments for Unreliable Extensions. Technical Report MSR-

TR-05-82, Microsoft Research, June 2005.

[15] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu,

and G. C. Necula. XFI: Software Guards for System Address

Spaces. In Proceedings of the 7th USENIX Symposium on

Operating Systems Design and Implementation, November

2006.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.

Swift, and S. Jha. The Design and Implementation of Mi-

crodrivers. In Proceedings of the 13th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems, March 2008.

[17] GLIBC. http://www.gnu.org/software/libc/.

[18] GDB: The GNU Project Debugger. http://www.gnu.

org/s/gdb/.

[19] Intel. Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 3: System Programming Guide, September

2010.

[20] X. Jiang, X. Wang, and D. Xu. Stealthy Malware De-

tection Through VMM-based “Out-Of-the-Box” Semantic

View Reconstruction. In Proceedings of the 14th ACM Con-

ference on Computer and Communications Security, Octo-

ber 2007.

[21] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. VMM-based Hidden Process Detection and Iden-

tification using Lycosid. In ACM International Conference

on Virtual Execution Environments, Seattle, Washington,

March 2008.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.

kvm: the Linux Virtual Machine Monitor. In Proceedings of

the 2007 Ottawa Linux Symposium, July 2007.

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-

rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal

Verification of an OS Kernel. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles, October

2009.

[24] Cloudburst: A VMware Guest to Host Escape Story. http:

//www.blackhat.com/presentations/bh-

usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-

Cloudburst-SLIDES.pdf.

[25] KVM. http://www.linux-kvm.org/.

[26] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland,

and G. Szalay. Two Years of Experience with a µ-Kernel

Based OS. Operating Systems Review, 25(2), April 1991.

[27] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor Sup-

port for Identifying Covertly Executing Binaries. In Pro-

ceedings of the 17th Conference on Security Symposium,

July 2008.

[28] L. Litty and D. Lie. Patch Auditing in Infrastructure as

a Service Clouds. In Proceedings of the 7th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, March 2011.

[29] Y. Mao, H. Chen, D. Zhou, , X. Wang, N. Zeldovich, and

M. F. Kaashoek. Software Fault Isolation with API Integrity

and Multi-principal Modules. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles, October

2011.

[30] D. G. Murray, G. Milos, and S. Hand. Improving Xen Secu-

rity through Disaggregation. In Proceedings of the 4th ACM

SIGPLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments, March 2008.
[31] Virtunoid: Breaking out of KVM. http://nelhage.

com/talks/kvm-defcon-2011.pdf.
[32] NetworkWorld. Red Hat’s KVM Virtualization Proves Itself

in IBM’s Cloud. http://www.networkworld.

com/community/blog/red-hats-kvm-

virtualization-proves-itself-ibm.
[33] J. Newsome and D. Song. Dynamic Taint Analysis for Au-

tomatic Detection, Analysis, and Signature Generation of

Exploits on Commodity Software. In Proceedings of the

12th Annual Network and Distributed System Security Sym-

posium, February 2005.
[34] A. Nguyen, H. Raj, S. K. Rayanchu, S. Saroiu, and A. Wol-

man. Delusional Boot: Securing Cloud Hypervisors without

Massive Re-engineering. In Proceedings of the 7th ACM

SIGOPS/EuroSys European Conference on Computer Sys-

tems, April 2012.
[35] National Vulnerabilities Database. http://nvd.nist.

gov/.
[36] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:

An Architecture for Secure Active Monitoring Using Virtu-

alization. In Proceedings of the 29th IEEE Symposium on

Security and Privacy, May 2008.
[37] M. Peter, H. Schild, A. Lackorzynski, and A. Warg. Vir-

tual Machines Jailed: Virtualization in Systems with Small

Trusted Computing Bases. In Proceedings of the 1st EuroSys

Workshop on Virtualization Technology for Dependable Sys-

tems, April 2009.
[38] R. Russell. Virtio: Towards a De-facto Standard for Vir-

tual I/O Devices. ACM SIGOPS Operating Systems Review,

42(5), July 2008.
[39] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM

Monitoring Using Hardware Virtualization. In Proceedings

of the 16th ACM Conference on Computer and Communica-

tions Security, November 2009.
[40] SPEC CPU2006. http://www.spec.org/

cpu2006/.
[41] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process

Out-grafting: an Efficient “Out-of-VM” Approach for Fine-

grained Process Execution Monitoring. In Proceedings of

the 18th ACM Conference on Computer and Communica-

tions Security, October 2011.
[42] A. Srivastava and J. Giffin. Efficient Monitoring of Un-

trusted Kernel-Mode Execution. In Proceedings of the 18th

Annual Network and Distributed System Security Sympo-

sium, February 2011.
[43] U. Steinberg and B. Kauer. NOVA: a Microhypervisor-based

Secure Virtualization Architecture. In Proceedings of the 5th

European Conference on Computer systems, April 2010.
[44] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving

the Reliability of Commodity Operating Systems. In Pro-

ceedings of the 19th ACM Symposium on Operating Systems

Principles, October 2003.
[45] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating

the Hypervisor Attack Surface for a More Secure Cloud. In

Proceedings of the 18th ACM Conference on Computer and

Communications Security, October 2011.

[46] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making

Trust between Applications and Operating Systems Config-

urable. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation, November 2006.

[47] Valgrind. http://valgrind.org.

[48] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Per-

rig. Lockdown: Towards a Safe and Practical Architecture

for Security Applications on Commodity Platforms. In Pro-

ceedings of the 5th International Conference on Trust and

Trustworthy Computing (TRUST), June 2012.

[49] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach

to Provide Lifetime Hypervisor Control-Flow Integrity. In

Proceedings of the 31st IEEE Symposium on Security and

Privacy, May 2010.

[50] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel

Rootkits with Lightweight Hook Protection. In Proceedings

of the 16th ACM Conference on Computer and Communica-

tions Security, October 2009.

[51] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating Com-

modity Hosted Hypervisors with HyperLock. In Proceed-

ings of the 7th ACM SIGOPS/EuroSys European Conference

on Computer Systems, April 2012.

[52] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.

Schneider. Device Driver Safety through a Reference Vali-

dation Mechanism. In Proceedings of the 8th USENIX Con-

ference on Operating Systems Design and Implementation,

December 2008.

[53] X. Xiong, D. Tian, and P. Liu. Practical Protection of Ker-

nel Integrity for Commodity OS from Untrusted Extensions.

In Proceedings of the 18th Annual Network and Distributed

System Security Symposium, February 2011.

[54] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. V2E:

Combining Hardware Virtualization and Software Emula-

tion for Transparent and Extensible Malware Analysis. In

Proceedings of the Eighth Annual International Conference

on Virtual Execution Environments, March 2012.

[55] L.-K. Yan and H. Yin. DroidScope: Seamlessly Recon-

structing OS and Dalvik Semantic Views for Dynamic An-

droid Malware Analysis. In Proceedings of the 21st USENIX

Security Symposium, August 2012.

[56] J. Yang and C. Hawblitzel. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System.

In Proceedings of the 2010 ACM SIGPLAN conference on

Programming Language Design and Implementation, June

2010.

[57] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable,

A. Vahdat, A. C. Snoeren, G. M. Voelker, and S. Savage.

Neon: System Support for Derived Data Management. In

Proceedings of the 6th ACM SIGPLAN/SIGOPS interna-

tional conference on Virtual Execution Environments, March

2010.

[58] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.

Building Verifiable Trusted Path on Commodity x86 Com-

puters. In Proceedings of the IEEE Symposium on Security

and Privacy, May 2012.

