
4th ACM Conference on Data and Application Security and Privacy

Systematic Audit of Third-Party
Android Phones

Michael Mitchell, Guanyu Tian, Zhi Wang

Florida State University

Android Leads Smartphone Market

• Gartner: "Market Share: Mobile Phones by Region and Country, 3Q12." �2

iOS

13.9%

RIM

5.3%
Bada

3.0%

Symbian

2.6%

Microsoft

2.4%

Others

0.4%

Android

72.4%

WW Smartphone Sales by OS in 3Q12

Android Leads Smartphone Market

�3

0.5%
4.0%

23.3%

49.2%

68.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

2008 2009 2010 2011 2012

Andriod Smartphone Market Share (YTD)

Growing Pains of Android

• Many manufacturers produce Android phones

• Samsung, HTC, LG, Motorola, Sony….

�4

Growing Pains of Android

• Many manufacturers produce Android phones

• Samsung, HTC, LG, Motorola, Sony….

• Hundreds of similar products

• all Android phones are rather similar, especially in software

�4

Growing Pains of Android

• Many manufacturers produce Android phones

• Samsung, HTC, LG, Motorola, Sony….

• Hundreds of similar products

• all Android phones are rather similar, especially in software

�4Samsung HTC Motor LG

Growing Pains of Android

• Many manufacturers produce Android phones

• Samsung, HTC, LG, Motorola, Sony….

• Hundreds of similar products

• all Android phones are rather similar, especially in software

• Vendors are eager to differentiate by customization

• Android is open any way!

�4Samsung HTC Motor LG

Growing Pains of Android

• Many manufacturers produce Android phones

• Samsung, HTC, LG, Motorola, Sony….

• Hundreds of similar products

• all Android phones are rather similar, especially in software

• Vendors are eager to differentiate by customization

• Android is open any way!

• but are they safe???

�4Samsung HTC Motor LG

Deadly Customization

�5

Deadly Customization

�5

Deadly Customization

�5

Deadly Customization

�5

Deadly Customization

�5

Deadly Customization

�5
These vulnerabilities are not in the original Android!!!

Our Approach

• Systematically compare third-party phones to Google’s original releases

• what changes have been made?

• especially to the core Android framework and services

• are these changes safe?

• if unsafe, can we exploit it (manually)?

�6

Class
Matcher

Diff
Reports

Method
Matcher

CFG
Constructor

CFG
Comparer

DexDiff

pre-loaded
Apps/libs�

base� Class
Pairs

Method!
Pairs

CFG
Pairs

Why DexDiff

• Android is open-sourced with Apache/BSD/GPL licenses

• vendors are free to keep changes to framework closed

• those apps are too large to process manually

�7

Why DexDiff

• Android is open-sourced with Apache/BSD/GPL licenses

• vendors are free to keep changes to framework closed

• those apps are too large to process manually

• Most Android apps are Java-based in Dalvik bytecode

• no systems available to compare Dalvik binaries

• complimentary to systems for native binaries (BinHunt, BinDiff…)

�7

Why DexDiff

• Android is open-sourced with Apache/BSD/GPL licenses

• vendors are free to keep changes to framework closed

• those apps are too large to process manually

• Most Android apps are Java-based in Dalvik bytecode

• no systems available to compare Dalvik binaries

• complimentary to systems for native binaries (BinHunt, BinDiff…)

�7

1 2

3 4 5

6 7 8

DexDiff Overview

• Input: two Android (Java) apps

• Output: differences between these two apps

�8

DexDiff Overview

• Input: two Android (Java) apps

• Output: differences between these two apps

• Process:

• parse the apps into Java classes

• find matching classes ➠ pairs of matched classes

• find matching methods in them ➠ pairs of matched methods

• construct CFGs for matched methods

• compare CFGs (graph isomorphism)

�8

DexDiff Sample Output

�9

DexDiff Sample Output

�10

DexDiff Sample Output

�11

Matching Classes

• Parse the (two) Android binaries into classes

• official Gingerbread (2.3.3) framework.dex: 3924 classes

• HTC EVO 4G framework.dex: 5423 classes

�12

Matching Classes

• Parse the (two) Android binaries into classes

• official Gingerbread (2.3.3) framework.dex: 3924 classes

• HTC EVO 4G framework.dex: 5423 classes

• Calculate pair-wise similarity score for classes

• convert classes into string arrays

• calculate string similarity using n-gram

�12

Matching Classes

• Parse the (two) Android binaries into classes

• official Gingerbread (2.3.3) framework.dex: 3924 classes

• HTC EVO 4G framework.dex: 5423 classes

• Calculate pair-wise similarity score for classes

• convert classes into string arrays

• calculate string similarity using n-gram

• Find a matching that maximizes overall similarity

• Hungarian algorithm

�12

Matching Classes: Similarity

• Convert classes into string arrays

�13

Matching Classes: Similarity

• Convert classes into string arrays

• each terminal in the BNF is a string (semantic unit)

�13

Matching Classes: Similarity

• Convert classes into string arrays

• each terminal in the BNF is a string (semantic unit)

• registers are omitted for instructions

• e.g., new-array v0, v1 [Ljava/lang/String;

• Java: late-binding ➠ types retained in bytecodes

�13

Matching Classes: Similarity

• Slide a window of n on the array, step one at a time

• Each window of data (strings) is a n-gram

• e.g., 2-gram set of abcd: {ab, bc, cd}

 2-gram set of adbc: {ad, db, bc}

• Similarity of class a and b:

�14

Matching Classes: Similarity

• However, string comparison is slow

• framework.dex: 3924 classes v.s 5423 classes

�15

Matching Classes: Similarity

• However, string comparison is slow

• framework.dex: 3924 classes v.s 5423 classes

• Apply a hash function to n-grams

• feature hashing

�15

Matching Classes: Similarity

• However, string comparison is slow

• framework.dex: 3924 classes v.s 5423 classes

• Apply a hash function to n-grams

• feature hashing

• Calculate similarity with hash values

�15

Matching Classes

• Hungarian algorithm solves the assignment problem

• n workers and n tasks, find an optimal (least cost/most benefit)
assignment of the workers to the tasks

�16

Matching Classes

• Hungarian algorithm solves the assignment problem

• n workers and n tasks, find an optimal (least cost/most benefit)
assignment of the workers to the tasks

• DexDiff uses it to find a matching of classes to maximize total similarity

�16

Matching Classes

• Hungarian algorithm solves the assignment problem

• n workers and n tasks, find an optimal (least cost/most benefit)
assignment of the workers to the tasks

• DexDiff uses it to find a matching of classes to maximize total similarity

• Output: pairs of matched classes

�16

Matching Methods

• Input: a pair of matched classes

• Output: pairs of matched methods in these classes

�17

Matching Methods

• Input: a pair of matched classes

• Output: pairs of matched methods in these classes

• Method: the same as matching classes

• calculate a matrix of similarity scores for methods

• apply Hungarian algorithm for a maximal matching

�17

Constructing CFGs

• A normal CFG construction algorithm

• break methods into basic blocks

• link basic blocks together

�18

Constructing CFGs

• A normal CFG construction algorithm

• break methods into basic blocks

• link basic blocks together

• Hungarian algorithm cannot be used to match BBs

• many basic blocks are similar to each other

• connectivity of CFGs should be used to refine results

�18

Comparing CFGs

• Input: two CFGs

�19

Comparing CFGs

• Input: two CFGs

• Output: maximum common isomorphic sub-graphs

• unmatched nodes are BBs modified, inserted, or deleted

�19

Comparing CFGs

• Input: two CFGs

• Output: maximum common isomorphic sub-graphs

• unmatched nodes are BBs modified, inserted, or deleted

• Maximum sub-graph isomorphism is NP-complete

• efficient algorithm exists for two similar graphs

• two inputs in DexDiff are similar

�19

Comparing CFGs

�20

Comparing CFGs

• Backtracking is a brute-force algorithm

• it converges fast if Refine can quickly prune dead trees

�21

Comparing CFGs

• Backtracking is a brute-force algorithm

• it converges fast if Refine can quickly prune dead trees

• Timeout is used to prevent waiting for too long

• limit the number of recursive calls (1 million)

• 38 timeouts out of 6560 CFG pairs (0.58%) for framework.dex

�21

Comparing CFGs

• Backtracking is a brute-force algorithm

• it converges fast if Refine can quickly prune dead trees

• Timeout is used to prevent waiting for too long

• limit the number of recursive calls (1 million)

• 38 timeouts out of 6560 CFG pairs (0.58%) for framework.dex

• Leading causes of timeout

• large CFGs with many unmatched basic blocks

• many identical basic blocks (switch/exception)

• nodes with many similar parents/children

�21

Implementation

• Implemented in 13.5K lines of “C” source code

• Use “dot” to generate CFGs side-by-side

• matching is efficient, “dot” is slow

�22

Evaluation

• Experiments with HTC EVO 4G

• Carrier IQ: details of information collection in the browser

• subsequently removed in a firmware update

• a hook in com.android.calculator2.CalculatorImageButton.onTouch survives

• Vulnerable device management app (newly discovered with DexDiff)

• local app with INTERNET access can obtain private information, install/delete
apps, wipe/lock/brick the phone

�23

Changes to the Framework

�24

Changes to the Framework

�24

Changes to the Framework

�24

Changes to the Framework

�24

Changes to the Framework

�24

Changes to the Framework

�24

Processing Time

�25

Carrier IQ Hooks in Browser

�26

Carrier IQ Hooks in Browser

�26

Carrier IQ Hooks in Browser

�26

Vulnerable Device Management App

• Three new APIs in framework.dex

• void broadcastKeyinEvent (boolean); void broadcastMotionEvent
(boolean); void broadcastTrackballEvent(boolean);

�27

Vulnerable Device Management App

• Three new APIs in framework.dex

• void broadcastKeyinEvent (boolean); void broadcastMotionEvent
(boolean); void broadcastTrackballEvent(boolean);

• Protected by vendor permissions

• e.g., com.htc.Manifest.permission.BROADCAST_KEYIN_EVENT

�27

Vulnerable Device Management App

• Three new APIs in framework.dex

• void broadcastKeyinEvent (boolean); void broadcastMotionEvent
(boolean); void broadcastTrackballEvent(boolean);

• Protected by vendor permissions

• e.g., com.htc.Manifest.permission.BROADCAST_KEYIN_EVENT

• Used only by /system/app/HtcDm.apk

• system management app, can install/delete apps, factory reset…

• dangerous functionalities are unimplemented yet

• no authentication at all

• any local app with network permission can send commands to it

�27

Thank you!

