
Architecture of the

Windows Kernel

Berlin

April 2008

Dave Probert, Kernel Architect

Windows Core Operating Systems Division

Microsoft Corporation

MS/HP 2008 v1.0a © Microsoft Corporation 2008

Over-simplified OS history

Multics

UNIX v6/v7

BSD/SVR4

Linux/MacOS

RSX-11

VMS

NT

CP/M

MS/DOS

Win9x

Of all the interesting operating systems

only UNIX and NT matter (and maybe Symbian)

Mach

Tenex

AccentSystem38

OS/360

VM/370

Symbian

MCP

NT vs UNIX Design Environments

Environment which influenced

fundamental design decisions

Windows (NT) UNIX

32-bit program address space

Mbytes of physical memory

Virtual memory

Mbytes of disk, removable disks

Multiprocessor (4-way)

Micro-controller based I/O devices

Client/Server distributed computing

Large, diverse user populations

16-bit program address space

Kbytes of physical memory

Swapping system with memory mapping

Kbytes of disk, fixed disks

Uniprocessor

State-machine based I/O devices

Standalone interactive systems

Small number of friendly users

Effect on OS Design

NT vs UNIX
Although both Windows and Linux have adapted to changes in the
environment, the original design environments (i.e. in 1989 and 1973) heavily
influenced the design choices:

Unit of concurrency:

Process creation:

I/O:

Namespace root:

Security:

Threads vs processes

CreateProcess() vs fork()

Async vs sync

Virtual vs Filesystem

ACLs vs uid/gid

Addr space, uniproc

Addr space, swapping

Swapping, I/O devices

Removable storage

User populations

Today’s Environment

64-bit addresses

Gbytes of physical memory

Virtual memory, virtual processors

Multiprocessors (64-128x)

High-speed internet/intranet, Web Services

Single user, but vulnerable to hackers worldwide

TV/PC Convergence

Cellphone/Walkman/PDA/PC Convergence

“Compare & Contrast” drives innovation

• Studying ‘foo’ is fine

• But if you also study ‘bar’, students will compare &

contrast

• Result is innovation:

– Students mix & match concepts to create new

ideas

– Realizing there is not a single ‘right’ solution,

students invent even more approaches

– Learning to think critically is an important skill for

students

Teaching unix AND Windows

© Microsoft Corporation 2008 7

NT – the accidental secret

Historically little information on NT available

– Microsoft focus was end-users and Win9x

– Source code for universities was too encumbered

Much better internals information today

– Windows Internals, 4th Ed., Russinovich & Solomon

– Windows Academic Program (universities only):
• CRK: Curriculum Resource Kit (NT kernel in PowerPoint)

• WRK: Windows Research Kernel (NT kernel in source)

• Design Workbook: soft copies of the original specs/notes

– Chapters in leading OS textbooks (Tanenbaum,
Silberschatz, Stallings)

© Microsoft Corporation 2008 8

NT kernel philosophy

• Reliability, Security, Portability, Compatibility are
all paramount

• Performance important

– Multi-threaded, asynchronous

• General facilities that can be re-used

– Support kernel-mode extensibility (for better or worse)

– Provide unified mechanisms that can be shared

– Kernel/executive split provides a clean layering model

– Choose designs with architectural headroom

© Microsoft Corporation 2008 9

Important NT kernel features

• Highly multi-threaded in a process-like environment

• Completely asynchronous I/O model

• Thread-based scheduling

• Unified management of kernel data structures, kernel
references, user references (handles), namespace,
synchronization objects, resource charging, cross-
process sharing

• Centralized ACL-based security reference monitor

• Configuration store decoupled from file system

© Microsoft Corporation 2008 10

Important NT kernel features (cont)

• Extensible filter-based I/O model with driver layering,
standard device models, notifications, tracing, journaling,
namespace, services/subsystems

• Virtual address space managed separately from memory
objects

• Advanced VM features for databases (app management
of virtual addresses, physical memory, I/O, dirty bits, and
large pages)

• Plug-and-play, power-management

• System library mapped in every process provides trusted
entrypoints

© Microsoft Corporation 2008 11

Windows Architecture

User-mode

Kernel-mode
NTOS kernel layer

System library (ntdll) / run-time library

Kernel32 win32

DLLs

Applications

System Services
Subsystem
servers

Logon/GINA

Critical services

NTOS executive layerDrivers

HAL

Firmware, Hardware

© Microsoft Corporation 2008 12

Windows user-mode

• Subsystems

– OS Personality processes

– Dynamic Link Libraries

– Why NT mistaken for a microkernel

• System services (smss, lsass, services)

• System Library (ntdll.dll)

• Explorer/GUI (winlogon, explorer)

• Random executables (robocopy, cmd)

© Microsoft Corporation 2008 13

Windows kernel-mode

• NTOS (aka ‘the kernel’)
– Kernel layer (abstracts the CPU)

– Executive layer (OS kernel functions)

• Drivers (kernel-mode extension model)
– Interface to devices

– Implement file system, storage, networking

– New kernel services

• HAL (Hardware Abstraction Layer)
– Hides Chipset/BIOS details

– Allows NTOS and drivers to run unchanged

© Microsoft Corporation 2008 14

NT API stubs (wrap sysenter) -- system library (ntdll.dll)
user

mode

kernel
mode

Kernel-mode Architecture of Windows

NTOS executive layer

Trap/Exception/Interrupt Dispatch

CPU mgmt: scheduling, synchr, ISRs/DPCs/APCs

Drivers
Devices, Filters,
Volumes,
Networking,
Graphics

Hardware Abstraction Layer (HAL): BIOS/chipset details

firmware/
hardware CPU, MMU, APIC, BIOS/ACPI, memory, devices

NTOS

kernel

layer

Caching Mgr

Security

Procs/Threads

Virtual Memory

IPC

glue

I/O

Object Mgr

Registry

© Microsoft Corporation 2008 15

Kernel/Executive layers

• Kernel layer – aka ‘ke’ (~ 5% of NTOS source)

– Abstracts the CPU

• Threads, Asynchronous Procedure Calls (APCs)

• Interrupt Service Routines (ISRs)

• Deferred Procedure Calls (DPCs – aka Software Interrupts)

– Providers low-level synchronization

• Executive layer

– OS Services running in a multithreaded environment

– Full virtual memory, heap, handles

• Note: VMS had four layers:

– Kernel / Executive / Supervisor / User

© Microsoft Corporation 2008 16

NT (Native) API examples

NtCreateProcess (&ProcHandle, Access, SectionHandle,

DebugPort, ExceptionPort, …)

NtCreateThread (&ThreadHandle, ProcHandle, Access,

ThreadContext, bCreateSuspended, …)

NtAllocateVirtualMemory (ProcHandle, Addr, Size, Type,

Protection, …)

NtMapViewOfSection (SectHandle, ProcHandle, Addr,

Size, Protection, …)

NtReadVirtualMemory (ProcHandle, Addr, Size, …)

NtDuplicateObject (srcProcHandle, srcObjHandle,

dstProcHandle, dstHandle, Access, Attributes, Options)

Kernel Abstractions

Kernels implement abstractions
– Processes, threads, semaphores, files, …

Abstractions implemented as data and code
– Need a way of referencing instances

UNIX uses a variety of mechanisms
– File descriptors, Process IDs, SystemV IPC numbers

NT uses handles extensively
– Provides a unified way of referencing instances of
kernel abstractions

– Objects can also be named (independently of the file
system)

17

NT Object Manager

• Generalizes access to kernel abstractions

• Provides unified management of:

! kernel data structures
! kernel references
! user references (handles)
! namespace
! synchronization objects
! resource charging
! cross-process sharing
! central ACL-based security reference monitor
! configuration (registry)

18

\ObjectTypes

Object Manager: Directory, SymbolicLink, Type

Processes/Threads: DebugObject, Job, Process, Profile,
Section, Session, Thread, Token

Synchronization:

Event, EventPair, KeyedEvent, Mutant, Semaphore,
ALPC Port, IoCompletion, Timer, TpWorkerFactory

IO: Adapter, Controller, Device, Driver, File, Filter*Port

Kernel Transactions: TmEn, TmRm, TmTm, TmTx

Win32 GUI: Callback, Desktop, WindowStation

System: EtwRegistration, WmiGuid

© Microsoft Corporation 2008 19

© Microsoft Corporation 2008 20

\Global??\C:

\Device\HarddiskVolume1

<directory>

L“Global??”

<directory>

L“C:”

L“\”

<symbolic link>

\Device\HarddiskVolume1

<directory>

L“Device”

<directory>

L“HarddiskVolume1”

L“\”

<device>

by I/O

manager

implemented

Naming example

© Microsoft Corporation 2008 21

\Global??\C:\foo\bar.txt

<device object>

by I/O

manager

implemented , “foo\bar.txt”

deviceobject->ParseRoutine == IopParseDevice

Object Manager Parsing example

Note: namespace rooted in object manager, not FS

© Microsoft Corporation 2008 22

I/O Support: IopParseDevice

user

kernel

Trap mechanism

Dev Stack

NtCreateFile()

ObjMgr Lookup

context

IopParseDevice()

DevObj,

context

Security
RefMon

Access

check

File object

File Sys

File System Fills in File object

Access

check

Returns handle to File object

© Microsoft Corporation 2008 23

Why not root namespace in filesys?

A few reasons…

• Hard to add new object types

• Device configuration requires filesys modification

• Root partition needed for each remote client

– End up trying to make a tiny root for each client

– Have to check filesystem very early

Windows uses object manager + registry hives

• Fabricates top-level namespace in kernel

• Uses config information from registry hive

• Only needs to modify hive after system stable

© Microsoft Corporation 2008 24

Object referencing

Object
Manager

NTOS

Kernel
Data Object

Name

lookup

Access checks

Security
Ref Monitor

Returns ref’d ptr

Ref’d ptr used until deref

App

Name

Handle

© Microsoft Corporation 2008 25

Handle Table

– NT handles allow user code to reference
kernel data structures (similar, but more
general than UNIX file descriptors)

– NT APIs use explicit handles to refer to
objects (simplifying cross-process operations)

– Handles can be used for synchronization,
including WaitMultiple

– Implementation is highly scalable

© Microsoft Corporation 2008 26

Process Handle Tables

pHandleTable

EPROCESS

pHandleTable

EPROCESS

System

Process

Handle Table

Handle Table

Kernel Handles

object

object

object

object
object

© Microsoft Corporation 2008 27

One level: (to 512 handles)

TableCode

A: Handle Table Entries [512]
Handle Table

Object

Object
Object

© Microsoft Corporation 2008 28

Two levels: (to 512K handles)

TableCode

A: Handle Table Entries [512]

Handle Table

Object

Object
Object

B: Handle Table Pointers [1024]

C: Handle Table Entries [512]

© Microsoft Corporation 2008 29

Three levels: (to 16M handles)

TableCode

A: Handle Table Entries [512]

Handle Table

Object

Object
Object

B: Handle Table Pointers [1024]

C: Handle Table Entries [512]

D: Handle Table Pointers [32]

E: Handle Table Pointers [1024]

F: Handle Table Entries [512]

© Microsoft Corporation 2008 30

Process/Thread structure

Object
Manager

Any Handle
Table

Process
Object

Process’
Handle Table

Virtual
Address
Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

user-mode execution

read(handle)

Memory
Manager
Structures

© Microsoft Corporation 2008 31

OBJECT_HEADER

PointerCount

HandleCount

pObjectType

oNameInfo

pQuotaBlockCharged

pSecurityDescriptor

CreateInfo + NameInfo + HandleInfo + QuotaInfo

OBJECT BODY [optional DISPATCHER_HEADER]

oHandleInfo oQuotaInfo Flags

Event Type: Notification or Synchronization

Waiter List

Signaled

© Microsoft Corporation 2008 32

WaitListHead WaitListEntry

WaitBlockList

KPRCB Thread Thread

WaitListEntry

WaitBlockList

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListHead

Object ->Header

Signaled

WaitListHead

Object ->Header

Signaled

WaitListHead

Object ->Header

Signaled

WaitListHead

Object ->Header

Signaled
Structure used by

WaitMultiple

© Microsoft Corporation 2008 33

Summary: Object Manager

• Foundation of NT namespace

• Unifies access to kernel data structures

– Outside the filesystem (initialized form registry)

– Unified access control via Security Ref Monitor

– Unified kernel-mode referencing (ref pointers)

– Unified user-mode referencing (via handles)

– Unified synchronization mechanism (events)

© Microsoft Corporation 2008 34

Processes

• An environment for program execution

• Binds

– namespaces

– virtual address mappings

– ports (debug, exceptions)

– threads

– user authentication (token)

– virtual memory data structures

• Abstracts the MMU, not the CPU

v3 © Microsoft Corporation 2006

Virtual Address Translation

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD PT page DATADATA

1024

PDEs
1024

PTEs
4096

bytes

v3 © Microsoft Corporation 2006

Self-mapping page tables
Virtual Access to PageDirectory[0x300]

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 0000 0000 1100 0000 0000

CR3

PD

PTEPTE

0x300

Phys: PD[0xc0300000>>22] = PD

Virt: *((0xc0300c00) == PD

v3 © Microsoft Corporation 2006

Self-mapping page tables
Virtual Access to PTE for va 0xe4321000

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 1001 0000 1100 1000 0100

CR3

PD

0x300

PTEPTE

PT

0x390

0x321

GetPteAddress:

0xe4321000 =>

0xc0390c84

© Microsoft Corporation 2008 38

Virtual Address Descriptors

• Tree representation of an address space

• Types of VAD nodes
– invalid

– reserved

– committed

– committed to backing store

– app-managed (large pages, AWE, physical)

• Backing store represented by section
objects

© Microsoft Corporation 2008 39

Physical Frame Management

Page Tables
– hierarchical index of page directories and tables
– leaf-node is page table entry (PTE)
– PTE states:

• Active/valid
• Transition
• Modified-no-write
• Demand zero
• Page file
• Mapped file

Table of _PFN data structures
– represent all pageable pages
– synchronize page-ins
– linked to management lists: standby, modified, free, zero

© Microsoft Corporation 2008 40

Paging Overview

Working Sets: list of valid pages for each process
(and the kernel)

Pages ‘trimmed’ from working set on lists
Standby list: pages backed by disk

Modified list: dirty pages to push to disk

Free list: pages not associated with disk

Zero list: supply of demand-zero pages

Modify/standby pages can be faulted back into a
working set w/o disk activity (soft fault)

Background system threads trim working sets,
write modified pages and produce zero pages
based on memory state and config parameters

Physical Frame State Changes

© Microsoft Corporation 2008 41

Process
(or System)
Working Set

Standby

List
Modified
List

Free

List
Zero

List

Modified Pagewriter

Zero Thread

M
M

 L
o

w
 M

e
m

Har
d

fa
ul

t (
I/O

)

Del
et

e
pa

ge

Trim
 C

lean Trim
 D

irt
y

Zero fill fault

Soft
fa

ult

Soft fault

© Microsoft Corporation 2008 42

32-bit VA/Memory Management

SQL

VAD tree

File
Data

Image

c-o-w
Data

Data

File
Data

Sections

e
x
e
c
u
ta

b
le

d
a
ta

file

p
a
g
e
file

S
Q

L
 d

b

Working-set Manager

M
o
d
ifie

d
 L

is
t

Working-set list

Modified

Page Writer

S
ta

n
d
b
y
 L

is
t

F
re

e
 L

is
t

Phys

© Microsoft Corporation 2008 43

Threads
Unit of concurrency (abstracts the CPU)

Threads created within processes

System threads created within system process (kernel)

System thread examples:

Dedicated threads
Lazy writer, modified page writer, balance set manager,

mapped pager writer, other housekeeping functions

General worker threads

Used to move work out of context of user thread

Must be freed before drivers unload

Sometimes used to avoid kernel stack overflows

Driver worker threads

Extends pool of worker threads for heavy hitters, like file server

© Microsoft Corporation 2008 44

Scheduling

Windows schedules threads, not processes
Scheduling is preemptive, priority-based, and round-robin at the

highest-priority
16 real-time priorities above 16 normal priorities
Scheduler tries to keep a thread on its ideal processor/node to

avoid perf degradation of cache/NUMA-memory
Threads can specify affinity mask to run only on certain processors

Each thread has a current & base priority
Base priority initialized from process
Non-realtime threads have priority boost/decay from base
Boosts for GUI foreground, waking for event
Priority decays, particularly if thread is CPU bound (running at

quantum end)

Scheduler is state-driven by timer, setting thread
priority, thread block/exit, etc

Priority inversions can lead to starvation
balance manager periodically boosts non-running runnable threads

© Microsoft Corporation 2008 45

NT thread priorities

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16zero thread

real-time

(fixed)

worker

threads

normal

(dynamic)

criticalH
I
G
H

+
N
O
R
M

N
O
R
M

N
O
R
M
-

I
D
L
E

idle

© Microsoft Corporation 2008 46

CPU Control-flow

Thread scheduling occurs at PASSIVE or APC level
(IRQL < 2)

APCs (Asynchronous Procedure Calls) deliver I/O
completions, thread/process termination, etc (IRQL == 1)
Not a general mechanism like unix signals (user-mode code must

explicitly block pending APC delivery)

Interrupt Service Routines run at IRL > 2

ISRs defer most processing to run at IRQL==2 (DISPATCH
level) by queuing a DPC to their current processor

A pool of worker threads available for kernel components
to run in a normal thread context when user-mode thread
is unavailable or inappropriate

Normal thread scheduling is round-robin among priority
levels, with priority adjustments (except for fixed priority
real-time threads)

© Microsoft Corporation 2008 47

Summary: CPU

• Multiple mechanisms for getting CPU

– Integrated with the I/O system

• Thread is basic unit of scheduling

• Highly preemptive kernel environment

• Real-time scheduling priorities

• Interesting part is locking/scalability

© Microsoft Corporation 2008 48

I/O Model

• Extensible filter-based I/O model with driver layering

• Standard device models for common device classes

• Support for notifications, tracing, journaling

• Configuration store remembers PnP decisions

• File caching is virtual, based on memory mapping

• Completely asynchronous model (with cancellation)

– Multiple completion models:
• wait on the file handle

• wait on an event handle

• specify a routine to be called at I/O completion (User-mode APC)

• use an I/O completion port

• poll status variable

© Microsoft Corporation 2008 49

Layering Drivers
Device objects attach one on top of another using

IoAttachDevice* APIs creating “device stacks”

– I/O manager sends IRP to top of a stack

– drivers store next lower device object in their private
data structure

– stack tear down done using IoDetachDevice and
IoDeleteDevice

Device objects point to driver objects

– driver represent driver state, including dispatch table

– drivers have device objects in multiple device stacks

File objects point to open files

File systems are drivers which manage file objects for
volumes (described by VolumeParameterBlocks)

© Microsoft Corporation 2008 50

File System Device Stack

NT I/O Manager

File System Filters

File System Driver

Cache Manager

Virtual Memory
Manager

Application

Kernel32 / ntdll
user
kernel

Partition/Volume
Storage Manager

Disk Class Manager

Disk Driver

DISK

© Microsoft Corporation 2008 51

I/O Request Packet (IRP)

• I/O operations encapsulated in IRPs

• I/O requests travel down a driver stack in an IRP

• Each driver gets a stack location which contains
parameters for that IO request.

• IRP has major and minor codes to describe I/O
operations

• Major codes include create, read, write, PNP,
devioctl, cleanup and close

• IRPs are associated with a thread that made the
I/O request – and can be cancelled

© Microsoft Corporation 2008 52

IRP Fields

Flags

Buffer Pointers

Mem Descr List (MDL) Chain head

Thread’s IRPs

Completion/Cancel Info

Completion

APC block

Driver

Queuing

& Comm.

System

User

MDL

Thread

IRP Stack Locations (one per dev obj)

© Microsoft Corporation 2008 53

I/O Manager

Object Manager

NtCreateFile

I/O Manager

ObOpenObjectByName

IopParseDevice

IoCallDriver

IRPIRP

FS filter drivers

NTFS

Volume Mgr

Disk DriverHAL

FileFile

ObjectObject

Result: File ObjectFile Object filled in
by NTFS

IoCallDriver

IoCallDriver

IoCallDriver

© Microsoft Corporation 2008 54

Asynchronous I/O

• I/O manager called to perform a standard operation

– Open/create, read/write, ioctl, cleanup/close, …

• I/O operations represented by I/O Request Packet (IRP)

• I/O system uses IoCallDriver to call into a device stack
– Figures out which device stack from name or top device object

• Drivers call IoCallDriver for next device object

– Device object links to driver object, which has dispatch table

• Drivers keep calling down the device stack until:

– I/O operation completes synchronously, or

– Device driver decides to continue operation asynchronously

• IRP queued to interrupt driven facilty or posted to a worker thread

© Microsoft Corporation 2008 55

IRP flow of control (asynchronous)

Eventually a driver decides to be asynchronous…

Driver queues IRP for further processing

Driver returns STATUS_PENDING up call stack

Higher drivers may return all the way to user, or may
wait for I/O to complete (synchronizing the stack)

Eventually a driver decides I/O is complete…

Usually due to an interrupt/DPC completing I/O

Each completion routine in device stack is called,
possibly at DPC or in arbitrary thread context

IRP turned into APC request delivered to original thread

APC runs final completion, accessing process memory

© Microsoft Corporation 2008 56

I/O Completion Ports

K

U

th
re

a
d

th
re

a
d

th
re

a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q
u
e
s
t

c
o
m

p
le

te

c
o
m

p
le

te

c
o
m

p
le

te

K

U

th
re

a
d

th
re

a
d

th
re

a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q
u
e
s
t

complete
c
o
m

p
le

te

th
re

a
d th

re
a
d

I/O completion portsnormal completion

I/O Completion

Concurrency
Throttle

v3 © Microsoft Corporation 2006

NTFS Features
• Native file system for NT (replaced FAT and FAT32)
• Extends object manager / security reference monitor ACLs to files
• Many advanced features:

– Quotas, journaling, objectids, encryption, compression, sparse files

• Supports multiple data streams per file
– This is why ‘:’ is not allowed in file names
– Used primarily for MacOS resource forks on servers
– NTFS implementation itself uses these data streams

• Directories use special $Index streams
• Common metadata duplicated

– ‘ls –l’ very fast

• Equivalent of inodes has embedded data
• Integrity of metadata based on transaction logging
• Supports legacy

– short names, attribute tunneling, Posix, hard links, symlinks?

• Unicode-based

NT Timeline
 2/1989 Design/Coding Begins

 7/1993 NT 3.1

 9/1994 NT 3.5

 5/1995 NT 3.51

 7/1996 NT 4.0

12/1999 NT 5.0 Windows 2000

 8/2001 NT 5.1 Windows XP

 3/2003 NT 5.2 Windows Server 2003

 8/2004 NT 5.2 Windows XP SP2

 4/2005 NT 5.2 Windows XP 64 Bit Ed. (& WS03SP1)

10/2006 NT 6.0 Windows Vista (client)

 2/2008 NT 6.0 Windows Server 2008
58

Vista Kernel Security Changes

Code Integrity (x64) and BitLocker Encryption

• Signature verification of kernel modules

• Drives can be encrypted

Protected Processes

• Secures DRM processes

User Account Control (Allow or Deny?)

• Signature verification of kernel modules

Integrity Levels

• Provides a backup for ACLs by limiting write access to
objects (and windows) regardless of permission

• Used by “low-rights” Internet Explorer

Vista Process/Memory Changes

Process Management changes

• Protected processes: move many steps into
kernel and use for isolation (for DRM)

Memory Management improvements

• Improved prefetch at app launch/swap-in and
resume from hibernation/sleep

• Kernel Address Space dynamically configured

• Support use of flash as write-through cache

• Address Space Randomization (executables and
stacks) for improved virus resistance

Vista I/O

Memory Management improvements

• Improved prefetch at app launch/swap-in and
resume from hibernation/sleep

• Kernel Address Space dynamically configured

• Support use of flash as write-through cache
(compressed/encrypted)

• Session 0 is now isolated (runs systemwide
services)

• Address Space Randomization (executables and
stacks) for improved virus resistance

Vista Boot & Startup changes

Boot changes

• Boot.ini replaced by Boot Configuration Data
registry hive

• BootMgr & Winload/WinResume replace NTLDR

• MemTest included as boot option

Startup changes

• Session Manager (SMSS) starts sessions in
parallel

• Winlogon role !Wininit & LSM (local session mgr)

• Console now runs in Session 1 not 0

© Microsoft Corporation 2008 63

Questions

