Chapter 10: Mass-Storage Systems

Zhi Wang
Florida State University
Content

• Overview of Mass Storage Structure
• Disk Structure
• Disk Scheduling
• Disk Management
• Swap-Space Management
• RAID Structure
Objectives

• Describe the **physical structure** of secondary and tertiary storage devices and the effects on the uses of the devices

• Explain the **performance characteristics** of mass-storage devices

• Discuss **operating-system services** provided for mass storage
Overview

- Magnetic disks provide bulk of secondary storage of computer system
 - hard disk is most popular; some magnetic disks could be removable
 - driver attached to computer via I/O buses (e.g., USB, SCSI, EIDE, SATA…)
 - drives rotate at 60 to 250 times per second (7000rpm = 117rps)
- Transfer rate is rate at which data flow between drive and computer
- **Positioning time** is time to move disk arm to desired sector
 - positioning time includes **seek time** and **rotational latency**
 - seek time: move disk to the target cylinder
 - rotational latency: for the target sector to rotate under the disk head
 - positioning time is also called random-access time
The First Commercial Disk Drive

1956 IBM RAMDAC computer included the IBM Model 350 disk storage system

5M (7 bit) characters
50 x 24” platters
Access time = < 1 second
Magnetic Disks

- Magnetic disks have platters, range from .85” to 14” (historically)
 - 3.5”, 2.5”, and 1.8” are common nowadays
- Capacity ranges from 30GB to 3TB per drive
- Performance
 - **transfer rate**: theoretical 6 Gb/sec; effective (real) about 1Gb/sec
 - **seek time** from 3ms to 12ms (9ms common for desktop drives)
 - latency based on spindle speed: 1/rpm * 60
 - average latency = \(\frac{1}{2} \) latency

<table>
<thead>
<tr>
<th>Spindle [rpm]</th>
<th>Average latency [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>7.14</td>
</tr>
<tr>
<td>5400</td>
<td>5.56</td>
</tr>
<tr>
<td>7200</td>
<td>4.17</td>
</tr>
<tr>
<td>10000</td>
<td>3</td>
</tr>
<tr>
<td>15000</td>
<td>2</td>
</tr>
</tbody>
</table>
Moving-head Magnetic Disk
Magnetic Disk

- **Average access time** = average seek time + average latency

 - for fastest disk 3ms + 2ms = 5ms;

 - for slow disk 9ms + 5.56ms = 14.56ms

- **Average I/O time**: average access time + (data to transfer / transfer rate) + controller overhead

 - e.g., to transfer a 4KB block on a 7200 RPM disk; 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead:

 \[
 5\text{ms} + 4.17\text{ms} + \frac{4\text{KB}}{1\text{Gb/sec}} + 0.1\text{ms} = 9.39\text{ms} \quad (4.17 \text{ is average latency})
 \]
Magnetic Tape

- Tape was early type of secondary storage, now mostly for backup
 - large capacity: 200GM to 1.5 TB
 - slow access time, especially for random access
 - seek time is much higher than disks
 - once data under head, transfer rates comparable to disk (140 MB/s)
 - need to wind/rewind tape for random access
 - data stored on the tape are relatively permanent
Disk Structure

- Disk drives are addressed as a 1-dimensional arrays of logical blocks,
 - logical block is the smallest unit of transfer
- Logical blocks are mapped into sectors of the disk sequentially
 - sector 0 is the first sector of the first track on the outermost cylinder
 - mapping proceeds in order
 - first through that track
 - then the rest of the tracks in that cylinder
 - then through the rest of the cylinders from outermost to innermost
- logical to physical address should be easy
 - except for bad sectors
Disk Attachment

- Disks can be attached to the computer as:
 - **host-attached** storage
 - hard disk, RAID arrays, CD, DVD, tape…
 - **network-attached** storage
 - **storage area network**
Host-Attached Storage

- Disks can be attached to the computers directly via an I/O bus
 - e.g., SCSI is a bus architecture, up to 16 devices on one cable,
 - SCSI initiator requests operations; SCSI targets (e.g., disk) perform tasks
 - each target can have up to 8 logical units
 - e.g., Fiber Channel is high-speed serial bus
 - can be switched fabric with 24-bit address space
 - most common storage area networks (SANs) interconnection
Network-Attached Storage

- **NAS** is storage made available over a network instead of a local bus
 - client can remotely attach to file systems on the server
 - NFS, CIFS, and iSCSI are common protocols
 - usually implemented via remote procedure calls (RPCs)
 - typically over TCP or UDP on IP network
 - iSCSI protocol uses IP network to carry the SCSI protocol
Storage Area Network

- **SAN** is a private network connecting servers and storage units
 - NAS consumes high bandwidth on the data network separation is needed
 - TCP/IP stack less efficient for storage access
 - SAN uses high speed interconnection and efficient protocols
 - FC (Infiniband) is the most common SAN interconnection
 - multiple hosts and storage arrays can attach to the same SAN
 - a *cluster* of servers can share the same storage
 - storage can be *dynamically* allocated to hosts
Disk Scheduling

- OS is responsible for using hardware efficiently
 - for the disk drives: a fast access time and high disk bandwidth
- **access time**: seek time (roughly linear to seek distance) + rotational latency
- **disk bandwidth** is the speed of data transfer, data /time
 - data: total number of bytes transferred
 - time: between the first request and completion of the last transfer
- **Disk scheduling** chooses which pending disk request to service next
 - concurrent sources of disk I/O requests include OS, system/user processes
 - idle disk can immediately work on a request, otherwise os queues requests
 - each request provide I/O mode, disk & memory address, and # of sectors
 - OS maintains a queue of requests, per disk or device
 - optimization algorithms only make sense when a queue exists
Disk Scheduling

- Disk scheduling usually tries to minimize **seek time**
 - rotational latency is difficult for OS to calculate
- There are many disk scheduling algorithms
 - FCFS
 - SSTF
 - SCAN
 - C-SCAN
 - C-LOOK
- We use a request queue of “98, 183, 37, 122, 14, 124, 65, 67” ([0, 199]), and initial head position 53 as the example
FCFS

- First-come first-served, simplest scheduling algorithm
- Total head movements of 640 cylinders
SSTF

- SSTF: shortest seek time first
 - selects the request with minimum seek time from the current head position
 - SSTF scheduling is a form of SJF scheduling, starvation may exist
 - unlike SJF, SSTF may not be optimal (why?)

- Total head movement of 236 cylinders
SCAN

- SCAN algorithm sometimes is called the **elevator** algorithm
 - disk arm starts at one end of the disk, and moves toward the other end
 - service requests during the movement until it gets to the other end
 - then, the head movement is reversed and servicing continues.
- Total head movement of 236 cylinders
C-SCAN

- Circular-SCAN is designed to provides a more uniform wait time
 - head moves from **one end** to **the other**, servicing requests while going
 - when the head reaches the end, it immediately returns to the beginning
 - **without** servicing any requests on the return trip
 - it essentially treats the cylinders as a circular list
- Total number of cylinders?

```
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
```

![Diagram showing head movement and queue numbers]
LOOK/C-LOOK

- SCAN and C-SCAN moves head end to end, even no I/O in between
 - in implementation, head only goes as far as *last request* in each direction
- **LOOK** is a version of **SCAN**, **C-LOOK** is a version of **C-SCAN**
- Total number of cylinders?

```
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
```
Selecting Disk-Scheduling Algorithm

- Disk scheduling performance depends on the # and types of requests
 - disk-scheduling should be written as a separate, replaceable, module
 - SSTF is common and is a reasonable choice for the default algorithm
 - LOOK and C-LOOK perform better for systems that have heavy I/O load
 - disk performance can be influenced by file-allocation and metadata layout
 - file systems spend great deal of efforts to increase spatial locality
Disk Management

- **Physical formatting**: divide disk into sectors for controller to read/write
 - each sector is usually 512 bytes of data but can be selectable
- OS records its own data structures on the disk
 - **partition disk** into groups of cylinders, each treated as a logical disk
 - **logical formatting** partitions to making a file system on it
 - some FS has spare sectors reserved to handle bad blocks
 - FS can further group blocks into clusters to improve performance
 - initialize the boot sector if the partition contains OS image
Windows 2000 Disk Layout
Swap Space Management

- **Swap space**: disk space used by virtual memory as an extension of the main memory
 - swap space can be carved out of normal FS, or a separate partition (raw)
 - less common now due to increased memory capacity
- Swap space management varies among OS
 - usually, kernel uses swap maps to track swap-space use
 - 4.3BSD allocates swap space when process starts
 - to hold text segment (the program) and data segment
 - Solaris 2 allocates it only when a dirty page is to be paged out
 - file data written to swap space until write to file system requested
 - other dirty pages go to swap space due to no other home
 - text segment pages thrown out and reread from the file system as needed
Linux Swap Space Management

![Diagram of Linux swap space management](image)

- Swap area
- Page slot
- Swap partition or swap file
- Swap map: 1 0 3 0 1
RAID

- RAID: use multiple disk drives to provide performance/reliability
 - reliability via mirroring or error correction code
 - performance via **disk striping**
 - segmenting logically sequential data, such as a file, and
 - store consecutive segments on different physical storage devices
- RAID is arranged into **six** different levels
 - **RAID 0**: splits data evenly across two or more disks without parity bits
 - aka. striped volume, it improves performance, but decrease MTTF
 - **RAID 1**: an exact copy (or mirror) of a set of data on two disks
 - **RAID 2**: stripes data at the bit-level; uses Hamming code for error correction
 - hamming code (4bit data+3bit parity) allows 7 disks to be used
RAID

- **RAID 3**: byte-level striping with a dedicated parity disk
 - require synchronized disk spinning (RAID 3 is usually not used)
- **RAID 4**: block-level striping with a dedicated parity disk
 - a single block request can be fulfilled by one disk
 - different disk can fulfill different block requests
- **RAID 5**: block-level striping with parity data distributed across all disks
- **RAID 6**: extends RAID 5 by adding an additional parity block
 - RAID 6 has block-level striping with 2 parity blocks
RAID Levels

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.
RAID (0 + 1) and (1 + 0)

a) RAID 0 + 1 with a single disk failure.

b) RAID 1 + 0 with a single disk failure.
RAID and File Systems

- RAID can only detect/recover from **disk failures**
 - it does not prevent or detect data corruption or other errors
- File systems like Solaris ZFS add additional checks to detect errors
 - ZFS adds checksums to all FS data and metadata
 - checksum is collocated with pointer to the data/metadata
 - can detect and correct data and metadata corruption
 - ZFS allocates disks in pools, instead of volumes or partitions
 - file systems within a pool share that pool, allocate/free space from/to pool
ZFS Checksums

```
metadata block 1
+-----------------+-----------------+
| address 1       | address 2       |
| checksum MB2    | checksum        |

metadata block 2
+-----------------+-----------------+
| address         | address         |
| checksum D1     | checksum D2     |
```

data 1 data 2
Traditional and Pooled Storage

(a) Traditional volumes and file systems.

(b) ZFS and pooled storage.
Tertiary Storage Devices

- Tertiary storage: being third-level after memory and magnetic disks
 - e.g., floppy disks, CD-ROMs, DVDs…
 - usually removable
 - low cost
Magneto-optic Disks

- MO disk records data on a rigid platter coated with magnetic material
 - laser is used to record and read data
 - larger distance between head and disk surface (to shoot the laser)
 - optical disks don’t use magnetism; employs materials changeable by laser
- MO disk usually can be written many times
WORM Disks

- WORM disks can be written only once
 - WORM: write once, read many time (e.g., CD-ROM, DVD-ROM…)
 - usually a thin aluminum film sandwiched between two glass/plastic platters
 - to write a bit, drive uses laser to burn a small hole through the aluminum
 - information can be destroyed by not altered
 - relatively durable and reliable
Tapes

- Tape is less expensive and has higher capacity than disk
 - many cheap cartridges share a few expensive drives
 - e.g., dell PowerVault LTO-3: $2,056
- Tape is best for **sequential access**, random access is much slower
 - mostly used for backup or transfer of large volumes of data
 - large tape installation automates tape change and storage with robotic arms
OS-support for Tape

- Tapes are usually presented as a **raw** storage medium
 - normal disks can be accessed as either as raw media or with file systems
 - no file system on the tape, just array of blocks
 - tape drive is usually reserved for exclusive use of the application
 - the application decides how to use the array of blocks
 - other applications usually do not understand the format of it
- Tape drives are “**append-only**” devices
 - an EOT mark is placed after a block that is written
 - updating a block in the middle effectively erases everything beyond it
Speed of Tertiary Storage

- Two aspects of speed in tertiary storage are bandwidth and latency.

 - **Bandwidth** is measured in bytes per second.
 - **sustained bandwidth**: average data rate during a large transfer
 - data rate when the data stream is actually flowing
 - **effective bandwidth**: average over the entire I/O time
 - including seek time or locate time, and cartridge switching
 - drive’s overall data rate

- **Access latency**: amount of time needed to locate data
 - access time for a disk: seek time + rotational latency; < 35 milliseconds
 - access time for tape: tens or hundreds seconds to wind the tape
 - thousands times slower than disk
Relative Reliability

- A fixed disk is likely to be more reliable than a removable disk or tape
 - flash device is even more reliable as there are no moving parts
 - though a head crash in a fixed hard disk generally destroys the data
 - failure of tape drive or optical disk drive often leaves data undamaged
- An optical cartridge normally more reliable than magnetic disk or tape
Cost

- Main memory is much more expensive than disk storage
- Cost per megabyte of hard disk is comparable to tape if only one tape is used per drive
 - but tape drive is expensive and tape is cheap
 - cheap tape and hard disk have about same storage capacity
Cost Per Megabyte of DRAM

![Graph showing the decreasing cost per megabyte of DRAM over time. The x-axis represents the year, ranging from 1982 to 2004, and the y-axis represents the cost in dollars per megabyte, ranging from 0.8 to 1280. Key points on the graph include: 16 KB in 1982, 64 KB in 1984, 256 KB in 1986, 1MB in 1990, 4 MB simm in 1994, 32 MB in 1996, 128 MB in 1998, and 512 MB in 2002. The graph shows a steep decline in cost per megabyte over time.]
Cost Per Megabyte of Hard Disk
Cost Per Megabyte of Tape

- 60 MB
- 120 MB
- 1.2 GB
- 4 GB
- 72 GB
- 320 GB

$ per MB:
- 40
- 20
- 10
- 5
- 2
- 1
- 0.5
- 0.2
- 0.1
- 0.025
- 0.01
- 0.005
