COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 7
Deadlocks

Zhi Wang
Florida State University

Contents

- Deadlock problem

+ System model

- Handling deadlocks
- deadlock prevention
- deadlock avoidance
» deadlock detection

- Deadlock recovery

The Deadlock Problem

- Deadlock: a set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

- Examples:

- a system has 2 disk drives, P4 and P, each hold one disk drive and each
needs another one

- semaphores A and B, initialized to 1
P P
wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

- Traffic only in one direction, each section can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs up
+ preempt resources and rollback
- several cars may have to be backed up
+ starvation is possible

- Note: most OSes do not prevent or deal with deadlocks

System Model

Resources: Ri, Ro, . . ., Rn
each represents a different resource type
e.g., CPU cycles, memory space, I/0O devices
each resource type R; has W; instances.
Each process utilizes a resource in the following pattern
request
use

release

Four Conditions of Deadlock

- Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

- No preemption: a resource can be released only voluntarily by the process holding
it, after it has completed its task

- Circular wait: there exists a set of waiting processes {Py, P4, ..., Py}
- Pg is waiting for a resource that is held by P
- P4 is waiting for a resource that is held by Ps ...
- P,_1 Is waiting for a resource that is held by P,

- P, Is waiting for a resource that is held by Py,

Resource-Allocation Graph

- Two types of hodes:

- P ={P1, Po, ..., P}, the set of all the processes in the system

- R={Ri, Ry, ..., Ry}, the set of all resource types in the system
- Two types of edges:

- request edge: directed edge P, — R

- assignment edge: directed edge R; — P

Resource-Allocation Graph

- Process '

+ Resource Type with 4 instances

* Pirequests instance of Rj '_’.

. Piis holding an instance of R (e

Resource Allocation Graph

IS there a deadlock?

R, R,
@ @
\ \
9

Resource Allocation Graph

IS there a deadlock?

Resource Allocation Graph

IS there a deadlock?

- circular wait does not necessarily lead to deadlock

S3asic Facts

If graph contains no cycles " no deadlock
If graph contains a cycle
- If only one instance per resource type, " deadlock

- If several instances per resource type " possibility of deadlock

How to Handle Deadlocks

Deadlock prevention: ensure that the system will never enter a deadlock state

Deadlock detection and recovery: allow the system to enter a deadlock state
and then recover

Ignore the problem and pretend deadlocks never occur in the system

Deadlock Prevention

- How to prevent mutual exclusion
not required for sharable resources
must hold for non-sharable resources
How to prevent hold and wait
whenever a process requests a resource, it doesn’t hold any other resources
require process to request all its resources before it begins execution
allow process to request resources only when the process has none

low resource utilization; starvation possible

Deadlock Prevention

How to handle no preemption
If a process requests a resource not available
release all resources currently being held
preempted resources are added to the list of resources it waits for
process Wwill be restarted only when it can get all waiting resources
How to handle circular wait
Impose a total ordering of all resource types
require that each process requests resources in an increasing order

Many operating systems adopt this strategy for some locks.

Deadlock Avoidance

Each process declares a max number of resources it may need

Deadlock-avoidance algorithm ensure there can never be a circular-
wait condition

Resource-allocation state:
the number of available and allocated resources

the maximum demands of the processes

Safe State

- \When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state:

- there exists a sequence <Py, Po, ..., P,> Of all processes in the system

- for each P, resources that P; can still request can be satisfied by currently
available resources + resources held by all the P;, with j < i

- Safe state can guarantee no deadlock
- If Py’'s resource needs are not immediately available:
- wait until all P; have finished (j < i)
- when P, (] <) has finished, P; can obtain needed resources,

- when P, terminates, P;.1 can obtain its needed resources, and so on

S3asic Facts

If a system is in safe state " no deadlocks
If a system is in unsafe state " possibility of deadlock

Deadlock avoidance "™ ensure a system never enters an unsafe state

Deadlock Avoidance

unsafe
deadlock

safe

Deadlock Avoidance Algorithms

+ Single instance of each resource type " use resource-allocation graph

- Multiple iInstances of a resource type " use the banker’s algorithm

Single-instance Deadlock Avoidance

- Resource-allocation graph can be used for single instance resource
deadlock avoidance

- one new type of edge: claim edge
- claim edge P; = Rindicates that process P, may request resource R;
- claim edge is represented by a dashed line
- resources must be claimed a priori in the system
- Transitions in between edges
- claim edge converts to request edge when a process requests a resource

- request edge converts to an assignment edge when the resource is
allocated to the process

- assignment edge reconverts to a claim edge when a resource Is released
by a process

Single-instance Deadlock Avoidance

IS this state safe”?

Single-instance Deadlock Avoidance

IS this state safe?

Single-instance Deadlock Avoidance

+ Suppose that process P; requests a resource R
- The request can be granted only if:

- converting the request edge to an assighment edge does not result
INn the formation of a cycle

- no cycle ™= safe state

Banker’'s Algorithm

Banker’s algorithm is for multiple-instance resource deadlock avoidance
each process must a priori claim maximum use of each resource type

- when a process requests a resource it may have to wait

when a process gets all its resources it must release them in a finite
amount of time

Data Structures for the Banker’s Algorithm

* N processes, m types of resources
- available: an array of length m, instances of available resource
- available[]] = k: k instances of resource type R; available
* max: an x m matrix
-+ max [i,]] = k: process P; may request at most k instances of resource R;
- allocation: n x m matrix
- allocationli,]] = k: P;is currently allocated k instances of R;
- need: n x m matrix
- need[i,j] = k: Py may need k more instances of R to complete its task

- need [i,j]] = max]i,j] — allocation [i,j]

Banker’s Algorithm: Safe State

- Data structure to compute whether the system is in a safe state
- use work (a vector of length m) to track allocatable resources
- unallocated + released by finished processes
- use finish (a vector of length n) to track whether process has finished
- initialize: work = available, finish[i] = false fori=0, 1, ..., n- 1

- Algorithm:

- find an i such that finish[i] = false && need[i] < work if no such i exists,
go to step 3

- work = work + allocation([i], finishl[i] = true, go to step 1

- If finish[i] == true for all i, then the system is in a safe state

Bank’s Algorithm: Resource Allocation

Data structure: request vector for process P,
request|[j| = k then process P, wants k instances of resource type R;
- Algorithm:

1.if requesti< need|i] go to step 2; otherwise, raise error condition (the process has
exceeded its maximum claim)

2.if request; < available, go to step 3; otherwise P, must wait (not all resources are not
available)

3.pretend to allocate requested resources to P; by modifying the state:
available = available - request;
allocation[i] = allocation|i] + request;
need[i] = need[i] — request;
4.use previous algorithm to test if it is a safe state, if so " allocate the resources to P,

5.if unsafe = P, must wait, and the old resource-allocation state is restored

Banker’s Algorithm: Example

- System state:
- 5 processes P, through P,
- 3 resource types: A (10 instances), B (5instances), and C (7 instances)

- Snapshot at time Tp:

allocation max available
ABC ABC ABC
0 010 753 332
P 200 322
5 302 902
P 211 222
P4 002 433

Banker’s Algorithm: Example

- need = max — allocation
need available

ABC ABC

Po 743 332
P4 122
Ps 600
P 011
Py 431

- The system is in a safe state since the sequence < P+, P3, P4, Po, Po> satisfies
safety criteria

Banker’s Algorithm: Example

- Next, Pq requests (1, O, 2), try the allocation. The updated state is:

allocation need available
ABC ABC ABC
P 010 743 230
P 302 020
P, 302 600
P 211 011
P, 002 431

- Sequence < P+, P, P4, Py, Po> satisfies safety requirement
- Can request for (3,3,0) by P4 be granted”?
- Can request for (0,2,0) by Py be granted”?

Deadlock Detection

- Allow system to enter deadlock state, but detect and recover from it

Detection algorithm and recovery scheme

Deadlock Detection: Single Instance Resources

- Maintain a wait-for graph, nodes are processes
- Py— Py if Pyis waiting for P,
- Periodically invoke an algorithm that searches for a cycle in the graph
- If there is a cycle, there exists a deadlock
- an algorithm to detect a cycle in a graph requires an order of n2 operations,

- where n is the number of vertices in the graph

le
9
—Xam

r Graph E

it-fo

Wal

| 0‘ '
RS @
A;
P2 @
@ -
i
Ay

(b)
(a)

h
9
gra
it-for

wal

h

9

cation Gra

lo

-a

urce

Reso

Deadlock Detection: Multi-instance Resources

- Detection algorithm similar to Banker’s algorithm’s safety condition
- to prove it is not possible to enter a safe state
- Data structure
- available: a vector of length m, number of available resources of each type

- allocation: an n x m matrix defines the number of resources of each type
currently allocated to each process

- request: an n x m matrix indicates the current request of each process

* request [i,]| = k: process P; is requesting k more instances of resource R,
- work: a vector of m, the allocatable instances of resources
- finish: a vector of m, whether the process has finished

- if allocation|i] # O == finishl[i] = false; otherwise, finish[i] = true

Deadlock Detection:; Multi-instance

- Find an process i such that finish[i] == false && request[i] < work
- If no such | exists, go to step 3

- work = work + allocation[i]; finish[i] = true, go to step 1

- |If finish[i] == false, for some i the system is in deadlock state

- if finishl[i] == false, then P; is deadlocked

—xample of Detection Algorithm

- System states:
- five processes Py through P,
- three resource types: A (7 instances), B (2 instances), and C (6 instances)

- Snapshot at time TO:

allocation request available
ABC ABC ABC
Po 010 000 000
P 200 202
= 303 000
P, 211 100
P4 002 002

- Sequence <Py, P, P3, P4, P,> will result in finishli] = true for all |

—xample (Cont.)

- P2 requests an additional instance of type C

request

ABC
P 000
P4 2072
) 001
P 100
P, 002

- State of system?

- can reclaim resources held by process Py, but insufficient resources to fulfill
other processes; requests

- deadlock exists, consisting of processes P4, P,, P3, and P,

Deadlock Recovery

- Terminate deadlocked processes. options:

- abort all deadlocked processes

- abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?
priority of the process
how long process has computed, and how much longer to completion
resources the process has used
resources process needs to complete
how many processes will need to be terminated

IS process interactive or batch?

—nd of Chapter 7

