
COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 4: Threads

Zhi Wang

Florida State University

Contents

• Thread overview

• Multithreading models

• Thread libraries

• Threading issues

• Operating system examples

• Windows XP threads

• Linux threads

Motivation

• Why threads?

• multiple tasks of an application can be implemented by threads

• e.g., update display, fetch data, spell checking, answer a network request

• process creation is heavy-weight while thread creation is light-weight

• threads can simplify code, increase efficiency

• Kernels are generally multithreaded

What is Thread

• A thread is an independent stream of instructions that can be scheduled to run
as such by the kernel

• Process contains many states and resources
• code, heap, data, file handlers (including socket), IPC
• process ID, process group ID, user ID
• stack, registers, and program counter (PC)

• Threads exist within the process, and shares its resources

• each thread has its own essential resources (per-thread resources): stack,
registers, program counter, thread-specific data…

• access to shared resources need to be synchronized
• Threads are individually scheduled by the kernel

• each thread has its own independent flow of control
• each thread can be in any of the scheduling states

Single and Multithreaded Processes

UNIX Threads

Thread Benefits
• Responsiveness

• multithreading an interactive application allows a program to continue running even part
of it is blocked or performing a lengthy operation

• Resource sharing

• sharing resources may result in efficient communication and high degree of cooperation

• Economy

• thread is more lightweight than processes

• Scalability

• better utilization of multiprocessor architectures

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

Implementing Threads

• Thread may be provided either at the user level, or by the kernel

• user threads are supported above the kernel without kernel support

• three thread libraries: POSIX Pthreads, Win32 threads, and Java threads

• kernel threads are supported and managed directly by the kernel

• all contemporary OS supports kernel threads

• Multithreading models: ways to map user threads to kernel threads

• many-to-one model

• one-to-one model

• many-to-many model

Many-to-One

• Many user-level threads mapped to a single kernel thread

• thread management is done by the thread library in user space (efficient)

• entire process will block if a thread makes a blocking system call

• convert blocking system call to non-blocking (e.g., select in Unix)?

• multiple threads are unable to run in parallel on multi-processors

• Examples:

• Solaris green threads

• GNU portable threads

Many-to-One Model

One-to-One

• Each user-level thread maps to one kernel thread
• it allows other threads to run when a thread blocks
• multiple thread can run in parallel on multiprocessors
• creating a user thread requires creating a corresponding kernel thread

• it leads to overhead
• most OSes implementing this model limit the number of threads

• Examples
• Windows NT/XP/2000
• Linux
• Solaris 9 and later

One-to-one Model

Many-to-Many Model

• Many user level threads are mapped to many kernel threads

• it solves the shortcomings of 1:1 and m:1 model

• developers can create as many user threads as necessary

• corresponding kernel threads can run in parallel on a multiprocessor

• Examples

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

Two-level Model

• Similar to many-to-many model, except that it allows a user thread to be bound to
kernel thread

• Examples

• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

Two-level Model

Thread Libraries

• Thread library provides programmer with API for creating and managing threads

• Two primary ways of implementing

• library entirely in user space with no kernel support

• kernel-level library supported by the OS

• Three main thread libraries:

• POSIX Pthreads

• Win32

• Java

Pthreads

• A POSIX standard API for thread creation and synchronization

• common in UNIX operating systems (Solaris, Linux, Mac OS X)

• Pthread is a specification for thread behavior

• implementation is up to developer of the library

• e.g., Pthreads may be provided either as user-level or kernel-level

Pthreads APIs

pthread_create create a new thread

pthread_exit terminate the calling thread

pthread_join join with a terminated thread

pthread_kill send a signal to a thread

pthread_yield yield the processor

pthread_cancel send a cancellation request to a thread

pthread_mutex_init initialize a mutex

pthread_mutex_destroy destroy a mutex

pthread_mutex_lock lock a mutex

pthread_mutex_unlock unlock a mutex

pthread_key_create create a thread-specific data key

pthread_key_delete delete a thread-specific data key

pthread_setspecific set value for the thread-specific data key

pthread_getspecific get value for the thread-specific data key

Pthreads Example
struct thread_info { /* Used as argument to thread_start() */
 pthread_t thread_id; /* ID returned by pthread_create() */
 int thread_num; /* Application-defined thread # */
 char *argv_string; /* From command-line argument */
};

static void *thread_start(void *arg)
{ struct thread_info *tinfo = (struct thread_info *) arg;
 char *uargv, *p;

 printf("Thread %d: top of stack near %p; argv_string=%s\n",
 tinfo->thread_num, &p, tinfo->argv_string);
 uargv = strdup(tinfo->argv_string);
 for (p = uargv; *p != '\0'; p++) {
 *p = toupper(*p);
 }
 return uargv;
}

Pthreads Example
int main(int argc, char *argv[])
{ …
 pthread_attr_init(&attr);
 pthread_attr_setstacksize(&attr, stack_size);

 /* Allocate memory for pthread_create() arguments */
 tinfo = calloc(num_threads, sizeof(struct thread_info));

 /* Create one thread for each command-line argument */
 for (tnum = 0; tnum < num_threads; tnum++) {
 tinfo[tnum].thread_num = tnum + 1;
 tinfo[tnum].argv_string = argv[optind + tnum];

 /* The pthread_create() call stores the thread ID into
 corresponding element of tinfo[] */
 pthread_create(&tinfo[tnum].thread_id, &attr,
 &thread_start, &tinfo[tnum]);
 }

 pthread_attr_destroy(&attr);

Pthreads Example
 for (tnum = 0; tnum < num_threads; tnum++) {
 pthread_join(tinfo[tnum].thread_id, &res);
 printf("Joined with thread %d; returned value was %s\n",
 tinfo[tnum].thread_num, (char *) res);
 free(res); /* Free memory allocated by thread */
 }

 free(tinfo);
 exit(EXIT_SUCCESS);
}

Win32 API Multithreaded C Program
typedef struct MyData {
 int val1;
 int val2;
} MYDATA, *PMYDATA;

int _tmain()
{
 PMYDATA pDataArray[MAX_THREADS];
 DWORD dwThreadIdArray[MAX_THREADS];
 HANDLE hThreadArray[MAX_THREADS];

 // Create MAX_THREADS worker threads.
 for(int i=0; i<MAX_THREADS; i++)
 {
 // Allocate memory for thread data.
 pDataArray[i] = (PMYDATA) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
 sizeof(MYDATA));

 // Generate unique data for each thread to work with.
…

 // Create the thread to begin execution on its own.
 hThreadArray[i] = CreateThread(
 NULL, // default security attributes
 0, // use default stack size
 MyThreadFunction, // thread function name
 pDataArray[i], // argument to thread function
 0, // use default creation flags
 &dwThreadIdArray[i]); // returns the thread identifier

Win32 API Multithreaded C Program
 // Check the return value for success.
 // If CreateThread fails, terminate execution.
 // This will automatically clean up threads and memory.
 if (hThreadArray[i] == NULL)
 {
 ErrorHandler(TEXT("CreateThread"));
 ExitProcess(3);
 }
 } // End of main thread creation loop.

 // Wait until all threads have terminated.
 WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);

 // Close all thread handles and free memory allocations.
 for(int i=0; i<MAX_THREADS; i++)
 {
 CloseHandle(hThreadArray[i]);
 if(pDataArray[i] != NULL)
 {
 HeapFree(GetProcessHeap(), 0, pDataArray[i]);
 pDataArray[i] = NULL; // Ensure address is not reused.
 }
 }

 return 0;
}

Java Threads

• Java threads are managed by the Java VM

• it is implemented using the threads model provided by underlying OS

• Java threads may be created by:

• extending the java.lang.Thread class

• then implement the java.lang.Runnable interface

Java Multithreaded Program
public class SimpleThreads {

static void threadMessage(String message) {
String threadName = Thread.currentThread().getName();
System.out.format("%s: %s%n", threadName, message);

}

private static class MessageLoop implements Runnable {
public void run() {

string importantInfo[] = { "Mares eat oats", "Does eat oats",
"Little lambs eat ivy", "A kid will eat ivy too" };
try {

for (int i = 0; i < importantInfo.length; i++) {
Thread.sleep(4000);
threadMessage(importantInfo[i]); }

} catch (InterruptedException e) {
threadMessage("I wasn't done!");

}
}

}
}

Java Multithreaded Program
public static void main(String args[]) throws InterruptedException {

long patience = 1000 * 60 * 60;
threadMessage("Starting MessageLoop thread");
long startTime = System.currentTimeMillis();
Thread t = new Thread(new MessageLoop());
t.start();
threadMessage("Waiting for MessageLoop thread to finish");
while (t.isAlive()) {

threadMessage("Still waiting...");
t.join(1000);
if (((System.currentTimeMillis() - startTime) > patience) &&

t.isAlive()) {
threadMessage("Tired of waiting!");
t.interrupt();
t.join(); // threads will exit soon

}
}

}
}

Threading Issues

• Semantics of fork and exec system calls

• Thread cancellation of target thread

• Signal handling

• Thread pools

• Thread-specific data

• Scheduler activations

Semantics of Fork and Exec

• Fork duplicates the whole single-threaded process

• Does fork duplicate only the calling thread or all threads for multi-threaded process?

• some UNIX systems have two versions of fork, one for each semantic

• if fork all, how to handle multiple threads running on CPUs?

• Exec typically replaces the entire process, multithreaded or not

• use “fork the calling thread” if calling exec soon after fork

• Activity: review man fork

Thread Cancellation

• Thread cancellation: terminating a (target) thread before it has finished

• does it cancel the target thread immediately or later?

• Two general approaches:

• asynchronous cancellation: terminates the target thread immediately

• what if the target thread is in critical section requesting resources?

• deferred cancellation: allows the target thread to periodically check if it
should be cancelled

• Pthreads: cancellation point

Signal Handling

• Signals are used in UNIX systems to notify a process that a particular event has
occurred. It follows the same pattern:
• a signal is generated by the occurrence of a particular event
• a signal is delivered to a process
• once delivered, the signal must be handled

• A signal can be synchronous (exceptions) or asynchronous (e.g., I/O)
• synchronous signals are delivered to the same thread causing the signal

• Asynchronous signals can be delivered to:
• the thread to which the signal applies
• every thread in the process
• certain threads in the process (signal masks)
• a specific thread to receive all signals for the process

Thread Pools

• One thread per request model has scalability problems
• overhead to create a thread before each request
• it may exhaust the resource (Denial-of-Service attack)

• Thread pool solves the problem by:
• create a number of threads in a pool, where they sit and wait for work
• when received a request, the server wakens a thread and pass it the request
• thread returns to the poll after completing the job

• Advantages:
• servicing a request with an existing thread is usually faster than waiting to create

a new thread
• thread pool limits the number of threads that exist at any one point

Thread Specific Data

• Data is shared in multithreaded programs

• Thread specific data allows each thread to have its own copy of data

• In kernel, there are usually CPU-specific data

Lightweight Process & Scheduler Activations
• Lightweight process (LWP) is an intermediate data structure between the user and kernel

thread in many-to-many and two level models
• to the user-thread library, it appears as virtual processors to schedule user threads on
• each LWP is attached to a kernel thread

• kernel thread blocks —> LWP blocks —> user threads block
• kernel schedules the kernel thread, thread library schedules user threads

• thread library may make sub-optimal scheduling decision
• solution: let the kernel notify the library of important scheduling events

• Scheduler activation notifies the library via upcalls
• upcall: the kernel call a upcall handler in the thread library (similar to signal)

• e.g., when a thread is about to block, the library can pause the thread, and schedule

another one onto the virtual processor

Lightweight Processes

Windows XP Threads

• Win XP implements the one-to-one mapping thread model
• each thread contains

• a thread id
• a register set for the status of the processor
• a separate user stack and a kernel stack
• a private data storage area

• The primary data structures of a thread include:
• ETHREAD: executive thread block (kernel space)

• KTHREAD: kernel thread block (kernel space)
• TEB: thread environment block (user space)

Windows XP Threads Data Structures

Linux Threads
• Linux has both fork and clone system call

• Clone accepts a set of flags which determine sharing between the parent and children

• FS/VM/SIGHAND/FILES —> equivalent to thread creation

• no flag set no sharing (copy) —> equivalent to fork

• Linux doesn’t distinguish between process and thread, uses term task rather than thread

End of Chapter 4

