
COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 3: Process

Zhi Wang

Florida State University

Contents

• Process concept

• Process scheduling

• Operations on processes

• Inter-process communication

• examples of IPC Systems

• Communication in client-server systems

Process Concept
• An operating system executes a variety of programs:

• batch system – jobs

• time-shared systems – user programs or tasks

• Process is a program in execution, its execution must progress in sequential fashion

• a program is static and passive, process is dynamic and active

• one program can be several processes (e.g., multiple instances of browser)

• process can be started via GUI or command line entry of its name, etc

Process Concept

• A process has multiple parts:

• the program code, also called text section

• runtime CPU states, including program counter, registers, etc

• various types of memory:

• stack: temporary data

• e.g., function parameters, local variables, and return addresses

• data section: global variables

• heap: memory dynamically allocated during runtime

Process in Memory

Process State

• As a process executes, it changes state

• new: the process is being created

• running: instructions are being executed

• waiting: the process is waiting for some event to occur

• ready: the process is waiting to be assigned to a processor

• terminated: the process has finished execution

Diagram of Process State

Process Control Block (PCB)

• In the kernel, each process is associated with a process control block
• process number (pid)
• process state
• program counter

• CPU registers
• CPU scheduling information
• memory-management data
• accounting data
• I/O status

• Linux’s PCB is defined in struct task_struct: http://lxr.linux.no/linux+v3.2.35/
include/linux/sched.h#L1221

http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221

Process Control Block (PCB)

Process Control Block in Linux
• Represented by the C structure task_struct

pid_t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process*/
…

Process Scheduling
• To maximize CPU utilization, kernel quickly switches processes onto CPU for time sharing

• Process scheduler selects among available processes for next execution on CPU

• Kernel maintains scheduling queues of processes:

• job queue: set of all processes in the system

• ready queue: set of all processes residing in main memory, ready and waiting to execute

• device queues: set of processes waiting for an I/O device

• Processes migrate among the various queues

Queues for Process Scheduling

Ready Queue And Device Queues

Schedulers
• Long-term scheduler (or job scheduler)

• selects which processes should be brought into the ready queue

• long-term scheduler is invoked very infrequently

• usually in seconds or minutes: it may be slow

• long-term scheduler controls the degree of multiprogramming

• Short-term scheduler (or CPU scheduler)

• selects which process should be executed next and allocates CPU

• short-term scheduler is invoked very frequently

• usually in milliseconds: it must be fast

• sometimes the only scheduler in a system

• Mid-term scheduler

• swap in/out partially executed process to relieve memory pressure

Medium Term Scheduling

Scheduler

• Scheduler needs to balance the needs of:

• I/O-bound process

• spends more time doing I/O than computations

• many short CPU bursts

• CPU-bound process

• spends more time doing computations

• few very long CPU bursts

Context Switch

• Context switch: the kernel switches to another process for execution

• save the state of the old process

• load the saved state for the new process

• Context-switch is overhead; CPU does no useful work while switching

• the more complex the OS and the PCB, longer the context switch

• Context-switch time depends on hardware support

• some hardware provides multiple sets of registers per CPU: multiple contexts
loaded at once

Context Switch

Process Creation

• Parent process creates children processes, which, in turn create other
processes, forming a tree of processes
• process identified and managed via a process identifier (pid)

• Design choices:

• three possible levels of resource sharing: all, subset, none
• parent and children’s address spaces

• child duplicates parent address space (e.g., Linux)
• child has a new program loaded into it (e.g., Windows)

• execution of parent and children
• parent and children execute concurrently
• parent waits until children terminate

Process Creation

• UNIX/Linux system calls for process creation

• fork creates a new process

• exec overwrites the process’ address space with a new program

• wait waits for the child(ren) to terminate

Process Creation

C Program Forking Separate Process
#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{

pid_t pid;
pid = fork(); /* fork another process */
if (pid < 0) { /* error occurred while forking */

fprintf(stderr, "Fork Failed");
return -1;

} else if (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);

} else { /* parent process */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

A Tree of Processes on Solaris

Process Termination

• Process executes last statement and asks the kernel to delete it (exit)

• OS delivers the return value from child to parent (via wait)

• process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort), for example:

• child has exceeded allocated resources

• task assigned to child is no longer required

• if parent is exiting, some OS does not allow child to continue

• all children (the sub-tree) will be terminated - cascading termination

Interprocess Communication

• Processes within a system may be independent or cooperating
• independent process: process that cannot affect or be affected by

the execution of another process
• cooperating process: processes that can affect or be affected by

other processes, including sharing data
• reasons for cooperating processes: information sharing,

computation speedup, modularity, convenience, Security
• Cooperating processes need interprocess communication (IPC)
• A common paradigm: producer-consumer problem

• Producer process produces information that is consumed by a
consumer process

Producer-consumer Based on Ring Buffer

• Shared data
#define BUFFER_SIZE 10
typedef struct {
 . . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Producer

item nextProduced;
while (true) {
 /* produce an item in nextProduced*/
 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER SIZE;

}

Consumer

item nextConsumed;
while (true) {
 while (in == out)
 ; // do nothing -- nothing to consume
 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;
 /*consume item in nextConsumed*/

}

• Solution is correct, but can only use BUFFER_SIZE-1 elements
• one unusable buffer to distinguish buffer full/empty
• how to utilize all the buffers? (job interview question)

• without using one more variables?
• need to synchronize access to buffer

Two Communication Models

Shared MemoryMessage Passing

Shared Memory

• Kernel maps the same physical memory into the collaborating processes

• might be at different virtual addresses

• Each process can access the shared memory independently & simultaneously

• Access to shared memory must be synchronized (e.g., using locks)

• Shared memory is ideal for exchanging large amount of data

Message Passing

• Processes communicate with each other by exchanging messages

• without resorting to shared variables

• Message passing provides two operations:

• send (message)

• receive (message)

• If P and Q wish to communicate, they need to:

• establish a communication link between them

• e.g., a mailbox or pid-based

• exchange messages via send/receive

Message Passing: Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• blocking send has the sender block until the message is received

• blocking receive has the receiver block until a message is available

• Non-blocking is considered asynchronous

• non-blocking send has the sender send the message and continue

• non-blocking receive has the receiver receive a valid message or null

Message Passing: Buffering

• Queue of messages attached to the link

• zero capacity: 0 messages

• sender must wait for receiver (rendezvous)

• bounded capacity: finite length of n messages

• sender must wait if link full

• unbounded capacity: infinite length

• sender never waits

Example Message Passing Primitives

• Sockets

• Remote procedure calls

• Pipes

• Remote method invocation (Java)

Sockets

• A socket is defined as an endpoint for communication

• concatenation of IP address and port

• socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

• Communication consists between a pair of sockets

Socket Communication

Remote Procedure Call

• Remote procedure call (RPC) abstracts function calls between processes across
networks

• Stub: a proxy for the actual procedure on the remote machine

• client-side stub locates the server and marshalls the parameters

• server-side stub receives this message, unpacks the marshalled parameters,
and performs the procedure on the server

Execution of RPC

Pipes

• Pipe acts as a conduit allowing two local processes to communicate

• Issues

• is communication unidirectional or bidirectional?

• in the case of two-way communication, is it half or full-duplex?

• must there exist a relationship (i.e. parent-child) between the processes?

• can the pipes be used over a network?

• usually only for local processes

Ordinary Pipes

• Ordinary pipes allow communication in the producer-consumer style

• producer writes to one end (the write-end of the pipe)

• consumer reads from the other end (the read-end of the pipe)

• ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Activity: review Linux man pipe

Ordinary Pipes

Named Pipes

• Named pipes are more powerful than ordinary pipes

• communication is bidirectional

• no parent-child relationship is necessary between the processes

• several processes can use the named pipe for communication

• Named pipe is provided on both UNIX and Windows systems

• On Linux, it is called FIFO

Examples: Linux IPC
• Communication:

• Pipes

• Sockets

• Shared memory

• Message queues

• Semaphores

• …

• Signals

• Synchronization

• Eventfd

• Futexes

• Locks

• Condition variables

• …

Linux IPC - Communication

source: http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Linux IPC - Synchronization

source: http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Linux IPC: System V Shared Memory

• Process first creates shared memory segment

	 	 segment id = shmget(key, size, flag);

• Process wanting access to that shared memory must attach to it

	 	 shared memory = (char *) shmat(id, NULL, 0);

• Now the process could write to the shared memory

• When done, a process can detach the shared memory

	 	 shmdt(shared memory);

End of Chapter 3

