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ABSTRACT

App repackaging remains a serious threat to the emerging mobile
app ecosystem. Previous solutions have mostly focused on the
postmortem detection of repackaged apps by measuring similarity
among apps. In this paper, we propose DIVILAR, a virtualization-
based protection scheme to enable self-defense of Android apps
against app repackaging. Specifically, it re-encodes an Android
app in a diversified virtual instruction set and uses a specialized
execute engine for these virtual instructions to run the protected
app. However, this extra layer of execution may cause signifi-
cant performance overhead, rendering the solution unacceptable
for daily use. To address this challenge, we leverage a light-
weight hooking mechanism to hook into Dalvik VM, the execution
engine for Dalvik bytecode, and piggy-back the decoding of virtual
instructions to that of Dalvik bytecode. By compositing virtual
and Dalvik instruction execution, we can effectively eliminate this
extra layer of execution and significantly reduce the performance
overhead. We have implemented a prototype of DIVILAR. Our
evaluation shows that DIVILAR is resilient against existing static
and dynamic analysis, including these specific to VM-based pro-
tection. Further performance evaluation demonstrates its efficiency
for daily use (an average of 16.2% and 8.9% increase to the start
time and run time, respectively).

Categories and Subject Descriptors

K.5.1 [Hardware/Software Protection]: Copyrights
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1. INTRODUCTION
In recent years, mobile apps have gained unprecedented adop-

tion due to the increasing popularity of smartphones and other
mobile devices. For example, recent data shows that Google
and Apple have accumulated more than 48 billion and 50 billion
app downloads from their online app store, respectively [8, 25].
Online app store provides many effective ways for developers
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const-string v0, "content://com.example.notepad.provider.NotePad/notes"

invoke-static {v0}, Landroid/net/Uri;->parse(Ljava/lang/String;)Landroid/net/Uri;

move-result-object v0

sput-object v0, Lcom/example/android/notepad/e;->a:Landroid/net/Uri;

Figure 1: Snip of code processed by Proguard (only app’s class
names are changed).

to monetize their apps, such as paid apps, in-app purchase, and
ads. Unfortunately, app repackaging, in which legitimate apps are
repackaged and sold without the knowledge or consent of their
rightful owners, poses serious threats to this new economy model
since its inception: app repackaging can lead to proliferation of app
piracy, causing monetary lose for developers [12,22,29,53,73,74];
even worse, repackaged apps are often used as the media for
stealthy malware [73–75]. Recent research shows that repackaged
apps have mostly plagued third-party app stores, which are virtually
unregulated in the distribution of those apps [29, 74]. With little
help available from the operators of those stores, app developers
have to resort to technologies that can enable self-defense for their
apps.

In light of these serious threats, researchers have proposed dif-
ferent approaches to address the problem. For example, a num-
ber of systems aim at detecting repackaged apps by measuring
similarity among a large set of apps, particularly between third-
party stores and the official store [12, 29, 53, 73, 74]. They are
designed to provide postmortem detection and jurisdiction, and
thus cannot prevent apps from being repackaged at the first place.
To thwart app piracy, Google and others introduced server-side
license verification [32, 52] that can be employed by linking to
provided libraries. However, plain deployment of these libraries
can be easily bypassed. There even exist automated tools just for
that purpose [43–45]. Server-side verification is thus advised to
be deployed with other protections such as obfuscation to make
it difficult to be bypassed [32]. Existing Android-based obfusca-
tors [36,41] are relatively easy to bypass due to the fact that Dalvik
bytecode contains rich semantics of an app. Figure 1 shows a short
snip of code processed by Proguard [41], arguably the most popular
obfuscator for Android due to its inclusion in the official Android
developer’s guide. Notice that calls to the Android framework APIs
are virtually not changed, providing “valuable” information to the
repackager of where and how to make modifications (although it
is technically viable to obfuscate these calls with Java reflection
and string transformation, it likely will lead to unacceptable over-
head because such calls are highly frequent.) In this paper, we
propose DIVILAR(DIVersified Intermediate Language for Anti-
Repackaging), an Android protection scheme that diversifies the
Dalvik bytecode to significantly raise the bar against app repackag-
ing.

DIVILAR draws its inspiration from an effective and reliable
technology on the traditional desktop systems: virtual machine(VM)
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based protection, in which the target binary is re-encoded in a
randomized virtual instruction set and packed together with a spe-
cialized interpreter for the instruction set. At run-time, the inter-
preter translates and executes the protected app (for brevity, we
call it the guest app). By encoding the guest app in an unknown
instruction set, VM-based protection immediately disables existing
tools that expect the original instruction set as input. It thus
becomes necessary for the attackers to first reverse-engineer the
VM interpreter in order to recover and manipulate the guest app.
However, an interpreter could be implemented in a highly convo-
luted and obscure way. For example, the original QEMU (before
TCG) [6] demonstrates how complicated a benign emulator (a type
of virtualization) could be. Moreover, virtual instructions can be
readily randomized and customized for individual software (or soft-
ware revisions), further increasing the reverse-engineering efforts.
As such, VM-based protection has been successfully applied by
both malware authors and developers to protect their “intellectual
property” from being analyzed and reverse-engineered [21, 46, 61,
62, 65].

Successful deployments of VM-based protection have been largely
limited to native binaries, but not for managed code such as Java
Bytecode or Microsoft Intermediate Language (MSIL) [21, 46,
61, 62, 65]: performance overhead caused by the extra layer of
instruction interpretation is prohibitive for an interpreter in the
managed code, but has little effect over a native interpreter. A
native interpreter not only executes faster (because it is executed
natively), but also can employ mature technologies such as fast
binary translation [4] and just-in-time compilation [40] to improve
performance. In contrast, managed code already requires a layer
of interpretation/translation. The additional layer of execution
can further significantly slow down the system. For example,
Proteus [2], a VM-based protection system designed for MSIL,
reports from 50× to 3500× performance overhead. Such an
overhead is even more prohibitive on a mobile platform due to its
limited computation power and battery life.

To address this challenge, we observe that Android already has a
mature and efficient interpreter for its apps, Dalvik VM. Dalvik
VM is loaded as a native library into each app’s address space,
which is shared with the app’s own native libraries. The latter
thus can freely access and manipulate Dalvik VM at run-time.
DIVILAR leverages this accessibility to dynamically hook into
Dalvik VM and decode the virtual instructions right before they
are loaded for execution. By doing so, the interpreter for the
virtual instructions is merged into the existing execution engine of
Dalvik bytecode. This not only significantly reduces overhead of
the extra layer of execution, but also allows DIVILAR to be much
harder to reverse-engineer: compared to interpreters implemented
in managed code [2], DIVILAR’s interpreter is implemented as a
native binary. Therefore, many coding/obfuscation techniques not
available to managed code (e.g., direct memory manipulation) can
be employed and a large body of existing obfuscation tools can be
directly applied to it.

We have implemented a prototype of DIVILAR. It accepts an
Android app as input, transforms its Dalvik bytecode into a ran-
domly generated intermediate language, and wraps the resulting
binary together with a lightweight virtual instruction interpreter.
DIVILAR is intended to be used by app developers at the last
stage of development before releasing the app into public online
app stores. DIVILAR-protected apps need no special treatment
from Android or the app store. They can be released, installed,
and executed in the same way as normal Android apps. Our
evaluation demonstrates that DIVILAR is robust against common
countermeasures, including existing static and dynamic analysis,

and even these specific to VM-based protection. DIVILAR also
has a small and acceptable performance overhead with an average
of 16% increase to app start time and 8.9% to run time.

In summary, this paper makes the following contributions:

• First, we propose a diversified virtualization-based protec-
tion for Android to thwart app repackaging. DIVILAR-
protected apps are compatible with the existing Android
ecosystem. To the best of our knowledge, it is the first VM-
base protection system for Android.

• Second, we design a lightweight in-app hooking mechanism
for DIVILAR’s interpreter to composite virtual instruction
and Dalvik bytecode execution. Evaluation shows that our
prototype interpreter is robust and incurs small performance
overhead.

• Third, we have implemented a prototype of DIVILAR. Our
evaluation demonstrates that DIVILAR is effective against
common countermeasures, including static analysis, dynamic
analysis, and particularly these specific to VM-based protec-
tion or obfuscation.

The rest of the paper is organized as the follows: we give
background information and state the app repackaging problem in
Section 2, and describe the DIVILAR design and implementation
in Section 3 and Section 4, respectively. After that, we present the
robustness analysis and evaluate its performance in Section 5. In
Section 6, we discuss the system’s limitations and suggest some
possible improvements. Lastly, we present related work in Sec-
tion 7 and conclude the paper in Section 8.

2. PROBLEM STATEMENT
In this section, we introduce key concepts of Dalvik VM, the

execution engine for Android apps, and the widespread issue of
app repackaging in the Android platform.

2.1 Android App and Dalvik VM
Most Android apps are written in the Java programming lan-

guage with some components optionally implemented as native
libraries. At compiling time, the Java source code is compiled into
Dalvik bytecode, which are then assembled into a single Dalvik
executable (the .dex file). Each Android app can optionally
load native libraries and interact with them through the JNI inter-
face [14]. To release an app, all files of the app are compressed
into an apk file that is subsequently signed with the developer’s
private key. The developer’s key is usually self-certified without
involvement of a central certificate authority. The signature of an
app therefore cannot be used as an indication of trustworthiness of
the developer, or that the signer is the rightful owner of the app.
Instead, Android security model uses the signature to safely allow
apps of the same developer to share certain privileges.

Android apps are executed by Dalvik VM, a register-based Java
virtual machine designed by Google. Figure 2 shows the high-
level architecture of Dalvik VM. There are two major components:
class loader and execution engine. Class loader is responsible for
loading Dalvik classes for execution. Specifically, when a new
class needs to be executed, class loader reads its definition from
either the app’s dex file which contains all the classes of the app,
or from system libraries. The class definition includes information
such as fields, methods, and bytecode for each method (except
abstract method). For safety, class loader needs to perform a fairly
complicated verification to make sure the class is well-formed
and does not violate constrains set by the Java specification [42].
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Figure 2: Architecture of Dalvik Virtual Machine

Since DIVILAR uses a completely different instruction encoding
than Dalvik bytecode, it is necessary for DIVILAR to bypass the
verification of class loader.

Execution engine of Dalvik VM decodes and executes the byte-
code of Java methods. Dalvik bytecode has a different encoding
scheme than the standard Java bytecode: it is register-based (the
standard Java bytecode is stack-based) and has variable lengths
(1, 2, 3, or 5 code units, each code unit is 16-bit). For example,
the add-int instruction has an opcode of 90h and three reg-
ister operands encoded in 2 code units. By re-encoding an app
in a virtual instruction set, DIVILAR will lead existing Android
analysis tools (e.g., the baksmali disassembler [19]) to misinterpret
the instruction boundaries and thus fail to decode the instruction
stream. The original implementation of Dalvik VM executes byte-
code through opcode-dispatching, in which it fetches and decodes
the bytecode into opcode and operands, and dispatches execution
to the corresponding handler for the opcode. Recent versions
of Dalvik VM speed up the execution by supporting just-in-time
compilation, where frequently-executed bytecode is compiled into
native code and executed natively.

Dalvik VM is shipped as a native library (libdvm.so) and
loaded into each app’s address space, which it shares with other
app-provided native libraries. The virtual instruction interpreter of
DIVILAR is also a native library (libhook.so). At run-time,
libhook.so hooks into Dalvik VM and manipulates its internal
data structure for its own purposes.

2.2 App Repackaging in Android Platform
App repackaging has plagued the Android platform. For exam-

ple, a recent survey of top 100 paid and free apps on the Android
(and iOS) platform shows that most of these popular apps suffer
from app repackaging [64]. App developers are also finding their
apps pirated, leading to considerable revenue loss [16,22,60]. Even
worse, researchers found that 86% of Android malware samples
are distributed to their victims through repackaged apps [75]. A
few reasons contribute to the proliferation of app repackaging in
the Android platform: first, most Android apps are written in Java
whose bytecode retains rich semantics of the apps. This makes
Android apps relatively easy to understand and modify without
source code. Second, as mentioned earlier, Android apps are
signed with self-certified keys. The signature of an app does not
establish integrity or ownership of the app. Third, Android apps
can be distributed through non-official channels such as third-party
app stores where virtually no regulation or vetting process exists.
Android users are also free to install apps of unknown origin (e.g.,
downloaded off the web).

With the help of publicly-available tools such as smali/baks-
mali [19], repackaging an Android app is straightforward: the
attacker only needs to disassemble the app to locate points of
modification. The modification can be as simple as changing the

ad client ID (in order to redirect ad revenues to the attacker) or
as complicated as tweaking of internals of the app 1. After that,
the attacker can reassemble the app and sign it with his or her

own key. The repackaged app can now be distributed in (third-
party) online app stores. This process is so well-defined that
automated tools have been designed to repackage apps [70]. Given
the easiness of this process, there is a pressing need to prevent
app repackaging in the first place, in addition to the postmortem
detection and jurisdiction [12,29,53,72–74]. To this end, DIVILAR
applies the effective VM-based protection to Android apps. It
aims to significantly increase the efforts needed to reverse-engineer
and modify the app. By encoding apps in a different virtual
instruction set, it immediately disables all existing tools that are
based on Dalvik bytecode. The attacker has to reverse-engineer
the DIVILAR execution engine for virtual instructions in order to
manipulate the app.

3. DESIGN

3.1 DIVILAR Overview
DIVILAR aims at protecting Android apps from being repack-

aged by re-encoding them in a diversified virtual instruction set.
We have three design goals for DIVILAR:

Robustness: although fundamentally it is an arms race, we
expect DIVILAR to be robust against existing countermeasures,
including commonly available static analysis, dynamic analysis,
and these specific to VM-based protection. DIVILAR should also
be architecturally flexible to accommodate new countermeasures.

Compatibility: DIVILAR-protected apps should be compatible
with the current Android ecosystem. Specifically, the developers
should be able to release their protected apps in the official Google
play store or any third-party app stores, and users can download,
install, and execute these apps just like normal apps. Compatibility
is the key to the adoption of DIVILAR. Any requirements to change
the Android framework will significantly limit the usability of such
solutions.

Performance: DIVILAR introduces an extra layer of execution
to managed code. With a straightforward design (e.g., implement-
ing DIVILAR in the managed code), such a system will lead to
prohibitive overhead [2]. Excessive performance overhead will
render DIVILAR unsuitable for everyday use. As such, we de-
sign a lightweight hooking mechanism to merge virtual instruction
execution into Dalvik VM to minimize its performance overhead.

Figure 3 shows the overall architecture of DIVILAR. It has four
components: virtual instruction selector, bytecode transformer, vir-
tual instruction interpreter, and Apk packager. Virtual instruction
selector decides a virtual instruction set and produces a trans-
forming rules (and its inverse) to describe how to translate Dalvik
bytecode into virtual instructions (and vice versa). These two rules
are used by the second and third components to guide conversion
between Dalvik and virtual instructions. Specifically, bytecode
transformer applies the transforming rule to an Android app to
convert its classes from Dalvik bytecode to the selected virtual
instruction set. The interpreter is an execution engine for the virtual
instruction set. It is customized by the inverse transforming rule
so that it can reverse virtual instructions back to Dalvik bytecode.
Moreover, the interpreter is a native library to be bundled together
with the guest app. At run-time, it will be loaded into the app’s
address space to execute the guest app. The last component, apk
packager, packs the guest app and its interpreter inside a shell

1Java’s late-binding makes this process considerably easier than
native binary as symbols are dynamically resolved.
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Figure 3: DIVILAR Architecture Overview

app. The shell acts as a proxy for the guest app (it is needed
because the guest app is no longer recognizable by Android.) It is
responsible for preparing the running environment for the guest app
such as loading the interpreter. The shell also creates a custom class
loader for the guest app, and uses it to load the guest’s classes for
execution. From Android’s point of view, the shell is a well-formed
app, while the guest app and its interpreter are just resources loaded
by the shell. As such, a DIVILAR-protected app can pass the
verification and be released, downloaded, and installed in the same
way as a regular app.

DIVILAR is architecturally flexible. Various components can
have varying levels of design and implementation. For example,
the selector defines the conversion between Dalvik bytecode and
virtual instructions. It could use a straightforward one-on-one
mapping or implement complicated transformation by mixing cryp-
tography algorithms as long as the process is reversible. Similarly,
the interpreter can decode virtual instructions in different granu-
larity: one method at a time, one basic block at a time, or one
instruction at a time. Different granularity leads to different trade-
off between performance (finer granularity has higher overhead)
and information leakage (finer granularity leaks less information
to an adversary who can monitor memory of the running app). In
the rest of this section we will give more details about these four
components of DIVILAR.

3.2 Virtual Instruction Selector
DIVILAR transforms an app encoded in Dalvik bytecode to that

in a diversified virtual instruction set. Consequently, attackers are
forced to first reverse-engineer virtual instructions as implemented
by the interpreter, a native binary that can readily be obfuscated. In
DIVILAR, each protected app is encoded in an unique set of virtual
instructions decided by virtual instruction selector. The selector
produces two rules: a transforming rule X to convert Dalvik
bytecode to virtual instructions, and its inverse X ′ to reverse the
process. DIVILAR does not pose any restrictions on the selector as
long as the conversion is reversible. For example, it is possible to
choose fixed or variable instruction length, apply different encoding
scheme for opcodes and operands, or even use different styles of
bytecode (stack-based v.s. register-based). Different choices of
virtual instructions will affect DIVILAR’s capability in resisting
attacks that intend to reverse-engineer the interpreter.

Dalvik Original Target Transforming Inverse
bytecode opcode opcode rule rule

add-int 90 7101 90 → 7101 7101 → 90

invoke-static 71 3202 71 → 3202 3202 → 71

if-eq 32 9003 32 → 9003 9003 → 32

Table 1: Example Mapping Rules for Opcode (in hex)

In our prototype, the selector is designed as a plugin of DIVI-
LAR so that selectors with different levels of sophistication can
be readily used and new selector can be created in response to
unforeseen attacks. Our prototype implements a linear mapping
between Dalvik opcode and virtual opcode. For easy of use by

the other modules, the selector generates two mapping rules X =

{R1, R2, ..., Rn} and its inverse X ′ to formally describe how to
translate from and to the Dalvik bytecode. Specifically, each mem-
ber of X defines how the original Dalvik bytecode is transformed
into a randomized virtual instruction. Table 1 gives some examples
of the mappings for opcode. For example, Dalvik opcode 90h,
an add-int instruction, will be replaced by a two-byte opcode
7101h. A tool that expects Dalvik bytecode will interpret this two-
byte opcode as the invoke-static instruction (opcode 71h)
with 01h being the first byte of the operand [56]. Semantically,
this “instruction” tries to invoke a static function (specified by 2
following bytes) with zero parameter. This mapping will also shift
the instruction boundary around because 90h (add-int) has 4
bytes while 71h (invoke-static) has 6 bytes instead. Our
evaluation shows that even this linear mapping can disable existing
dynamic and static analysis tools, including these specific to VM-
based protection. The produced set of rules will be used in bytecode
transformer and virtual instruction interpreter to guide conversion
between Dalvik bytecode and virtual instructions.

3.3 Bytecode Transformer
Bytecode transformer converts an Android app (an apk file)

encoded in Dalvik bytecode to the instruction set decided by the
selector. It first extracts from the app its Dalvik executable file
(classes.dex), which contains definitions of all the app’s classes.
The transformer then decomposes the dex file into a list of classes
and further parses them into fields and methods. A method consists
of a method prototype and its associated Dalvik bytecode. At this
point, the transformer converts the Dalvik instructions (including
its opcode and operands) into virtual instructions guided by the
transforming rule X . For example, in our linear mapping rule,
opcode 90h will be converted to 7101h, and opcode 71h will be
converted to 3202h and so on. As an example of more sophisticated
transformation, our prototype also supports an opcode chaining
mode in which (the first byte of) the last virtual opcode is xor’ed
with the next Dalvik opcode to get the input to the transforming
rule X . For example, if the last target virtual opcode is 9003h

(Table 1) and the next Dalvik opcode is E1h. The input to X is
71h (90h⊕E1h), and the target opcode will be 3202h. Such small
tweaks are effortless to implement but will make the interpreter
harder to reverse-engineer. After transformation, the resulting
classes will be re-assembled into a DIVILAR-executable file. This
file will be packaged into the final app as a data asset to be loaded
and executed by the interpreter, described in the next section.

3.4 Virtual Instruction Interpreter
Using virtualization to protect apps is in general an expensive

operation. For example, even in the native x86 mode, simple
implementations could incur tens of times of overhead [17]. When
an extra layer of virtualization is added to managed code, the per-
formance simply becomes unacceptable for any real-world use [2],
especially for mobile platforms where computation power and
battery life are severely limited. Most Android apps consist of
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managed code and run on mobile devices such as smartphone
or tablets. Therefore, it is critical for DIVILAR to minimize
performance overhead. The overhead comes mainly from the
extra layer of bytecode execution. Observing that Android already
contains a mature execution engine for Dalvik bytecode (Dalvik
VM), DIVILAR tackles this problem by merging its interpreter
into Dalvik VM, thus eliminating one layer of execution. More
specifically, Android provides a Java virtual machine called Dalvik
VM to execute the bytecode of apps. Dalvik VM is a mature
intermediate language execution engine with rich features such as
just-in-time compilation. Over the years, Dalvik VM has gradually
stabilized with few updates 2. In Android, it is shipped as a native
library (libdvm.so) and loaded into the address space of every
Android app, where it co-exists with other user-supplied native
libraries (Android apps are free to load native binaries.) There
exist no security boundary to isolate them (Figure 2). Therefore,
it is feasible for DIVILAR to load its interpreter as a native library
into the protected app, and manipulate Dalvik VM to piggy-back
the execution of virtual instructions. The interpreter needs to be
written in native code so it can directly operate on Dalvik VM’s
memory and issue system calls such as mprotect to change
memory attributes.

To facilitate manipulation of Dalivk VM, DIVILAR provides a
light-weight hooking mechanism (Figure 4) similar to Detours [31].
In DIVILAR, hooking points are function calls whose functionality
needs to be extended or intercepted (blx origFunc in the
figure). The call instruction will be overwritten with another in-
struction to redirected control flow to a trampoline. The trampoline
is a short sequence of ARM instructions. It first saves the current
CPU states (caller-saved registers r0 − r4 and the link register lr
that contains the return address) to the stack, and loads the address
of the extending function (tgt function in libhook.so) into one
of the available registers (r4) for execution. After tgt returns, the
trampoline calls the original function so the call’s functionality can
be maintained and augmented. Finally, the trampoline restores the
CPU state and returns back to the call site. Alternatively, we can
insert a detour at the beginning of the original function (instead of
the call site) to hook the function. We choose the current design
because it provides more fine-grained control over when and where
to hook a function.

2This alleviates the concern that DIVILAR is too dependent on the
internals of Dalvik VM and thus is less compatible.
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With this light-weight hooking mechanism, DIVILAR can hook
into Dalvik VM to intercept and modify its execution in order to
composite execution of virtual instructions and Dalvik bytecode.
Manipulation of VM states at run-time requires clear understanding
of its internals and careful planning. Figure 5 shows the major
components of Dalvik VM: class loader and execution engine.
Both components can operate on the shared run-time data such as
method definitions and the heap. Execution engine has a number
of components itself such as the bytecode interpreter (to execute
bytecode), JIT compiler (to compile hot spots into native instruc-
tions), and class linker (to link classes from different Java libraries).
Architecturally, DIVILAR can accommodate different designs of
virtual instruction execution. For example, an implementation can
provide a complete execution engine ( possibly based on the Dalvik
VM source code) and totally bypass Dalvik VM. Our prototype
implements a pre-execution decoding scheme. More specifically,
it hooks into functions that execute a method and decodes the
method by reversing the opcode and operand mapping before its
execution. In addition to these functions, we also need to modify
class loader (so it knows how to load the guest app) as well as
the meta-data in the method area. Section 4 contains details about
our prototype. Figure 6 shows the logical architecture of Dalvik
VM after the interpreter (libhook.so) is loaded. In the figure,
Libhook.so is responsible for the loading of the guest app’s
classes because these classes are encoded in virtual instructions and
cannot pass the sanity check of Dalvik’s class loader. DIVILAR’s
execution engine hooks into and leverages Dalvik’s execute engine
to run the app. Technically, the interpreter contains complete
information required to recover the original app. It is thus important
to prevent it from being reverse-engineered. To this end, various
obfuscation technologies for native binaries can be readily applied
to libhook.so, such as packer/unpacker [28, 48].

3.5 APK Packager
One of our design goal for DIVILAR is compatibility so that

DIVILAR-protected apps do not require special install-time pro-
cessing or modifications to the Android framework. As such, APK
packager, the last component of DIVILAR, wraps all components
necessary to execute the guest app into a single shell app. The
interpreter (libhook.so) and the guest app are both contained
in the shell as data assets. The shell app is a simple wrapper of
the guest app, synthesized by APK packager. From Android’s
point of view, the shell app is the main body of the final app.
Therefore, it can pass the install-time and run-time verification
by the Android system. The shell app inherits the permissions
required by the guest app so it can execute the guest app with
enough permissions. It also needs to provide a wrapper for every
entry point in the guest app, such as activities, content providers,
and services defined in the guest app’s manifest file [35]. These
entry points are automatically loaded by Dalvik VM when starting
an app. At run-time, when the shell’s entry points are called, they
simply load the corresponding guest app classes into memory and
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dispatch them for execution. Note that this loading process does
not decode virtual instructions. Instead, they are decoded only
when necessary by libhook.so. After collecting all the required
components, APK packager reassembles them into a single apk
file which can be released, downloaded, and installed as a normal
app.

The final app produced by DIVILAR consists of the shell, the
guest app, and the interpreter. Figure 7 shows the run-time ex-
ecution flow of the app. The shell first initializes the execution
environments for the guest app. Specifically, it creates a custom
class loader for the guest app’s classes, loads the interpreter in the
memory and hooks it to Dalvik VM, and finally pre-loads some
critical classes of the guest app because Android expects these
classes to be loaded upon returning from initialization. These steps
need to be performed before executing the first instruction of the
guest app. For this purpose, the shell app extends a special Android
class called android.os.Application. This class (or its
subclass) is guaranteed to be executed just after the (shell) app’s
classes are loaded and before the first bytecode of the main activity
is executed.

4. IMPLEMENTATION
We have implemented a prototype of DIVILAR based on An-

droid 4.0.4. Our prototype is a standalone Java application. It
accepts an existing app as the input and generates an functionally-
equivalent protected app. DIVILAR is intended to be used at
the last stage of app development. The resulting app can be
released in the online app stores for users to download and install.
As mentioned earlier, the DIVILAR architecture can accommo-
date different levels of sophistication in the implementation. In
this section, we describe details of our prototype in the order
of DIVILAR’s four components: instruction selector, bytecode
transformer, the interpreter, and apk packager.

Our prototype adopts a linear mapping for Dalvik bytecode’s
opcodes and operands (Section 3.2). To guarantee that each pro-
tected app is encoded differently, the instruction selector uses a
random number to permute the opcode/operand mapping. This
generates two rules: the transforming rule X and its inverse. For
example, X =< 7503, 83, ... > specifies that opcode 01h will
be converted to 7503h, opcode 02h will be converted to 83h,
and so on. These rules are subsequently used to guide conversion
between Dalvik and virtual instructions for the second and third
components, bytecode transformer and the interpreter.

Bytecode transformer re-encodes the guest app in the virtual
instruction set as specified by the transforming rule X . Our im-
plementation utilizes the library of baksmali/smali [19], an open-
source Dalvik disassembler/assembler. Specifically, the guest app
is first parsed into a list of classes with their methods disassem-
bled to the string format. Bytecode transformer then reassem-
bles these classes into a dex file except that the opcode/operands
have been adjusted according to rule X (file org/jf/dexlib/
Code/Opcode.java of the baksmali library is changed to write
out the custom opcode and operands). For example, the bytecode
01h is first parsed into its readable format (move in this case).
DIVILAR then converts move to the new opcode of 7503h when

assembling the file. All classes of the guest app will be assembled
together into a single dex file, and further packed into the final app
as a data asset for the interpreter to execute.

The next step of the prototype generates a virtual instruction
interpreter customized by rule X ′. At run-time, the interpreter
hooks into Dalvik VM in order to composite the virtual and Dalvik
instruction execution. The interpreter is a native binary written
in the C++ programming language. When loaded for execution,
it first uses system call mprotect to make Dalvik VM writable
so that it can be hooked. It then searches the code section of
Dalvik VM for call sites of some specific functions, as determined
by the hooking strategy. Each of these call sites will then be
replaced by a call to the corresponding trampoline, as shown in
Figure 4. A wide range of hooking schemes can be employed. In
our prototype, we choose to extend the class initialization module,
which is responsible for bytecode loading and method initialization
(in file vm/oo/Class.cpp and vm/oo/Object.cpp). We
add to it the pre-execution conversion of virtual instructions to
Dalvik bytecode. To reduce the risk of the decoded methods being
extracted from memory, our prototype flushes the Dalvik code
cache randomly from time to time.

At the last step, APK packager assembles the guest app and the
interpreter into a final app that can be publicly released later. It
first parses the manifest file (AndroidManifest.xml) of the
original app to get the list of requested permissions, entry points,
and other resource files. It then synthesizes a wrapper (the shell) for
the guest app. The shell inherits the requested permissions from
the original app, and has a wrapper class for each entry point. It
is also responsible for loading and executing of the guest app, a
task performed in its subclass of android.os.Application
because it is guaranteed to be executed before any other classes.

5. EVALUATION
DIVILAR aims to protect Android apps from being repackaged

by applying VM-based protection. In this section, we first an-
alyze DIVILAR’s robustness against existing static and dynamic
analysis, and countermeasures specific to VM-based protection
in particular [11, 20, 57, 59]. We also evaluate the performance
overhead introduced by DIVILAR.

5.1 General Analysis
DIVILAR re-encodes Android apps in a secret and diversified

virtual instruction set. The guest app is wrapped as a data asset
in the resulting app together with the interpreter for these virtual
instructions. The interpreter hooks into the complicated Dalvik
VM to composite execution of virtual and Dalvik instructions. By
introducing this additional layer of indirection, existing tools that
expect Dalvik bytecode will immediately be disabled. Attackers
have to shift their focus from understanding Dalvik bytecode into
reverse-engineering the interpreter first (presumably, the interpreter
contains adequate information about the virtual instructions). In
this sub-section, we will analyze DIVILAR’s protection strength
against app repackaging.

Rooted in native code: managed code is in general harder to
obfuscate than native code because it contains rich semantics of the
app. For example, intermediate languages like Java bytecode often
use late binding, in which the target of a call is resolved at run-time
by name. As such, call instructions in an intermediate language
normally contain a reference to the method name as shown in
Figure 1. Moreover, managed code has numerous run-time and
compile-time checks to ensure program safety. This significantly
limits the operations that can be performed by the program. Oper-
ations such as complex pointer arithmetic or direct memory access
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unknown opcode encountered - 73. Treating as nop.

UNEXPECTED TOP-LEVEL EXCEPTION:
org.jf.dexlib.Util.ExceptionWithContext: 72
  at org.jf.dexlib.Util.ExceptionWithContext(ExceptionWithContext.java:54)
  ......
  at org.jf.dexlib.Section.readFrom(Section.java:143)
  at org.jf.dexlib.DexFile.<init>(DexFile.java:431)
  at org.jf.baksmali.main.main(main.java:280)
Caused by: java.lang.ArrayIndexOutOfBoundsException:72
  ......
  ... 6 more
Error occured at code address 140
code_item @0x784

Figure 8: Exception when applying baksmali on a transformed app

are almost always disallowed. Native code instead runs directly
on the physical machine and has few restrictions in operations
and program structures. Native code thus has more freedom in
the support of obfuscation. Particularly, in native code, code and
data can be mixed together; instructions can directly access any
memory mapped in the program; a program can also mutate itself
with the self-modifying code. Obfuscation in native code can
leverage these features to make it more reliable. For example,
Giffin et al. [23] propose to strengthen software self-checksumming
using self-modifying code; Jacob et al. [37] leverage overlapped
instructions in the x86 architecture to implement a stronger tamper-
proof solution. These technologies make obfuscated native binaries
more difficult to reverse-engineer, usually requiring laborious hu-
man efforts.

DIVILAR has its robustness rooted in the native code. Instead
of implementing the interpreter in Dalvik bytecode, the interpreter
is a native executable. This not only reduces the overhead, but also
allows advanced obfuscation technologies [23, 37] to be applied,
making the interpreter hard to reverse-engineer.

Varied virtual instruction selections: architecturally, DIVI-
LAR can accommodate a wide range of virtual instruction selec-
tions as long as it can be reversed. The instruction selector works
as a plugin of DIVILAR to support different encoding schemes,
such as fixed-length v.s variable-length instructions, stack-based
v.s register-based instructions, or even overlapped instructions [37].
Moreover, DIVILAR randomizes the virtual instruction set for
each individual app. Breaking one protected app thus does not
necessarily lead to compromise of other protected apps. In our
prototype, we choose a linear mapping for virtual instructions. The
combination of such a mapping is sufficiently large so that the
brutal-force attack (to try every possible combinations) is simply
infeasible. Meanwhile, our prototype can confuse a parser of
Dalvik bytecode with shifted instruction boundaries. This makes
frequency analysis ineffective because it relies on a parser to de-
code the app first (Section 5.4). Therefore, even with this simpli-
fied virtual instruction selection, our prototype provides a strong
protection against existing countermeasures.

Diverse interpreter design: to reduce overhead, DIVILAR
hooks into Dalvik VM in order to composite virtual and Dalvik
instruction execution. A wide range of interpreter design (hence
hooking schemes) can be supported. For example, it is possible to
even write a standalone interpreter and completely bypass Dalvik
VM. Different interpreter design needs to modify different compo-
nents of Dalvik VM (Figure 5). Our prototype implements a pre-
execute decode scheme in which virtual instructions are reverted
back to Dalvik bytecode before execution. An adversary monitor-
ing the memory of the app might be able to extract the recovered
bytecode. To reduce the time window of possible exposure, our
prototype will randomly flush the code cache. To further reduce
the window, we may hook into code that execute instructions in
a finer granularity, such as basic block level or instruction level.

To protect the interpreter from reverse-engineering, the interpreter
should be obfuscated as mentioned before. A large number of
existing obfuscation schemes for native binaries can be applied.

In addition, with the interpreter implemented in native code,
performance overhead will not be a concern for DIVILAR as a
variety of optimization techniques can be applied [1, 3, 9, 67], such
as ahead-of-time compilation or adaptive optimization.

Compatible with other schemes: DIVILAR encodes the guest
app in a diversified virtual instruction set. This kind of trans-
formation is compatible with a wide variety of other protection
mechanisms. For example, AppInk [72] embeds watermarks into
an app to identify the source of an app. DIVILAR can be applied
to the app after watermarks are embedded. Obfuscation techniques
can also be applied before or after DIVILAR. For example, Java
based obfuscation can be attempted first, and then DIVILAR is
applied, or DIVILAR is used first and native code obfuscation can
be used to obfuscate the interpreter in the resulting app. Moreover,
DIVILAR aims to provide a strong preventive mechanism for apps.
It does not provide services such as integrity check in itself. These
services can also be combined with DIVILAR. For example, self-
checksumming is often used to ensure program integrity. Due to
various constrains of managed code, self-checksumming is chal-
lenging to implement in managed code. With DIVILAR, it can
be implemented in the native code and be used at various stages
of Dalvik VM execution. This would make self-checksumming
for Android not only feasible but also more reliable against adver-
saries.

In the following of this section, we analyze DIVILAR’s robust-
ness against various specific static and dynamic analysis, including
experiments with popular tools frequently used in Android app
repackaging.

5.2 Static Analysis
To repackage an app, attackers often apply some form of static

analysis to understand how the app is organized and where to make
necessary modifications. All these tools include some form of
disassembler to parse the app into machine- or human-readable
format, such as the mnemonic representation of Dalvik bytecode.
Baksmali [19] probably is the most popular disassembler for An-
droid apps. Its source code has been embedded in many other
Android analysis/reverse-engineering tools [24, 55]. Meanwhile,
many static analysis tools for Android, such as Dare [51] and
smali2java [24], re-target Android apps to Java bytecode (Java
bytecode is stack-based while Dalvik bytecode is register-based) in
order to leverage a rich set of existing Java analysis tools [66]. In
this subsection, we will evaluate DIVILAR’s resilience against two
representative static analysis tools: baksmali [19] and Dare [51].
Specifically, we encode seven Android apps into virtual instruc-
tions, and apply these two tools on the resulting apps to observe
their behaviors.

Baksmali is an open-source Android disassembler. Its com-
panion project, Smali, is a corresponding assembler. Baksmali
and Smali are frequently used to manually repackage apps [39].
Baksmali provides a library that can reliably parse Dalvik execute
files [56] and further disassemble them into the mnemonic format.
The source code of Baksmali has since been embedded in many
other tools (including DIVILAR). For all these seven apps, Baks-
mali reports an error message of “unknown opcode encountered -
nn. Treating as nop” and throws an unexpected top-level exception.
Figure 8 shows an encountered exception when we apply Baksmali
to one of the guest app. Baksmali and other Android analysis tools
expect Dalvik bytecode as inputs. By re-encoding Android apps in
virtual instructions, DIVILAR has changed the semantic of opcode
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W/dalvikvm( 6997): Can't decode unexpected format 0 (op=115)

GLITCH: zero-width instruction at idx=0x0000

W/dalvikvm( 6997): Can't decode unexpected format 0 (op=115)

GLITCH: zero-width instruction at idx=0x0000

Figure 9: Error message when applying Dare on a transformed app

seen by these tools and shifted instruction boundaries around.
However, these tools still interpreter the guest app according to the
Dalvik bytecode format. This usually leads to unknown opcodes,
as shown in Figure 8.

To leverage a wide variety of existing static analysis tools for
Java bytecode, some analysis tools opt to re-target Android apps
into Java bytecode. Dare [51] is one of the most effective tools
for this purpose, which is reported to work correctly on more than
99.99% of 262, 110 Dalvik classes. Since the very first step of
Dare is also to parse the dex file, it fails with a similar symptom as
Baksmali. Figure 9 shows the error message reported by Dare on
the same guest app.

The above experiments show that DIVILAR can immediately
render these existing Android disassemblers and analysis tools
ineffective because they all depend on parsing the well-formed
Dalvik bytecode. These tools include decompiler, slicer, control
flow analyzer, data flow and data dependency analyzer [19, 51, 55,
66]. For these tools to function correctly, it is necessary to first
recover the original Dalvik bytecode by reverse-engineering the
interpreter.

5.3 Dynamic Analysis
Dynamic analysis executes the app under investigation in a mon-

itored environment, such as a virtual machine or an emulator, to
observe its behaviors. Dynamic analysis has been widely used in
malware analysis and program development. In dynamic analysis,
the monitor can be placed either inside or out of the run-time
environment of the target app. The former has the advantage of
direct access to system/app states, but its result may be disturbed
or even tampered with by the target app. While the latter gains the
tamper-resistance, but faces the “semantic gap” challenge [10, 38],
in which the monitor has to deduce app states given only externally
observable data such as a memory dump [38, 69]. It is challenging
to apply this out-of-box approach to analyze Android apps because
we need to reconstruct both operating system states and Dalvik
VM states due to the two layers of virtualization [69]. DIVILAR
makes the problem even more challenging by adding another layer
of indirection: the monitor needs to infer states of the operating
system, the virtual instruction interpreter, and Dalvik VM.

Our current prototype adopts a pre-execution decoding scheme.
An adversary who continuously monitors the app’s memory might
be able to extract the bytecode of the original app. Such powerful
attacks can be (partially) addressed by either limiting the amount of
restored bytecode (e.g., from method to basic block) and shortening
the time window of exposure, or by detecting whether the app is run
in a virtual environment (the Android emulator) and refusing to run
if so.

5.4 Virtualization Specific Analysis
Virtualization-based protection/obfuscation has been long em-

ployed by malware to hide its malicious behavior. A number of
countermeasures have been proposed to detect or prevent such
malware. For example, some systems aim to reverse-engineer
the VM and use this information to infer semantics of individual
virtual instructions [57, 59]. Coogan et al. propose an inside-out
approach [11], which intends to identify instructions that may affect
the observable behavior of the wrapped code (i.e., system calls) .

Ghosh et al. propose to replace the protecting VM with an attacking
VM in order to render the application amicable to analysis and
modification [20]. Frequency analysis [68] is often used to break
classical ciphers by studying the frequency of letters or groups of
letters to disclose the mapping between plaintext and ciphertext.
It may potentially be used to infer the mapping between Dalvik
bytecode and virtual instructions. In the rest of this sub-section,
we discusses DIVILAR’s robustness against these virtualization-
specific attacks.

Reverse-engineering VM: a few approaches are proposed to au-
tomatically reverse-engineer the virtual machine, and then use the
recovered semantics of virtual instruction to understand the original
app [57, 59]. Automatic reverse-engineering a virtual machine, in
general, is an unsolvable problem. As such, existing approaches
limit the scope by, for example, assuming that the VM works in
the loop of fetch-decode-dispatch. In case of DIVILAR, these
assumptions do not hold, thus making these approaches ineffective:
Dalvik VM has a complex structure with about 104,000 lines of
C++ code and 99,000 lines of assembly code. Moreover, Dalvik
VM supports many different execution modes, including portable,
fast, and JIT modes. These execution modes can also be extended
by DIVILAR in many possible ways as discussed earlier.

Inside-out approach: a recent work proposes an inside-out
approach [11] that complements the VM reverse-engineering ap-
proach. Instead of recovering all instructions of the wrapped app,
this approach aims at identifying instructions that interact with the
operating system and instructions that may affect these instructions.
It is assumed that these instructions together approximate the be-
havior of the original code, while other instructions are considered
to be uninteresting. This approach can help malware analysts to
gain better understanding of the malware under examination with-
out being overwhelmed by details of all the instructions. However,
partial understanding of virtual instructions is not enough to make
meaningful modifications to the guest app and repackage it. In
particular, any executable additions to the guest app need to be
encoded in the same virtual instructions as the app. This is not
possible without a complete understanding of the virtual instruction
set first.

VM replacement attack: VM replacement attack is proposed
to subvert virtualization-protected apps by replacing the protecting
VM with an attacking VM, within which the app’s execution can
be monitored and analyzed. However, this attack is not effective
against systems where virtual machine is sufficiently anchored
to the execution environment [20]. DIVILAR’s in-app hooking
mechanism allows it to deeply hook into Dalvik VM and merge
the execution of virtual and Dalvik instructions. This tight coupling
with the underlying execution environment makes VM replacement
attacks ineffective against DIVILAR. In addition, DIVILAR can
identify whether the underlying VM has been modified or whether
an attacking VM (specifically, its code introspection framework)
has been loaded into the app’s address space. Essentially, VM
replacement attack in this case becomes an in-VM monitor and thus
subjects to tampering [38].

Frequency analysis Frequency analysis is often used to break
classic cipher where a plaintext letter is mapped to one cipher-
text letter. By studying the frequency of letters or groups of
letters, the analyst can deduce the mappings between the plaintext
letters and ciphertext letters [68]. Our prototype of DIVILAR
also uses a mapping table to convert Dalvik bytecode into virtual
instructions. However, our system is not susceptible to frequency
analysis. Specifically, by simply replacing one letter with another,
a counting tool can easily count the frequency of plain-text and
cipher-text in a classic cipher. However, it does not know how
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Figure 10: Performance overhead introduced by DIVILAR

to count the instruction frequency for virtual instructions without
the knowledge of the virtual instruction set first. In fact, such
tools would require a parser to decode instructions, which has been
shown to be ineffective against DIVILAR (Section 5.2).

5.5 Performance Evaluation
In this section we evaluate the performance overhead introduced

by DIVILAR. We measure both start-time and run-time overheads,
two overheads that matter most to end users. We choose five sample
apps from the Android SDK as our target apps: jet boy, notepad,
contact manager, multi-resolution, and honeycomb gallery. We
select these apps because their source code are freely available so
that we can insert probing points into the apps to measure time
required to execute certain operations.

We first measure how DIVILAR affects the app start up, from
launching the app to the appearance of the main activity on-screen.
To prepare an app for execution, the Android framework performs
a series of steps such as loading Dalvik VM. DIVILAR adds to
the start-time in order to prepare execution of virtual instructions.
Specifically, the guest app is wrapped in a shell app. Android
launches the shell first which in turn loads the guest app. To
measure the start time, we use the logcat command [34] of
Android Debug Bridge [33]. The verbose logging level of logcat
is used so that it shows the elapsed time from app launching to
the appearance of the first app view. All the experiments were
executed three times with the average reported. Figure 10 shows
the percentage of delays introduced by DIVILAR. They range from
9.4% to 29.2% with an average of 16.2%. Considering that all
these test apps start in less than half-second even under DIVILAR’s
protection, the extra delay to start time caused by DIVILAR likely
will not be perceived by end users at all.

Next, we measure the overhead of DIVILAR to a running app
by adding probe points to log its execution time. Specifically, we
first examine their source code to select code ranges where no user
interaction is required (so as to exclude the impact of uncontrol-
lable user interaction), and manually insert a call to android.

util.Log before and after each of these selected code ranges.
We then rebuild these apps and use DIVILAR to generated their
corresponding protected apps. Figure 10 reports the percentage
of overhead caused by DIVILAR to parts of these running apps.
They range from 0% to 18.6% with an average of 8.9%. DIVILAR
has fixed overhead for each method, i.e., the time to translate the
method from virtual instructions to Dalvik bytecode. The run-time
of a method, on the other hand, is determined by dynamic program
states such as branch conditions and loops. For example, a method
could execute only a failed branch in one run and execute hundreds
of times in a loop in another run. Overall, our interpreter design is
efficient and end users will not perceive any delays or stuttering.

6. DISCUSSION
In this section, we discuss implications and possible improve-

ments of DIVILAR and , in particular, our prototype.
In essence, DIVILAR is an obfuscation technology used to pro-

tect the Android app from repackaging. Although the technology
itself is neutral, obfuscation has long been used by malware au-
thors to evade detection by anti-malware software. Many security
researchers and practitioners share the opinion that benign software
(Android apps in this case) should not use obfuscation so that
its behaviors can be easily analyzed or even formally verified.
Unfortunately, it is not an option for anti-repackaging. Most apps
are repackaged and distributed in third-party online app stores [74].
These stores often lack regulations against app piracy (some even
benefit from it), and many are located in other countries. It is thus
difficult for developers to resolve the issue through jurisdiction.
Instead, the developers have to enforce their apps for self-defense.
App repackagers would try to defeat or bypass these defense mech-
anisms. It becomes an arms race between developers and app
repackagers. For example, Google suggests to use string and other
obfuscation techniques to prevent its server-side license verification
from being disabled or bypassed [32]. In addition, VM-based
protection has been previously proposed to protect applications [21,
46, 61, 62, 65].

Although not an architectural limitation, our prototype has a
relatively simple design: a linear mapping of opcode/operand is
used to select virtual instructions, and the interpreter implements a
pre-execution decoding mode. Our initial experiments and analysis
show that this design works reliably against existing static and dy-
namic countermeasures, including these specific to virtualization-
base protection. Nevertheless, the design can be enhanced by
additional techniques to thwart analysis. In the future, we will
study ways to fortify our current design, particularly, how to for-
mally measure the strength of obfuscation technologies and how to
maximize its strength given certain performance overhead.

In its current operation model, developers use DIVILAR to
process their apps before releasing them to the online app store.
All installations of the app thus are the same across all its users
(although different apps will have a different virtual instruction
set). In the future, we will study methods to securely perform
per-installation obfuscation, for example, to re-encode the app at
its first run. In this way, each installation will have a different
encoding, possibly tied to the user’s device. This would provide
a stronger protection because every installation of the app is differ-
ent.

DIVILAR hooks into Dalvik VM to composite execution of
virtual and Dalvik instructions. Like other such software [30], com-
patibility with different revisions of the host software is a concern.
Dalvik VM, the host of DIVILAR , has become relatively stable
since Honeycomb (Android 3.0). Our prototype further alleviates
the problem by avoiding hard-coding any specific hooking points
and locating them through pattern matching instead. Under the
unlike circumvents that Dalvik VM is changed significantly and
frequently, we could implement a self-contained execution engine
(possibly based on the source code of Dalvik VM) and completely
bypass Dalvik VM. This will improve the compatibility but may
lose the benefit of updates made by Google.

Lastly, DIVILAR implements the VM-based protection for An-
droid apps. From another point of view, VM-base protection can
be considered as a generation of instruction set randomization [5].
For example, in addition to randomizing instruction set, VM-base
protection can provide a randomized view of memory. Our current
prototype focuses on the randomization of Dalvik bytecode. In the
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future, we will experiment randomization of other components in
VM-based protection as well.

7. RELATED WORK
In this section, we present related work in the following cate-

gory: diversification for security, virtualization-based protection,
and Android app protection.

Diversification for security: the first category of related work
includes researches that apply the principle of diversity to enhance
security. For example, address space layout randomization is
a defense mechanism to prevent low-level memory-base exploits
such as buffer overflow [58]. It randomizes locations of a program’s
code or data so that an exploit cannot (easily) locate the vulner-
ability. It has since been ubiquitously deployed in Linux [63],
Windows [49], Android [54], and Mac OS X [13]. Instruction-
set randomization is a closely related work. It diversifies a pro-
gram’s instruction set to render injected attacking code ineffective
(because they are encoded in a different instruction set) [5]. DIVI-
LAR and other virtualization-based protection systems [2] adopt
a similar idea to obfuscate a program in order to protect it from
reverse-engineering. As software diversity becomes more popular,
automated tools have been proposed to improve its performance.
For example, Franz et al. use profile-guided optimization to reduce
the overhead of software diversity [18]. This line of researches is
orthogonal to our study and thus can be leveraged by DIVILAR to
further reduce the overhead.

Virtualization-base protection: the second category of related
work consists of systems that employ virtualization-based protec-
tion. Virtualization has long been applied to protect native code
from reverse-engineering [21,61,62,65]. Malware authors are also
found to use virtualization to thwart detection or analysis. Mean-
while, countermeasures have been proposed to detect or reverse-
engineer virtualization-based malware. For example, Rotalume can
automatically reverse-engineer virtualization-based malware that
employs a virtual machine with a fetch-decode-execute model [59].
To allow malware analyst to focus on the critical behaviors of
malware, an inside-out approach is proposed to identify instruc-
tions that interact with the underlying operating system and other
instructions that may affect those instructions [11]. Moreover,
Ghosh et al. propose to use an attacking VM to replace the
protecting VM to subject the protected software to analysis. It
assumes that the protecting VM is not tightly bound to the execu-
tion environment [20]. DIVILAR leverages virtualization to pro-
tect Android apps from repackaging. An adversary of DIVILAR
could apply these techniques against DIVILAR. In section 5.4,
we have analyzed DIVILAR’s resilience against these approaches.
Virtualization-based protection has also been applied to protect
managed code as well (specifically MSIL) [2]. Their interpreters
are implemented in managed code, causing performance overhead
as high as 50 times to 3500 times. DIVILAR, also targeting
managed code, achieves much better performance (Section 5) by
combining virtual instruction and Dalvik bytecode execution.

Android app security: the last category of related work includes
a long stream of research in Android app security, particularly
these related to app repackaging. For example, a few systems aim
to detect repackaged apps by measuring similarity among a large
number of apps [12, 29, 53, 73, 74]. DIVILAR instead enables
self-defense of Android apps using virtualize-based protection. It
intends to prevent app repackaging at the first place. Recently,
Google and other mobile platform providers introduced differ-
ent flavors of server-side license verification solutions [32, 52].
These solutions and DIVILAR complement each other: DIVILAR

can prevent these mechanisms from being circumvented, while
they provide license verification. Similarly, Android app water-
mark [72] and software integrity check [23] can also be combined
with DIVILAR to provide a more complete protection. There
are also obfuscation technologies for Android [36, 41]. How-
ever, they tend to keep high-level semantic information of the app
intact. Also, a new app installation mechanism is proposed to
perform pre-installation verification and app encryption to protect
app from repackaging [71]. However, it requires the app installa-
tion mechanism, a fundamental process of the Android platform,
to be changed, hampering its adoption. DIVILAR has better
compatibility with existing Android systems.

There are also a series of research on other aspects of Android
app security. For example, TaintDroid [15] applies information
flow tracking to monitor privacy leak in Android apps. Apex [50]
and MockDroid [7] intend to address the privacy leak problem
caused by invasive Android apps by modifying the Android frame-
work. DroidRanger [76] and RiskRanker [27] propose different
approaches to detect malicious Android apps in (third-party) online
app stores. Woodpecker [26] and CHEX [47] try to discover
capability leak and component hijacking vulnerabilities in Android
apps. DIVILAR differs from them by introducing the self-defense
capability into Android apps to protect themselves from being
repackaged.

8. CONCLUSION
App repackaging remains a serious threat to the Android ecosys-

tem and the emerging mobile economy model. To thwart repack-
aging, we adopt virtualization-based protection to enable the app’s
self-defense. To this end, we design an effective solution called
DIVILAR which hooks into Dalvik VM to efficiently composite
the virtual instruction and Dalvik bytecode execution. Our evalua-
tion demonstrates that DIVILAR is robust against existing static
and dynamic analysis including these specific to virtualization-
based protection or obfuscation. Our prototype incurs a small
performance overhead that likely is not perceivable to end users. In
conclusion, DIVILAR is an effective and promising technology to
enable app self-defense and prevent app repackaging in particular.
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