
Systematic Audit of Third-Party Android Phones

Michael Mitchell, Guanyu Tian, Zhi Wang
Florida State University

{mitchell, tian, zwang}@cs.fsu.edu

ABSTRACT

Android has become the leading smartphone platform with hun-
dreds of devices from various manufacturers available on the mar-
ket today. All these phones closely resemble each other with sim-
ilar hardware and software features. Manufacturers must therefore
customize the official Android system to differentiate their devices.
Unfortunately, such heavily customization by third-party manufac-
turers often leads to serious vulnerabilities that do not exist in the
official Android system. In this paper, we propose a compara-
tive approach to systematically audit software in third-party phones
by comparing them side-by-side to the official system. Specifi-
cally, we first retrieve pre-loaded apps and libraries from the phone
and build a matching base system from the Android open source
project repository. We then compare corresponding apps and li-
braries for potential vulnerabilities. To facilitate this process, we
have designed and implemented DexDiff, a system that can pin-
point fine structural differences between two Android binaries and
also present the changes in their surrounding contexts. Our exper-
iments show that DexDiff is efficient and scalable. For example, it
spends less than two and half minutes to process two 16.5MB (in
total) files. DexDiff is also able to reveal a new vulnerability and
details of the invasive CIQ mobile intelligence software.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow controls; D.2.5
[Software Engineering]: Testing and Debugging—Code inspec-

tions and walk-throughs

Keywords

Android; DexDiff; BinDiff; Security Audit; Static Analysis

1. INTRODUCTION
Recent years have witnessed the increasing adoption of smart-

phones. According to a recent report by Gartner [22], there were
more than 150 million smartphones sold to end users in the second
quarter of 2012, an increase of 42.7% year over year. Android-
based smartphones lead the market share with nearly 99 million

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY’14, March 3–5, 2014, San Antonio, Texas, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2278-2/14/03 ...$15.00.

http://dx.doi.org/10.1145/2557547.2557558.

(64.1%) units sold, surpassing the second market leader (iOS) by
45.3%. The vast popularity of Android can be partially attributed
to the wide variety of Android-based smartphones from many man-
ufacturers (or vendors) such as Samsung, LG, and HTC. Currently,
there are more than 210 Android smartphones from 24 well-known
manufacturers being sold worldwide. Among them, 75 Android
phones from 16 manufacturers are available in the US market as of
September 2013 [25]. Many of these phones closely resemble each
other as they all follow the same hardware design guideline and run
the similar Android-based software. This lack of product differen-
tiation may lead to competitive disadvantages. As such, third-party
manufacturers heavily customize the official Android system to dif-
ferentiate their products from others. Major Android manufacturers
all have their own distinct flavors of Android such as HTC Sense
and Samsung TouchWiz.

Unfortunately, deep customization by third-party manufacturers
often introduces vulnerabilities that do not exist in the official An-
droid system. For example, the HTCLoggers application [50] in
many HTC phones was found to collect lots of sensitive informa-
tion, and provide it over a local network port accessible to any ap-
plication with the INTERNET permission. Also, researchers found
that many Android phones sold by the major US operators are pre-
installed with “rootkit-like” software from CarrierIQ [13], which
can remotely collect “a vast array of metrics” including the received
calls and locations, posing serious threats to user privacy. More-
over, design flaws vulnerable to the confused deputy attack [32]
were identified in pre-installed apps. These flaws can be leveraged
to indirectly break the Android permission model [19, 29]. In light
of these serious vulnerabilities, there is a pressing need to system-
atically audit the third-party customization in these commercial off-
the-shelf Android smartphones.

In this paper, we propose to audit third-party Android phones by
comparing them side-by-side to the official Android system based
on the key observation that design flaws often creep in through the
vendor customization [13, 29, 50]. This comparative approach al-
lows us to quickly locate the manufacturer’s modifications to the
original system and further assess their security impacts. Specif-
ically, we first need to obtain a copy of the pre-installed apps and
libraries from the phone, and build a matching system from the An-
droid open-source project [26] (for brevity, we call it “the base”),
then compare corresponding apps and libraries from the phone be-
ing assessed with and the base for potential vulnerabilities. To
facilitate this process, we built DexDiff, a tool that can automat-
ically pinpoint fine differences between two Android binaries. Al-
though Android consists of both Java and native code that may be
customized by a vendor, DexDiff focuses on the Java-based An-
droid binaries. Previous systems target only native binaries [20,21].
Thus, with the help of DexDiff, an external security analyst, who

175

has no access to the source code, can focus their efforts on mod-
ifications where vulnerabilities are most likely to be introduced,
thereby significantly reducing the time and efforts needed to audit
a phone.

However, providing such functionality is a challenge. First, man-
ufacturers almost always keep user-space apps and libraries close-
sourced, as permitted by their liberal licenses (core Android li-
braries and apps usually are licensed with the three clause BSD
or the Apache license, unlike the Linux kernel which has a GPL
license.) Therefore, it is not feasible to directly use existing source
code diffing tools such as the UNIX diff. Instead, we need to di-
rectly compare Android binaries. Second, it is also infeasible to
simply disassemble the binaries [1] and then compare the resulting
assembly code with diff or a similar tool because the compiler
uses complex algorithms to achieve an optimal layout for the bi-
nary. Possibly, even simple insertion or deletion of instructions can
lead to dramatic changes to the instruction layout. It is thus nec-
essary to structurally compare these two binaries (i.e., to compare
their control flow graphs [3]). Structural comparison also brings
the benefit of putting these modifications into the surrounding con-
text to help the analyst assess their impacts. Third, the solution
should be able to scale to the size of commodity Android bina-
ries, which could contain tens of thousands of methods. For ex-
ample, the framework.dex file in our test phone consists of 5,423
classes and 52,566 methods with a file size of 9.9MB, while its
corresponding base binary has 3,924 classes and 38,283 methods
in a 6.6MB file. Large files pose significant challenge to DexD-
iff because algorithms for graph comparison usually have limited
scalability. By applying a series optimization, DexDiff can handle
the aforementioned files in about two and half minutes.

To address these challenges, we design a tool called DexDiff that
can pinpoint fine differences between two Android binaries. Un-
like other tools [11, 58] 1 that linearly compare disassembled An-
droid instructions, DexDiff structurally compares the control flow
graphs (CFG) [3] of two Android apps. Given two Android bi-
naries, DexDiff works in two phases. In the first parse, it parses
the binaries into classes and methods, and uses a fast but coarse-
grained similarity comparison algorithm to find an assignment of
classes and methods (one from each file), in which each assigned
class or method is sufficiently similar to its peer; In the second
phase, DexDiff constructs the control flow graphs of each pair of
matched methods, and performs a fine-grained graph-based com-
parison of their CFGs using an approximation of the maximum
common sub-graph isomorphism problem [2]. By doing so, we can
heavily reduce the workload for the more expensive graph-based
comparison, thus making DexDiff scalable to commodity Android
binaries. We have implemented a prototype of DexDiff and used it
to audit a popular Android phone to demonstrate the effectiveness
of our approach. Through examining the manufacturer’s modifica-
tions of the Android framework, we discovered a vulnerable device
management app that accepts commands from a local network port
without authenticating the connection first. This particular app is
loaded with Android permissions, and willingly provides private in-
formation obtained through these permissions to any app with the
Internet access permission. Moreover, we verified that the phone
has the CarrierIQ software embedded [13]. With the help of DexD-
iff, we further systematically report metrics collected by the soft-
ware, especially in the stock Android browser. To summarize, this
paper makes the following contributions: ,

1Our tool is not related to [58], which is incomplete and inactive.
Both projects were started at roughly the same time.

• Based on the observation that vulnerabilities often are intro-
duced by vendor customization, we propose an approach to
systematically audit third-party Android phones by compar-
ing them side-to-side against the official Android system.

• To facilitate the audit of third-party phones, we have de-
signed DexDiff, a tool that can pinpoint modifications to An-
droid binaries and highlight these changes in their surround-
ing context, allowing security analysts to focus their efforts
to locations that are most likely to cause problems. Although
each individual algorithm of DexDiff has been applied in se-
curity before, the overall design of DexDiff is efficient and
scalable.

• We have implemented a prototype of DexDiff. Our evalua-
tion shows that DexDiff is efficient and scalable. It is also
effective in leading to the discovery of new vulnerabilities in
our test phone.

The rest of this paper is organized as follows: we first describe
the design and implementation of DexDiff in Section 2, and then
evaluate the system performance and effectiveness in Section 3. Af-
terward, we discuss possible limitations and future improvements
in Section 4, and present related work in Section 5. Finally, we
conclude the paper in Section 6.

2. DEXDIFF DESIGN

2.1 Overview
DexDiff is designed to help (external) security analysts to as-

sess security impacts of vendor customization to the official An-
droid system. It structurally compares two Android binaries and
highlights the changes in their surrounding context, i.e., the control
flow graphs [3]. To use DexDiff, the analyst first obtains a copy
of the pre-install Android apps and libraries from the phone, and
builds their corresponding base binaries from the release branch in
AOSP [26] on which the phone is based. Then, the analyst uses
DexDiff to compare each pair of the Android binaries and evalu-
ate the security impacts of individual modifications. Although the
security evaluation still requires human expertise (probably no au-
tomated systems can eliminate such a need), DexDiff can signifi-
cantly reduce the time and effort required by directing them to lo-
cations where problems are most likely to occur. To this end, we
have three design goals for DexDiff:

• Accuracy: DexDiff should accurately locate changes to an
Android binary and present them in the right context. In
particular, it should be able to tolerate common mechanical
changes, for example, to the instruction layout by an opti-
mizer, or to the class names that are often targeted by trivial
obfuscators [43]. The former requires a non-linear compar-
ison (e.g., graph-based), while the latter prevents any exact
matching.

• Scalability: Our solution should scale to commodity Android
binaries, which could consist of hundreds of thousands meth-
ods even for pre-loaded apps and libraries. However, algo-
rithms for graph-based comparison (i.e., isomorphism) usu-
ally have high resource demands. Therefore, it is necessary
to pre-process the binaries with a faster (but less precise) al-
gorithm to reduce the workload for graph comparison.

• Efficiency: The third requirement is closely related the sec-
ond one. Our solution should not only scale to large inputs,
but also process them quickly because, as an aid to the ana-
lyst, DexDiff will be used interactively.

176

Diff Reports

Class

Matcher

Method

Matcher

CFG

Constructor

CFG

Comparer
Class

Pairs
Method

Pairs
CFG

Pairs

Pre-loaded

Apps/Libs

Official

Android Sys

T
h
ird

-p
arty

 P
h
o
n
e

DexDiff

Figure 1: Overview of DexDiff

Figure 1 shows a high level overview of DexDiff. Given two
Android binary files, DexDiff produces a diff report in two phases.
In the first phase, DexDiff uses a fast but coarse-grained similarity
algorithm to quickly match classes and methods. Specifically, it
parses the binary files into Java classes, and uses code similarity to
find for each class its match in the peer binary, if there is any (Class

Matcher). For every pair of matched classes, DexDiff applies the
same technique to find for each method its match in the peer class
(Method Matcher). In the second phase, DexDiff leverages a slower
but more precise algorithm to compare the control-flow graphs for
each pair of matched methods. Specifically, it breaks the pair of
matched methods into basic blocks and constructs the control flow
graph for each method (CFG Constructor). It further uses a graph
isomorphism engine to find a maximum matching of these basic
blocks. The resulting matched basic blocks consist of unchanged
or modified basic blocks, while unmatched basic blocks are basic
blocks that have been deleted or inserted, depending on which file
they belong to (CFG Comparer). To facilitate the auditor, DexDiff
lays out the CFGs of each pair of matched methods side-by-side
in a graph (using dot [6]), and visually highlights their differences.
Figure 3 shows an example output of DexDiff. In the following
subsections, we will give more details of each step.

2.2 Matching Classes
We rephrase class matching as an assignment problem [55]:

given two disjoint set of classes from two Android binaries, DexD-
iff tries to find an optimal assignment of classes in which each class
is assigned to a resembling class in the other file (if there is any). To
solve this problem, DexDiff first parses the input files into classes,
and performs a pair-wise comparison of these classes (one from
each input file) to calculate their similarity. This generates a matrix
of similarity scores. It then leverages the Hungarian algorithm [57]
to find an optimal assignment of these classes that maximizes the
overall similarity between the two files.

Parsing Android Binary Given two Android binaries, DexD-
iff first parses them into classes. Android’s Dalvik class file has a
different format than the standard Java class file: the definition for
each class in the standard Java is contained in a separate file; while
in Android, a single class file (the classes.dex file in an apk
file) includes definitions for all the classes of an app or library. For
example, framework.dex, the Android framework file, in the offi-
cial Gingerbread firmware (Android version 2.3.3) contains 3,924
classes, while the same file in the HTC’s Gingerbread firmware
for HTC EVO 4G has 5,423 classes, or a 38.2% increase over the
official firmware. Encapsulating all classes in a single file allows
Android to reduce the binary size by maximizing shared identifiers
and values.

Calculating Similarity After parsing the inputs into classes,
DexDiff performs a pair-wise comparison of classes (one from each
input) to calculate their similarity. This amounts to p × q compar-
isons if the inputs have p and q classes, respectively. For example,
it would requires 21,279,852 comparisons for the two previously
mentioned framework.dex files. It is thus critical to construct an

efficient algorithm for each comparison. To this end, DexDiff first
converts each class into its string representation and further lever-
ages feature-hashing [56] to reduce the overhead of n-gram based
similarity.

Specifically, DexDiff computes class similarity in two steps.
It first converts each class into its string representation for easy
similarity calculation. The string representation of a class is
a concatenation of its name, super class name, implemented
interfaces, class and member fields, and methods. Particularly, a
method consists of its signature (i.e., parameters, return value, and
exceptions it may throw), name, and disassembled instructions.
To tolerate differences in compiler’s register allocation, DexDiff
ignores registers in instructions but leaves other references intact.
This is an improvement over previous system designs that rely
(almost) solely on opcodes [31, 59] because rich type information
is encoded in the Dalvik bytecode and retained in DexDiff. For
example, the new-array vA, vB, type@CCCC instruction [27]
constructs a new array of size vB and puts the result into register
vA. type@CCCC is a reference to a type in the symbol table. If
only opcode is considered, this instruction will be abbreviated
as new-array, losing the type information. In DexDiff, we
resolve all the references such as types, method prototypes, and
strings, and append them to the opcode of the instructions. For
instance, the new-array v0, v1 [Ljava/lang/String

instruction that creates a string array will be reduced to
new-array [Ljava/lang/String in DexDiff. Similarly,
method invocation instructions in DexDiff (i.e., invoke-kind)
keep the method prototypes to be called, such as the
invoke-virtual Lcom/android/browser/WebDialog->

findViewById(I)Landroid/view/View instruction. It is clear
from these examples that disassembled instructions in DexDiff
keep rich semantic information about the original program.

After converting classes into strings, DexDiff uses n-gram to cal-
culate their similarity. Previous research [37, 38] has shown that n-
gram based similarity is reliable against reordering, insertion, and
deletion. To measure similarity between classes, DexDiff slides a
window of length n over the strings for the class, advancing the
window one string at a time. Each n-gram of strings is considered
as a unit for comparison. We then calculate the similarity as the
percentage of common n-grams out of the total unique n-grams.
That is, the similarity of two classes ca and cb can be expressed as
the Jaccard index of:

Similarity(ca,cb) =
|ca ∩ cb |

|ca ∪ cb |
(1)

As mentioned earlier, DexDiff performs a pair-wise comparison of
classes to generate a p-by-q matrix of similarity scores. However,
string comparison used by n-gram similarity is an expensive op-
eration, especially when implemented naively. For example, the
number of string comparison operations if we compute Equation
(1) by pair-wise string comparison is:

∑
1≤i≤p
1≤ j≤q

|ci | × |cj | which is

prohibitively expensive for large Android binaries. To improve the
efficiency in calculating similarity, we adopt an algorithm called

177

feature hashing, which has been shown to closely approximate the
true similarity if the hash function uniformly distributes its output
in a large value space [38]. More specifically, we compute the hash
(a 32-bit number) for each n-gram, and replace the n-grams with
their hashes in Equation (1). As such, set operations in strings in
Equation (1) are substituted by set operations in integers. However,
unlike Juxtapp [31] and ReDeBug [37] that encode hash values in
a large bit-vector (e.g., 128K bits), we directly use dynamic arrays
to save hash values. This design is chosen because n-gram sets
for many Android classes are very sparse if encoded in bit-vectors.
Performing 2p × q set operations on these sparse bit-vectors (as
required by pair-wise similarity comparison) is prohibitively time-
consuming. Therefore, in DexDiff, we store the hashes in a dy-
namic array, and normalize the array by sorting it and removing
duplicates before set operations. The set operations thus can be ef-
ficiently implemented as the intersection and merging of two sorted
arrays.

Matching Classes Given the matrix of similarity scores cal-
culated in the previous step, we can rephrase class matching as
the assignment problem [55]. Specifically, we can view classes
in one input file as workers, and classes in the other input file as
tasks. Each similarity score can then be interpreted as the gain for
a worker to complete a task. The assignment problem looks for
an optimal assignment of the workers to the tasks so that the total
gain is maximized. The Hungarian algorithm [57] is a well-known
algorithm to solve the assignment problem in polynomial time. In
DexDiff, we apply this algorithm to find an optimal assignment of
classes that maximizes the overall similarity for the input files. The
outputs of this step are pairs of assigned (or matched) classes.

2.3 Matching Methods
Given a pair of matched classes, DexDiff further refines the re-

sult by finding an assignment of methods between each pair of
classes. The approach is the same as that used to match classes.
More specifically, DexDiff first converts these methods into their
string representations, and calculates a matrix of similarity scores
between each pair of the methods using n-gram based similarity.
It then finds an optimal assignment of methods that maximizes the
overall similarity for these two classes. The output of this step is
pairs of matched methods, which will be further processed to struc-
turally compare their differences.

2.4 Constructing Control Flow Graphs
DexDiff compares two Android binaries in two phases. In the

first phase, it uses a faster but coarse-grained algorithm to find
a matching between classes and methods. Each pair of matched
methods will be further processed in the second phase to reveal
their structural differences. Specifically, DexDiff first constructs
the control-flow graph for each method, and then uses an approx-
imation algorithm for the maximum common subgraph isomor-
phism problem [2] to structurally compare these two graphs. The
resulting subgraph contains basic blocks shared between these two
methods, while an unmatched basic block is either deleted or newly
inserted, depending on the graph to which it belongs.

DexDiff uses a traditional algorithm [3] to construct CFG for a
method. It first goes through all the instructions to identify ba-
sic blocks. A basic block is a straight-line sequence of instruc-
tions with only one entry and one exit. Any instruction that may
change control flow is an exit, including unconditional jump (e.g.,
goto), conditional branch (e.g., if-eqz), method invocation (e.g.,
invoke-virtual) and return, as well as any instructions that may
throw an exception. However, a large number of Dalvik instruc-
tions [27] may cause exceptions (103 out of 246 defined bytecode,

or 41.9%), including some frequently used ones such as iget and
iput to access a field in an object, and aget and aput to access
an array. If we allow these instructions to terminate a basic block,
the average size of basic blocks becomes too small, usually con-
taining one or two instructions. This will increase the overhead of
our graph isomorphism engine because there are many more basic
blocks to consider and more basic blocks are similar to each other.
Therefore, we do not terminate a basic block with this kind of in-
structions unless it also belongs to an earlier type such as method
invocation or it is the throw instruction. After identifying basic
blocks, DexDiff goes through the list of basic blocks and connects
them together to form the CFG for the method.

2.5 Comparing Control Flow Graphs
DexDiff compares CFGs of each pair of matched methods to

locate code modifications, i.e., which basic blocks have been
changed, inserted, or deleted. This problem can be rephrased
as the maximum common subgraph isomorphism problem, which
seeks to find the largest common isomorphic subgraph of two input
graphs. Each node (basic block) in the resulting common subgraph
is shared by these methods and its counterpart in the other method
is also given. Meanwhile, a node outside of the common subgraph
is not matched, i.e., the basic block is inserted or deleted. More
formally, given two graphs G1 = (V1,E1) and G2 = (V2,E2), their
maximum common subgraph is the largest subgraph H1 = (V̄1, Ē1)
of G1 that is isomorphic to a subgraph H2 = (V̄2, Ē2) of G2. There-
fore, subgraph H1 and H2 are of equal size and satisfy the struc-
tural requirements of isomorphism. That is, there is a bijective
mapping from V̄1 to V̄2 that preserves the connectivity between
these nodes.

In applications of the maximum common subgraph problem,
there are often additional requirements regarding nodes and edges.
In DexDiff, the inputs to the problem are two CFGs with basic
blocks being their nodes. The format and semantics of basic blocks
can vary significantly from one to another. DexDiff thus allows
only similar basic blocks to be matched. Two basic blocks BB1 and
BB2 are considered to be similar if Similarity(BB1,BB2) > θ,
in which θ is a configurable threshold (DexDiff uses 80% for θ).
DexDiff uses the same n-gram based similarity for basic blocks.
However, it is not feasible to use the Hungarian algorithm to match
basic blocks (like what we have done in matching classes and meth-
ods) because many basic blocks are exactly the same or very similar
to each other. It is necessary to use the connectivity between basic
blocks to get an accurate result. Meanwhile, edges in a CFG rep-
resent control flow between basic blocks. They can be categorized
according to their types of control flow, such as conditional jump,
unconditional jump, fall through, and return [3]. However, it might
be too restrictive to require matched edges in the common subgraph
to have the same type because it is common to change control flow
type, for example, by adding a conditional test. Therefore, DexDiff
does not impose additional requirements on edges.

Maximum common subgraph isomorphism is a NP-complete
problem [2]. However, efficient approximation algorithms exist
for two similar graphs. In DexDiff, the class and method match-
ing ensure that two CFGs to be compared reasonably reassemble
each other. We adopt such an algorithm called backtracking [42].
Intuitively, the backtracking algorithm explores all possible assign-
ments of nodes for the input graphs. Its efficiency lies in aggres-
sively pruning dead branches during the exploration. This algo-
rithm fits for comparison of CFGs, in which most nodes have a rela-
tively small number of incoming and outgoing edges. Backtracking
has been applied before to binary diffing for native programs [21].
We refine the same algorithm for Android apps.

178

1: procedure Backtrack(D)
2: if Extendable(D) then

3: v = PickNode(D)
4: Z = GetMappableNodes(v, D)
5: for all w ∈ Z do

6: M =M + {(v,w)}
7: D′ = Refine(D)
8: Backtrack(D′)
9: M =M − {(v,w)}

10: end for

11: V = V − {v}

12: Backtrack(D)
13: V = V + {v}

14: else if |M| > |R| then

15: R =M

16: end if

17: end procedure

Figure 2: Backtracking algorithm

The backtracking algorithm (Figure 2) provides a framework to
solve the subgraph isomorphism problem by enumerating all pos-
sible assignments. The inputs to this algorithm, CFG G1 and CFG
G2, are global variables (as well as V, M, and R). V is the node
set of G1. Set D contains all the pairs of basic blocks that remain
to be matched. D initially consists of all the basic block pairs that
satisfy the similarity requirement, i.e., Similarity(BB1,BB2) > θ.
Set M contains node pairs that have already been matched so far.
The algorithm first checks whether M can still be extended by D

(line 2). If not (line 14-16), M is maximal and thus a candidate
for the maximum common subgraph. It is then compared to R, the
temporary result so far (Line 14), and replace it if M is larger (Line
15). When Backtrack returns, R contains the final result. If M is
extendable (Line 3-13), Backtrack performs a depth-first search
for larger subgraphs (Line 3 to 10). Specifically, it first selects a
still unmatched node v (Line 3) from G1, and gets the set of nodes
in G2 that can be matched to v (Line 4), i.e., nodes that are similar
to v and do not violate the structural requirement of graph isomor-
phism. Next, it performs a depth-first search (Line 6 to 9) for each
possible match (Line 5): in Line 6, it extends M by (v, w). How-
ever, adding (v, w) to M may render some potential matches in D

invalid. For example, any matches involving v or w are no longer
necessary and should be removed. The pruning of invalid matches
in D is performed at Line 7. In the next Line, Backtrack recur-
sively extends M. This recursion returns when M cannot be further
extended (Line 2). Line 9 restores M for the next potential match
of v. Moreover, it is possible that the maximum common subgraph
might not contain v at all. This possibility is explored in Line 11
and 12 by temporarily removing node v from consideration, and
recursively computing a subgraph without v. Line 13 returns v to
G1’s node set for future consideration.

The backtracking algorithm in Figure 2 provides a framework
to solve the maximum common subgraph problem by exhaustive
search. Its efficiency (or even feasibility) depends on how aggres-
sively dead branches can be trimmed. Each application of the algo-
rithm needs to implement as effectively as possible for these four
sub-routines: Extendable, PickNode, GetMappableNodes, and
Refine. (1) DexDiff returns true for Extendable if there are
still unmapped nodes, and it is possible to find a larger subgraph
than the current one (R) with the remaining nodes. In other words,
DexDiff stops searching the branch as soon as there are not enough
nodes for M to have more nodes than R. (2) It picks the node

bb0

bb3

bb0

bb9

bb13

bb18

bb13

bb22

bb18

bb26

bb22

bb31

bb33

bb31

bb36

bb33

bb38

bb36

bb41

bb38

bb44

bb41

bb45

bb44

bb50

bb45

bb58

bb50

bb65

bb67

bb65

bb72

bb76

bb72

bb81

bb86

bb81

bb91

bb93

b b 1 0 8

bb91

bb98

bb93

b b 1 0 2

bb98

b b 1 0 2

b b 1 0 9

b b 1 0 8

b b 1 1 0

b b 1 0 9

b b 1 1 3

b b 1 1 0

b b 1 1 5

b b 1 1 6

b b 1 1 5

b b 1 1 9

b b 1 1 6

b b 1 2 0

b b 1 1 9

b b 1 2 0

b b 1 2 1

b b 1 2 9

b b 1 2 1

b b 1 2 9

b b 1 3 0

b b 1 3 3

b b 1 3 0

b b 1 3 4

b b 1 3 3

b b 1 3 6

b b 1 3 4

b b 1 4 1

b b 1 5 3

b b 1 3 6

b b 1 4 5

b b 1 4 1

b b 1 4 9

b b 1 4 5

b b 1 8 0

b b 1 4 9

b b 1 5 7

b b 1 5 9

b b 1 5 7

b b 1 6 1

b b 1 5 9

b b 1 7 1

b b 1 6 1

b b 1 7 3

b b 1 7 1

b b 1 7 4

b b 1 7 3

b b 1 7 7

b b 1 7 4

b b 1 7 9b b 1 7 9

b b 1 8 4b b 1 9 1

b b 1 8 0

b b 1 8 6

b b 1 8 4

b b 1 8 7

b b 1 8 6

b b 1 8 7

b b 1 9 5

b b 1 9 9

b b 1 9 1

b b 3 3 0

b b 1 9 5

b b 2 0 0

b b 1 9 9

b b 2 0 2

b b 2 0 5

b b 2 0 0

b b 2 0 2

b b 2 0 7

b b 2 0 5

b b 2 1 1

b b 2 0 7

b b 2 1 6

b b 2 2 2

b b 2 1 6

b b 2 2 3

b b 2 2 2

b b 2 2 8

b b 2 2 3

b b 2 3 2

b b 2 2 8

b b 2 3 6 b b 2 9 1

b b 2 3 2

b b 2 3 9

b b 2 3 6

b b 2 4 0

b b 2 3 9

b b 2 4 1

b b 2 4 0

b b 2 4 5

b b 2 4 7

b b 2 4 5

b b 2 4 9

b b 3 4 9

b b 2 4 7

b b 2 5 3

b b 2 5 5

b b 2 5 3

b b 2 5 6

b b 2 5 5

b b 2 5 8

b b 2 5 6

b b 2 6 0

b b 2 8 5

b b 2 5 8

b b 2 6 1

b b 2 6 0

b b 2 6 3

b b 2 8 4

b b 2 6 1

b b 2 6 6

b b 2 6 3

b b 2 6 8

b b 2 6 6

b b 2 7 3

b b 2 7 5

b b 2 7 3

b b 2 7 7

b b 2 7 5

first_bb280

b b 2 7 7

b b 2 8 2b b 2 8 2

b b 2 8 4

b b 2 8 6

b b 2 8 5

b b 2 8 7

b b 2 8 6

b b 2 8 7

b b 2 9 9

b b 2 9 1

b b 3 0 1 b b 3 0 3

b b 2 9 9

b b 3 0 1

b b 3 0 9

b b 3 0 3

b b 3 1 0

b b 3 0 9

b b 3 1 2

b b 3 1 0

b b 3 1 3

b b 3 1 2

b b 3 1 3

b b 3 1 7

b b 3 2 0

b b 3 1 7

b b 3 2 0

b b 3 2 1

b b 3 2 3

b b 3 2 1

b b 3 2 4

b b 3 2 3

b b 3 2 9b b 3 2 9

b b 3 3 4

b b 3 3 0

b b 3 3 7

b b 3 3 4

b b 3 3 9

b b 3 3 7

b b 3 4 3

b b 3 3 9

b b 3 4 5

b b 3 4 3

b b 3 4 7

b b 3 4 5

b b 3 4 7

b b 3 5 0

b b 3 4 9

b b 3 5 2

b b 3 5 0

b b 3 5 4

b b 3 7 1

b b 3 5 2

b b 3 5 5

b b 3 5 4

b b 3 5 7

b b 3 5 5

b b 3 6 0

b b 3 5 7

b b 3 6 3

b b 3 6 0

b b 3 6 7

b b 3 6 9

b b 3 6 7

b b 3 7 0

b b 3 6 9

b b 3 7 0

b b 3 7 3

b b 3 7 1

b b 3 7 4

b b 3 7 3

b b 3 7 6

b b 3 7 4

b b 3 7 9

b b 3 7 6

b b 3 7 9

b b 6 5 5 3 5b b 6 5 5 3 5

b b 2 8 0

bb3

bb9

bb26

bb58

bb67

bb76

bb86

b b 1 1 3

b b 1 5 3

b b 1 7 7

b b 2 1 1

b b 2 4 1

b b 2 4 9

b b 2 6 8

b b 3 2 4

b b 3 6 3

Figure 3: DexDiff example output

with the highest similarity score and the smallest number of candi-
dates in PickNode. It is beneficial to try good matches first because
Extendable will reject a larger number of smaller-sized matching
faster. (3) GetMappableNodes returns all the nodes in G2 that are
similar to node v and satisfy the structural requirements. These
nodes are ordered by their similarity to node v for the same reason
to try good matches first; (4) Refine prunes set D by removing
any candidates that involve v or w because v and w have already
been matched. It also removes any candidates that are structurally
incompatible with node v and w. Because CFG is a directed graph,
we require structural compatibility in both incoming and outgoing
directions. More precisely, we remove any match (n1 , n2) having

e(v,n1) , e(w,n2) or e(n1 ,v) , e(n2 ,w)

e(a,b) is a function returning whether edge (a, b) exists in their
graph. For example, e(v,n1) returns true if edge (v, n1) exists in
graph G1 and false otherwise.

By eagerly pruning dead branches, the backtracking algorithm
converges quickly for most inputs. However, there still exist cases
that require too much time or memory to complete. To address this
problem, we introduce timeout into the algorithm to limit the total
number and depth of the recursive calls. The timeout is only acti-

179

Item Configuration/Version

D
es

k
to

p System Dell Optiplex 9010
Distribution Ubuntu 12.04 LTS 64-bit
Kernel Linux 3.2.0-33 x86_64 SMP
graphviz (dot) 2.26.3

P
h
o
n
e

Model HTC Evo 4G (Sprint)
Firmware 4.54.651.1
Android 2.3.3
Radio 2.15.00.0808
Kernel Linux 2.6.35.10-g13578ee

Table 1: Configuration for the evaluation

vated after the algorithm has already found at least one assignment
(i.e., R , ∅). With these customization and optimization of the
algorithm, DexDiff can handle all the tested binaries in less than
three minutes.

2.6 Prototype
We have built a prototype of DexDiff in the C programming lan-

guage. The prototype has about 13,600 lines of source code in
total, of which about two third (9,200 SLOC) is a library to parse
the Dex file format [27]. Each component of DexDiff (Figure 1)
is multi-threaded. For example, class matcher calculates a matrix
of similarity scores for two binaries. It first parses the binary into
classes and further converts them into hashes of strings. It then
uses multiple threads to calculate the pair-wise similarity between
these classes with each thread handling roughly equal number of
the class pairs. Other components are similarly multi-threaded.

To facilitate the analyst, outputs of DexDiff are visualized using
“dot” [6] to highlight differences between methods and their sur-
rounding context. Figure 3 shows an example output of DexDiff.
In this figure, each rectangle represents a basic block, labeled with
the index of its first instruction 2. Matched basic blocks are linked
by dotted (red) lines. Filled (blue) basic blocks are different for
the two methods. Given the size of the methods (much larger sam-
ples exist in our test), it would be highly difficult and error-prone to
manual locate these changes, let alone putting them into the correct
context.

3. EVALUATION
DexDiff uses an approximation algorithm to solve the NP-

complete maximum common subgraph isomorphism problem
(Section 2.5). In this section, we first measure the performance of
DexDiff to demonstrate its practicality, and then evaluate its effec-
tiveness by systematically studying HTC EVO 4G [34] (for brevity,
we will refer to this phone as “the phone” subsequently in this sec-
tion.)

3.1 Performance Evaluation
To measure the performance of DexDiff, we extracted the six-

teen Android files under the /system/framework directory of the
phone and built their corresponding counterparts from the Android
open source project repository. We use the Linux time command
to measure how long it takes for DexDiff to process each pair of
these binaries. We repeat each experiment three times and report
the average time. The variations between these executions are neg-
ligible as the approach is deterministic except for the scheduling of

2Due to the space constraint, simplified labels are used in Figure 3.
The actual labels also include the complete disassembled instruc-
tions of the basic block.

policy: 2 javax: 1
core: 3 service: 12
framework: 38 sqlite-jdbc: 1

Table 3: Number of timeouts

multi-threads. All the experiments use eight threads, the same num-
ber as the CPU threads. As shown in Table 1, all the experiments
were conducted on a desktop machine with a 3.4G Hz quad-core
Intel Core i7-3770 CPU and 16GB memory. The processor has
four (real) cores and each core has two hyper-threads [36], which
are treated by Linux as real CPU cores. The results are summarized
in Table 2.

These sixteen pairs of Android binaries cover a wide range of file
sizes (from a few kilo-bytes to about ten mega-bytes) and numbers
of classes (from one to more than five thousands). The execution
time accordingly varies from less than 0.01 seconds to about 160
seconds. Notice that the time used by DexDiff is not directly corre-
lated to the binary file size. For example, it takes DexDiff 7.5 times
longer to handle framework.dex than core.dex even though the
former is only about 30% larger than the latter. This uncertainty
is caused by the backtracking algorithm [42], which exhaustively
searches for the maximum common isomorphic subgraphs (the n-
gram string similarity algorithm and the Hungarian algorithm [57]
are both polynomial.) Execution time of backtracking depends
heavily on how effective it can eliminate dead branches. To quan-
tify its impact, we run the experiments twice with and without
graph comparison. The latter only calculates similarity between
two binaries, while the former also compares their structural dif-
ferences. Their difference roughly equals to the time consumed by
graph comparison. The results are shown in Figure 4. For experi-
ments like android.policy.dex and service.dex that have rel-
atively small input files but long processing time, graph comparison
monopolies the execution time at around 99%. Also, graph com-
parison for core.dex takes only a short period because its meth-
ods are relatively small and, more importantly, do not have compli-
cated control flows. The last column of Figure 4 shows the average
percentages of similarity calculation (29%) and graph comparison
(71%).

As mentioned earlier, we set a timeout on the backtracking al-
gorithm (Section 2.5) to limit the total number of recursive calls.
We empirically choose one million as the threshold. Larger thresh-
olds fail to effectively reduce timeouts, but also considerably in-
crease the process time. The number of timeouts provides an in-
dication to the relative complexity of the corresponding CFG. For
example, service.dex timeouts 12 times during graph compar-
ison, and in total it requires about 160 seconds to complete. Ta-
ble 3 lists the number of timeouts for all the tests with timeouts.
We further examine these 38 cases in framework.dex. The lead-
ing causes of timeouts are: (1) large methods with many basic
blocks that do not belong to the common subgraph, i.e., many new
or deleted basic blocks. These basic blocks may cause disconti-
nuity in the partial result (M), leading the algorithm to hunt for
the next continuous part of the subgraph. (2) many identical ba-
sic blocks. Some methods repeatedly use the same instruction se-
quence to perform a series of similar operations (e.g., to initialize a
HashMap). These instruction sequences become identical after we
remove register references. The algorithm slows down because the
possible matches returned by GetMappableNodes contain many
equally good choices. (3) nodes with large ingress and egress de-
grees. In CFG, most basic blocks have 1 or 2 outgoing edges de-
termined by the exit instructions (fall-through, unconditional, or

180

Name
Base Phone Modified New

Time
Size Class# Method# Size Class# Method# Class# Method# Class# Method#

am 25KB 6 38 26K 6 39 1 1 0 1 0.10
policy 179KB 96 833 258K 140 1,200 29 105 44 368 10.23
test.runner 172KB 105 1,001 172K 105 1,002 2 1 0 1 0.17
bmgr 12KB 2 25 14K 2 27 1 2 0 2 0.05
bouncycastle 678KB 507 3,186 677K 507 3,186 31 47 0 0 1.37
location 6.3KB 4 56 6.3K 4 56 0 0 0 0 0.01
core 4.1MB 3,009 27,952 4.1M 3,017 28,093 353 1264 8 141 17.04
core-junit 21KB 19 142 21K 19 142 0 0 0 0 0.05
ext 1.2MB 960 6,896 1.2M 960 6896 209 468 0 0 40.01
framework 6.6MB 3,924 38,283 9.9M 5,423 52,566 1,198 4,556 1,504 14,290 144.70
ime 5.6KB 1 10 5.6K 1 10 0 0 0 0 0.03
input 3.6KB 1 7 3.6K 1 7 0 0 0 0 0.01
javax 53KB 24 164 53K 24 164 2 9 0 0 6.55
monkey 79KB 50 237 76K 50 237 1 1 0 0 0.17
pm 25KB 7 43 25K 7 43 1 2 0 0 0.09
services 1.3MB 437 4,014 1.7M 531 5,153 124 384 95 1,139 159.86
sqlite-jdbc 130KB 29 858 130K 29 858 3 16 0 0 2.49
svc 7KB 6 26 7.3K 6 26 1 1 0 0 0.03

Table 2: Processing time for files under /system/framework. Note that: (1)the size columns specify the size of the uncompressed

classes.dex file in the apps. (2) The time reported here is the wall clock time (in seconds) to execute the command. (3) As expected,

almost no classes or method are removed from the base.

conditional) except the switch instruction. However, the number
of incoming edges to a basic block is not limited. To make it even
worse, the proceeding (or succeeding) nodes to this kind of nodes
are likely similar to each other. For example, exception handlers
tender to start with a move-exception instruction followed by a
goto instruction to jump to a common handler. The backtracking
algorithm cannot quickly converge because its dead branch pruning
(Line 7) is ineffective in this case.

In addition to limit numbers of recursion, we also constrain its
depth to prevent memory depletion because extra memory is al-
located for each call. This rule only affects one method during
our test, org.ccil.cowan.tagsoup.HTMLSchema.<init>) in
ext.dex, which uses 2,859 sequential basic blocks to initialize the
HTML schema. Without this rule, the method causes DexDiff to
nest too many times because DexDiff performs depth-first search
and eventually depletes the memory. We did not encounter any
other cases that cause the problem.

3.2 Effectiveness Evaluation
In this section, we demonstrate the effectiveness of our method

by reporting the results of auditing the phone. During our au-
dit, we systematically compare the common Android framework
files (under /system/framework) and pre-loaded apps (under
/system/app) of the phone and its base. The framework should be
carefully audited because many of its libraries are loaded into every
Dalvik virtual machine and thus accessible to all the apps. More-
over, APIs for propriety services provided by the vendor likely are
exposed in one of the framework libraries as well. Table 2 sum-
marizes the vendor’s modifications to the framework. Even though
these files are about 33 MB in total, one of the authors spent less

than 5 days to process all of them because DexDiff allows analysts
to focus on changes presented in their surrounding context.

Using DexDiff, we find that the vendor’s modifications to the
framework concentrate on five binaries: android.policy.dex
enforces the device security policies such as mandatory screen lock.
The vendor customizes this file to change the look and feel of
the screen lock and to support its proprietary touch-based stylus;

core.dex contains the core Java language public APIs and other
popular Java libraries such as the Apache Harmony library [5].
DexDiff shows that changes to this file are minor and sporadic.
Most of these changes seem to come from Google rather than in-
troduced by the vendor. This is possible because DexDiff builds
the base according to the Android version reported by the phone.
Therefore, our base is likely to be slightly different from the actual
base. This difference introduces noise into the system. In Section 4,
we will discuss methods to locate or closely approximate the actual
base; Changes to ext.dex have the same nature as core.dex. A
few new Java libraries are added to ext.dex, such as the open-
source NIST SIP stack, Apache logger, and the Apache HTTP li-
brary. The vendor extensively customizes framework.dex (the
core library of the framework), and services.dex (the host of a
number of services such as window manager and activity manager).
For example, it adds the 4G and WiMax wireless network support,
a proprietary logging facility [50], HTC Pen support, USB-based
networking, HDMI and Bluetooth support etc to these files. In the
following of this section, we report a number of representative un-
safe customization revealed by DexDiff.

Case Study 1: Broadcast Input Services framework.dex is
the core library of the Android framework (also the largest one).
It is loaded into every Android app, and thus accessible to all the
running apps. With DexDiff, we find that three new APIs have been
added to android.view.IWindowManager. Their names indi-
cate that they can enable broadcast of input events of the keyboard,
touch screen, and trackball:

void broadcastKeyinEvent (boolean);

void broadcastMotionEvent (boolean);

void broadcastTrackballEvent(boolean);

android.view.IWindowManager defines a Java interface to ac-
cess the Android window manager [24] defined in services.
dex. At runtime, all the services in services.dex are hosted
in the system_server process thus unreachable to apps di-
rectly. Instead, apps need to use inter-process communication
(IPC) to access these services. The corresponding implemen-

181

 0%

 20%

 40%

 60%

 80%

 100%

am policy

test.runner

bm
gr

bouncycastle

location

core
core−junit

ext
fram

ew
ork

im
e

input

javax

m
onkey

pm services

sqlite−jdbc

svc
m

ean

P
er

ce
n
ta

g
e

o
f

to
ta

l
ti

m
e

Graph Isomorphism

Similarity

Figure 4: Distribution of processing time between class/method matching and CFG comparison

tation of the IWindowManager interface uses IPC to remotely
invoke these three methods. Following the leads, DexDiff re-
veals that three new methods are added to com.android.server.
WindowManagerService in services.dex that will actually en-
able the broadcast of these input events. If these methods are not
guarded by proper permissions, it is a serious security issue since
any apps can log user inputs. In the following, we describe how
we try to exploit these potentially “rewarding” services and how it
leads to the discovery of another vulnerability.

Since these APIs are a part of framework.dex and ac-
cessible to normal apps, we first try to call them directly.
However, these APIs are adequately protected by the vendor-
specific permissions, for example, the com.htc.Manifest.
permission.BROADCAST_KEYIN_EVENT permission is required
to call broadcastKeyinEvent. In addition, these permissions
have the “SIGNATURE” protection level, and thus can only be
granted to apps signed by the vendor. Normal apps cannot be
granted these permissions. Again, following the leads, we try to
audit pre-loaded apps that have these permissions. In this phone,
these permissions are only granted to the com.htc.android.
omadm.service package (/system/app/HtcDm.apk), a propri-
etary app without a counterpart in the base. Further inspection
shows that this app has a plethora of dangerous permissions, for
example, INSTALL_PACKAGES and DELETE_PACKAGES to install
and delete apps, MASTER_CLEAR to factory-reset the phone, and
HTC_FOTA_UPDATE to update the firmware. It can also access the
Internet with its INTERNET permission. We further use DexDiff to
generate its CFGs to study its internal. Supposedly, the app is de-
signed to perform remote device management tasks such as wiping
the phone in case it is lost or stolen. As such, it can read and exe-
cute commands from the IPC interface or the Internet 3. However,
the app has no authentication at all on the input. It blindly accepts
and executes any commands received from these interfaces. For-
tunately (and somewhat ironically), the most dangerous commands
such as remotely bricking the phone have not been completely im-
plemented yet. When triggered by our test app, these commands
write a log to logcat and return an OK status. Nevertheless, we are
able to retrieve some private information about the phone such as
its device ID and software configuration by exploiting this app. Our

3In this version of firmware, the socket interface is disabled by
default. But it can easily be enabled by restarting the service and
passing it a parameter of EnableSocket. A recent firmware update
from the vendor enables the socket interface by default.

inspection of the app shows that the input broadcast services (e.g.,
broadcastKeyinEvent) are used by the app to intercept user in-
puts during the firmware update. With the help of DexDiff, we are
able to quickly identify this new vulnerability.

Case Study 2: CarrierIQ CarrierIQ is a piece of monitoring
software tightly integrated into many smartphones. It can be in-
structed by the manufacturer or the service provider to gather, store,
and retrieve diagnostic information (also call metrics) about the
phone. The software can provide valuable information to the ser-
vice provider about user experiences and software reliability. How-
ever, the vast array of metrics collected by the software leads to
serious privacy concerns [13].

Our test phone is also loaded with the CarrierIQ software. The
CarrierIQ agent resides in the com.htc.android.iqrd package
(/system/app/IQRD.apk). With the help of DexDiff, we find
that the base Android system has been extensively modified by
the vendor to insert numerous hooks which will notify the agent
of interested events. The captured metrics are forwarded to the
agent through targeted intents. The phone defines 41 such intents,
whose names follow the common pattern of com.htc.android.
iqagent.action.*. For example, there are 11 UI-related metrics
named such as com.htc.android.iqagent.action.ui01. The
metrics collected by the software are thus meticulously categorized
and fine-grained.

The vendor has strategically implanted hooks for the agent all
over the phone to capture “a vast array of metrics”. As men-
tioned earlier, the Android framework libraries are loaded into ev-
ery app or manage data for them(e.g., services.dex). Inserting
hooks in these libraries allows the vendor to log events for both
pre-loaded apps and apps downloaded from the online app store.
For example, in services.dex, DexDiff uncovers a hook inserted
into the reportLocation method of GpsLocationProvider
that can log detailed location information such as longitude, al-
titude, and heading; another three UI-related metrics are found
in ActivityManagerService to log events such as process cre-
ation, process errors, and process termination. In total, we un-
cover 6 different types of metrics in services.dex, and 19 in
framework.dex. In addition to general hooks in the framework,
specialized hooks are also found in pre-loaded apps as well, par-
ticularly, the browser, the dialer, and (surprisingly) the calculator 4.

4A hook is inserted into the com.android.calculator2.
CalculatorImageButton.onTouch method to capture key press
events. We suspect this hook is used just for testing.

182

Hook Methods (Hooking Points)

callBrowserStopLoading BrowserActivity.stopLoading

callOnPageStarted Tab$2.onPageStarted

callOnProgressChanged Tab$3.onProgressChanged

callOnReceivedError Tab$2.onReceivedError

callOnReceivedTitle Tab$3.onReceivedTitle

callReloadPage

BrowserActivity.onOptionsItemSelected
BrowserActivity.resumeBrowser
BrowserActivity$StopLoadingPageTimer.ResumeLoadingPage
htc.ui.HtcTitleBar.onClick

callUserCancel
BrowserActivity.onKeyUp
BrowserActivity.onOptionsItemSelected

Table 4: CarrierIQ hooks in the browser (to save space, we omit the common prefix of com.android.browser.htc.util.

HTCBrowserIQAgent for the hooks, and com.android.browser for the methods.)

Table 4 lists the Carrier IQ hooks inserted into the browser to log
many internal events. This information shows that the Carrier IQ
software is intrusive and poses a serious threat to user privacy.

Case Study 3: Firmware Update During our experiments, the
phone receives a firmware update that contains “important secu-
rity updates”. To locate what vulnerabilities are patched in this
release, we upgrade the phone to the new release and compare it
to the old one with DexDiff. The major change turns out to be the
removal of the Carrier IQ software from the phone. Using DexD-
iff, we confirm that the agent and most of the hooks have been
deleted from the phone. However, the hook in Calculator.apk
has been missed and remains in the file. Also, vulnerabilities we
discovered in HtcDm.apk have not been fixed while new func-
tionality is added to it (hence more information can be leaked).
The new firmware is based on a newer version of Android, which
contains several security fixes. For example, the firmware adds
the previously-missing capability to validate certificates against
the PKI revocation list in org.bouncycastle.jce.provider.
PKIXCertPathValidatorSpi.engineValidate.

3.3 Side-loaded App Verification
In a recent update to Android Jelly Bean (4.2.0), Google in-

troduces the capability to scan side-loaded apps (i.e., apps in-
stalled from places other than the official app store) for malware.
We use DexDiff to study how the side-loaded app verification is
implemented. We find out that before side-loading an app, the
app installer broadcasts an android.intent.action.PACKAGE_
NEEDS_VERIFICATION intent to any apps providing the app verifi-
cation service (e.g., the Google play app). To understand how the
apps are verified by Google play, we use DexDiff to compare two
versions of the app: version 3.8.17 from Jelly Bean 4.1.2, and ver-
sion 3.9.16 from Jelly Bean 4.2.0. In the latter version of the app, a
new Java package (com.google.android.vending.verifier)
has been added. Instead of scanning the app locally, the verifier
sends the identifying information of the app (e.g., package name,
SHA256 hash, and origin, etc) to a remote server, and then receives
a verdict from the server, similar to virustotal [54].

4. DISCUSSION
In this section, we discuss potential improvements to our system.

First, DexDiff assumes that the official Android system is relatively
safe and thus focuses on studying security of vendor customization.
As demonstrated by previous and our own research, vendors tend to
introduce subtle but serious vulnerabilities into the system through
aggressive customization [13,19,29]. In this case, DexDiff provides

a valuable comparative approach to audit the vendor customization.
Nevertheless, the official Android could be vulnerable as well [40].
There have been a long stream of research that can be applied to
improve security of Android [7, 10, 15, 17, 29, 31, 45, 59]. These
systems and DexDiff have difference focuses and complement each
other. For example, they can be used to scrutinize pre-loaded apps
and libraries that do not have a counterpart in the official system.
Moreover, although our experiment used a relatively old phone to
demonstrate the effectiveness of our approach, the approach itself
is generic and can be readily applied to newer phones and phones
made by other manufacturers.

Second, like other similar systems, DexDiffmakes various trade-
offs between accuracy and in the design that may affect its effective-
ness in some specific cases. For example, DexDiff ignores registers
in the bytecode. This mitigates the impact of register allocation of
the Java and Dex compiler. However, some basic blocks can only
be distinguished by registers. Ignoring registers makes these basic
blocks indistinguishable. Similarly, DexDiff does not take edge la-
bels into consideration when comparing two CFGs. This improves
the system’s tolerance to control flow type changes, but may be less
accurate for some structures (e.g., the switch statement). More-
over, DexDiff utilizes Hungarian algorithm [57] to find an optimal
assignment of classes and methods that maximizes the overall simi-
larity. This optimizes global similarity but might not produce best-
match for individual classes or methods. For example, assuming
we have two binary files with classes A, B and A′, B′, the similar-
ity between AA′, AB′, BA′ and BB′ are 100%, 80%, 80%, and
50%, respectively. With Hungarian algorithm, DexDiff will assign
A to B′, and B to A′ (a total of 160%). However, the best match
for A is instead A′ (100%). In addition, DexDiff uses n-gram sim-
ilarity to match classes and methods before comparing CFGs. This
improves the scalability and efficiency of DexDiff by avoiding pair-
wise graph comparison for all the CFGs, but it might be less flex-
ible if methods are “cut-and-pasted” across classes. Although we
did not encounter such cases during our experiment, the issue can
be mitigated by comparing a class to several most similar classes,
instead of the only class returned by class matching.

Third, DexDiff compares two Android binary files at the byte-
code level. We choose this approach because most of pre-loaded
apps in a third-party phone are close-sourced due to their liberal
license models (except for the GPL-licensed Linux kernel). Alter-
natively, we could first de-compile the apps/libraries and compare
them against the base [16]. The same technologies in our paper
(similarity and graph isomorphism) can be easily adapted to com-
pare the de-compiled Java source code. On the other hand, the

183

usefulness of our system is not constrained by it because Dalvik
bytecode contains adequate semantic information about the app.

Fourth, in its current form, DexDiff uses a simple method to lo-
cate the phone’s base. Differences between the located and the ac-
tual base introduce noise into the system. It is desirable for the
located base to be as close to the actual base as possible. We can
use the fingerprinting technique to improve the accuracy in locat-
ing the base. Specifically, for each possible base (i.e., tags in the
AOSP repository near the phone’s reported version), we select a
few unique changes as its fingerprint, and then try to locate (part
of) the fingerprint in the phone. The phone’s closest base is the
most recent possible base whose fingerprint exists in the phone’s
software. Binary search can be used to accelerate the process.

Finally, DexDiff is a tool to pinpoint differences between two
Android binary files. It can provide valuable inputs to (external) se-
curity analysts. However, it does not understand semantics of these
differences. Much of the vulnerability identification still relies on
human efforts and experiences. In the future, we plan to extend
DexDiff with (some) automatic vulnerability detection capabilities
to further reduce manual efforts.

5. RELATED WORK
Smartphone Security: the first area of related work is re-

cent efforts in understanding and protecting security and privacy
in mobile phones. Many systems have focused on detecting threats
on the smartphone platforms. For example, TaintDroid [15] and
PiOS [14] apply dynamic taint tracking [52] and static data-flow
analysis to identify privacy leaks in Android and iOS apps, respec-
tively. Stowaway [17] uses automated testing tools to map Android
APIs to permissions, and then detects permission over-privilege for
apps. PScout [7] analyzes the design and implementation of the
Android permission systems. DexDiff focuses on analyzing secu-
rity of customization made by the third-party manufacturers. Com-
Droid [10], Felt et al. [19], Woodpecker [29], and CHEX [45] em-
ploy static program analysis to detect confused-deputy [32] prob-
lems (or capability leaks) in Android apps. We also identified a
similar problem in a pre-loaded system app with the help of DexD-
iff. Both Woodpecker [29] and DexDiff target pre-loaded apps
and libraries, but have different focuses and approaches. Droid-
MOSS [59] and Juxtapp [31] are two closely related systems. They
apply fuzzy-hashing and feature-hashing, respectively, based code
similarity to detect repackaged Android apps. In addition to lever-
aging code similarity to match classes and methods, DexDiff fur-
ther reveals structural differences between matched methods by
comparing their control flow graphs. Our system thus provides
more fine-grained differences of two apps, which benefits security
audit more than a binary verdict of similar or not. Moreover, WHY-
PER [47] uses natural language processing to automatically assess
the risk of mobile applications.

There are also various works focusing on malware detection of
individual apps or the Android markets [16,18,23,30,60,61]. Enck
et al. [16] decompile Android apps and applies Java-based pro-
gram analysis to detect security issues in Android apps. DexDiff
instead works directly on the Android binaries. However, our so-
lution is not constrained by this because Dalvik bytecode contains
rich type information. Moreover, the same techniques in DexD-
iff can be applied to compare Java source code. The MalGenome
project [60] characterizes existing Android malware families to
study their evolving trend. DroidRanger [61] applies behavioral
pattern matching to detect malware in Android markets.

From another perspective, many works propose effective ways
to enhance security of Android systems: QUIRE [12] and Felt et

al. [19] allow apps to inspect the IPC call chain and, if necessary,

drop privileges that the caller lacks to prevent the confused-deputy
attack; AdDroid [48], AdSplit [53], APEX [46], AppFence [33],
and TISSA [62] extend the Android system to fine-tune app’s ac-
cess to private information. For example, AdDroid [48] and Ad-
Split [53] separate the in-app advertisement libraries from the host
app so privileges can be granted differently for them. Cells [4]
and L4Android [44] build efficient virtualization platforms for An-
droid, allowing multiple virtual phones to securely run on a single
physical device, isolated from each other. While all these systems
enhance the Android system security, DexDiff has a different goal
of detecting unsafe manufacturer customization. They can be natu-
rally combined to provide defense-in-depth.

Code Similarity and Binary Diff: the second area of related
work includes systems to detect code similarity and compare bi-
nary files. Code similarity has been employed in various security
applications such as malware classification [35, 38], code plagia-
rism detection [8,51], (unpatched) code clone detection [37,39,41],
and Android repackaged app detection [31, 59]. For example, Bit-
Shred [38] leverages feature hashing based code similarity analysis
to enable large-scale malware triage and clustering. ReDeBug [37]
uses feature hashing to quickly detect unpatched code clones in
large code bases. MOSS proposes a technique called winnowing
based on fuzzy hashing to generate fingerprints for documents (in-
cluding source code). MOSS is a popular tool to detect plagiarism
in programming assignments. In comparison, DexDiff additionally
provides structural differences for two Android binaries as required
by our goal.

Binary diff has been used widely to analyze malware, vulnerabil-
ities, and improve (or exploit) patches. For example, BinDiff [20]
compares two binaries by using heuristics to identity a common
isomorphic subgraph. In comparison, DexDiff extends the back-
tracking algorithm to construct more reliable maximum common
subgraphs. BinHunt [21] is a closely related system. It uniquely
leverages symbolic execution to semantically compare basic blocks
and then uses the backtracking framework to compare two x86 bi-
naries. DexDiff instead targets the Android binaries. It applies code
similarity to first coarsely classify classes and methods, saving the
expensive graph isomorphism only for CFG comparison. We adapt
backtracking for Android binaries as well to make the exhaustive
algorithm practical for even large Android binaries. Given a vulner-
able program and its patched version, Brumley et al. [9] propose to
automatically generate exploits that target essential differences be-
tween these two versions of the program. There are also binary
update tools (e.g., bsdiff & bspatch [49] and Courgette [28]) that
generate and apply patches in binary differences. Patches produced
by these tools have substantially smaller size, thus improving effi-
ciency and timeliness of patch distribution. Courgette (also known
as Google update) is more efficient than bsdiff by first transforming
the programs into an intermediate format in which binary diffing
is more effective. However, these tools do not provide capabilities
required by Android binary auditing.

6. SUMMARY
Android has become the leading mobile platform due to the wide

availability of third-party Android phones. To differentiate their
products, vendors often deeply customize their phones, leading to
vulnerabilities that do not exist in the official Android system. In
this paper, we propose to systematically audit vendor customiza-
tion by comparing the phone side-by-side to its base. To facilitate
these efforts, we designed DexDiff, a system that can pinpoint fine
structural differences of two Android binaries and further present
them in the surrounding context. DexDiff allows external security
analysts (without source code access) to focus on modifications

184

that are more likely to introduce vulnerabilities. It first coarsely
matches classes and methods in the input Android binaries with n-
gram based code similarity, and then generates fine-grained struc-
tural comparisons by identifying the maximum common isomor-
phic subgraphs of the CFGs for each pair of matched methods. We
have built a prototype of DexDiff and applied it to a popular com-
modity Android phone. Our evaluation demonstrates that DexDiff
is efficient, scalable, and effective in identifying unsafe vendor cus-
tomization.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their in-

sightful comments that helped to improve the presentation of this
paper. We also want to thank Yajin Zhou, Gary Tyson, and Xux-
ian Jiang for the helpful discussion. This work was supported in
part by the First Year Assistant Professor award of Florida State
University. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of FSU.

8. REFERENCES
[1] An Assembler/Disassembler for Android’s dex Format.
http://code.google.com/p/smali/.

[2] Subgraph Isomorphism Problem. http://en.wikipedia.
org/wiki/Subgraph_isomorphism_problem.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools.
Prentice Hall, 2006.

[4] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren
Laadan, and Jason Nieh. Cells: a Virtual Mobile Smartphone
Architecture. In Proceedings of the 23rd SOSP, 2011.

[5] Apache. Apache Harmony: Open Source Java Platform.
http://harmony.apache.org/.

[6] AT&T. Graphviz - Graph Visualization Software. http://
www.graphviz.org/.

[7] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David
Lie. PScout: Analyzing the Android Permission
Specification. In Proceedings of the 19th ACM CCS, 2012.

[8] Brenda S. Baker. Deducing Similarities in Java Sources from
Bytecodes. In Proceedings of the 1998 USENIX ATC, 1998.

[9] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang
Zheng. Automatic Patch-Based Exploit Generation is
Possible: Techniques and Implications. In Proceedings of the

29th IEEE S&P, 2008.

[10] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and
David Wagner. Analyzing Inter-Application Communication
in Android. In Proceedings of the 9th ACM MobiSys, 2011.

[11] Anthony Desnos. androguard:Reverse engineering, Malware
and goodware analysis of Android applications ... and more
(ninja !). https://code.google.com/p/androguard/.

[12] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,
and Dan S. Wallach. QUIRE: Lightweight Provenance for
Smart Phone Operating Systems. In Proceedings of the 20th

USENIX Security Symposium, 2011.

[13] Trevor Eckhart. CarrierIQ. http://
androidsecuritytest.com/features/logs-and-

services/loggers/carrieriq/.

[14] Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna. PiOS: Detecting Privacy Leaks in iOS
Applications. In Proceedings of the 18th NDSS, 2011.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.

TaintDroid: an Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In
Proceedings of 9th USENIX OSDI, 2010.

[16] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application Security.
In Proceedings of the 20th USENIX Security Symposium,
2011.

[17] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. Android Permissions Demystified. In
Proceedings of the 18th ACM CCS, 2011.

[18] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve
Hanna, and David Wagner. A Survey of Mobile Malware in
the Wild. In Proceedings of the 1st ACM SPSM, 2011.

[19] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk,
Steven Hanna, and Erika Chin. Permission Re-Delegation:
Attacks and Defenses. In Proceedings of the 20th USENIX

Security Symposium, 2011.

[20] Halvar Flake. Structural Comparison of Executable Objects.
In Proceedings of the 1st DIMVA, 2004.

[21] Debin Gao, Michael K. Reiter, and Dawn Song. BinHunt:
Automatically Finding Semantic Differences in Binary
Programs. In Proceedings of the 10th ICICS, 2008.

[22] Gartner. Gartner Says Worldwide Sales of Mobile Phones
Declined 2.3 Percent in Second Quarter of 2012. http://
www.gartner.com/it/page.jsp?id=2120015.

[23] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon
Jung. Vision: Automated Security Validation of Mobile Apps
at App Markets. In Proceedings of the second international

workshop on Mobile cloud computing and services, 2011.

[24] Google. Android Developers. http://developer.
android.com.

[25] Google. Android Device Gallery. http://www.android.
com/devices/?f=phone.

[26] Google. Android Open Source Project. http://source.
android.com.

[27] Google. Dalvik Technical Information. http://source.
android.com/tech/dalvik/.

[28] Google. Software Updates: Courgette. http://dev.
chromium.org/developers/design-documents/

software-updates-courgette.

[29] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang.
Systematic Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the 19th NDSS, 2012.

[30] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and
Xuxian Jiang. RiskRanker: Scalable and Accurate Zero-day
Android Malware Detection. In Proceedings of the 10th

ACM MobiSys, 2012.

[31] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles
Chen, and Dawn Song. Juxtapp: A Scalable System for
Detecting Code Reuse Among Android Applications. In
Proceedings of the 9th DIMVA, 2012.

[32] Norman Hardy. The Confused Deputy: (or why capabilities
might have been invented). ACM SIGOPS Operating Systems

Review, 22, October 1998.

[33] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These Aren’t the Droids
You’re Looking For: Retroffiting Android to Protect Data
from Imperious Applications. In Proceedings of the 18th

ACM CCS, 2011.

[34] HTC. HTC EVO 4G. http://www.htc.com/us/
smartphones/htc-evo-4g-sprint/.

185

http://code.google.com/p/smali/
http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
http://harmony.apache.org/
http://www.graphviz.org/
http://www.graphviz.org/
https://code.google.com/p/androguard/
http://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
http://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
http://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
http://www.gartner.com/it/page.jsp?id=2120015
http://www.gartner.com/it/page.jsp?id=2120015
http://developer.android.com
http://developer.android.com
http://www.android.com/devices/?f=phone
http://www.android.com/devices/?f=phone
http://source.android.com
http://source.android.com
http://source.android.com/tech/dalvik/
http://source.android.com/tech/dalvik/
http://dev.chromium.org/developers/design-documents/software-updates-courgette
http://dev.chromium.org/developers/design-documents/software-updates-courgette
http://dev.chromium.org/developers/design-documents/software-updates-courgette
http://www.htc.com/us/smartphones/htc-evo-4g-sprint/
http://www.htc.com/us/smartphones/htc-evo-4g-sprint/

[35] Xin Hu, Tzi cker Chiueh, and Kang G. Shin. Large-Scale
Malware Indexing Using Function-Call Graphs. In
Proceedings of the 16th ACM CCS, 2009.

[36] Intel. Intel 64 and IA-32 Architectures Software Developer
Manuals. August 2012.

[37] Jiyong Jang, Abeer Agrawal, and David Brumley. ReDeBug:
Finding Unpatched Code Clones in Entire OS Distributions.
In Proceedings of the 33rd IEEE S&P, 2012.

[38] Jiyong Jang, David Brumley, and Shobha Venkataraman.
BitShred: Feature Hashing Malware for Scalable Triage and
Semantic Analysis. In Proceedings of the 18th ACM CCS,
2011.

[39] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones. In Proceedings of the

29th ICSE, 2007.

[40] Xuxian Jiang. SEND_SMS Capability Leak in Android
Open Source Project (AOSP), Affecting Gingerbread, Ice
Cream Sandwich, and Jelly Bean. http://www.cs.ncsu.
edu/faculty/jiang/send_sms_leak.html.

[41] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: a Multilinguistic Token-based Code Clone
Detection System for Large Scale Source Code. IEEE

Transactions on Software Engineering, 2002.

[42] Evgeny B. Krissinel and Kim Henrick. Common Subgraph
Isomorphism Detection by Backtracking Search.
Software–Practice & Experience, 2004.

[43] Eric Lafortune. ProGuard. http://proguard.
sourceforge.net/.

[44] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski,
Alexander Warg, and Michael Peter. L4Android: A Generic
Operating System Framework for Secure Smartphones. In
Proceedings of the 1st ACM SPSM, 2011.

[45] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei
Jiang. CHEX: Statically Vetting Android Apps for
Component Hijacking Vulnerabilities. In Proceedings of the

19th ACM CCS, 2012.

[46] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.
Apex: Extending Android Permission Model and
Enforcement with User-Defined Runtime Constraints. In
Proceedings of the 5th ACM ASIACCS, 2010.

[47] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and
Tao Xie. WHYPER: Towards Automating Risk Assessment
of Mobile Applications. In Proceedings of the 22th USENIX

Security Symposium, 2013.

[48] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David
Wagner. AdDroid: Privilege Separation for Applications and
Advertisers in Android. In Proceedings of the 7th ACM

ASIACCS, 2012.

[49] Colin Percival. Naive Differences of Executable Code.
http://www.daemonology.net/bsdiff/.

[50] Artem Russakovskii. Massive Security Vulnerability In HTC
Android Devices (EVO 3D, 4G, Thunderbolt, Others)
Exposes Phone Numbers, GPS, SMS, Emails Addresses,
Much More. http://www.androidpolice.com/2011/
10/01/massive-security-vulnerability-in-htc-

android-devices-evo-3d-4g-thunderbolt-others-

exposes-phone-numbers-gps-sms-emails-

addresses-much-more.
[51] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken.

Winnowing: Local Algorithms for Document Fingerprinting.
In Proceedings of the 2003 ACM SIGMOD, 2003.

[52] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All You Ever Wanted to Know About Dynamic
Taint Analysis and Forward Symbolic Execution (but might
have been afraid to ask). In Proceedings of the 31rd IEEE

S&P, 2010.

[53] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit:
Separating smartphone advertising from applications. In
Proceedings of the 21th USENIX Security Symposium, 2012.

[54] VirusTotal. VirusTotal - Free Online Virus, Malware and
URL Scanner. http://www.virustotal.com/.

[55] Wikipedia. Assignment Problem. http://en.wikipedia.
org/wiki/Assignment_problem.

[56] Wikipedia. Feature Hashing. http://en.wikipedia.org/
wiki/Feature_hashing.

[57] Wikipedia. Hungarian algorithm. http://en.wikipedia.
org/wiki/Hungarian_algorithm.

[58] Allan Wojciechowski. DexDiff. https://github.com/
allanwoj/DexDiff.

[59] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.
DroidMOSS: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd ACM CODASPY, 2012.

[60] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the 33rd

IEEE S&P, 2012.

[61] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey,
You, Get off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In Proceedings of

the 19th NDSS, 2012.

[62] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W.
Freeh. Taming Information-Stealing Smartphone
Applications (on Android). In Proceedings of the 4th

International Conference on Trust and Trustworthy

Computing, 2011.

186

http://www.cs.ncsu.edu/faculty/jiang/send_sms_leak.html
http://www.cs.ncsu.edu/faculty/jiang/send_sms_leak.html
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
 http://www.daemonology.net/bsdiff/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more
http://www.virustotal.com/
http://en.wikipedia.org/wiki/Assignment_problem
http://en.wikipedia.org/wiki/Assignment_problem
http://en.wikipedia.org/wiki/Feature_hashing
http://en.wikipedia.org/wiki/Feature_hashing
http://en.wikipedia.org/wiki/Hungarian_algorithm
http://en.wikipedia.org/wiki/Hungarian_algorithm
https://github.com/allanwoj/DexDiff
https://github.com/allanwoj/DexDiff

	Introduction
	DexDiff Design
	Overview
	Matching Classes
	Matching Methods
	Constructing Control Flow Graphs
	Comparing Control Flow Graphs
	Prototype

	Evaluation
	Performance Evaluation
	Effectiveness Evaluation
	Side-loaded App Verification

	Discussion
	Related Work
	Summary
	Acknowledgements
	References

