## CNT4406/5412 Network Security Security Handshake Pitfalls

#### Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU)

CNT4406/5412 Network Security

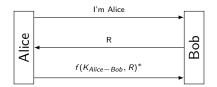
Fall 2014 1 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

## Introduction

- Secure communication almost always includes an initial authentication handshake
  - in addition to integrity protection and/or encryption of data

▲ □ ▶ ▲ □ ▶ ▲ □


## Introduction

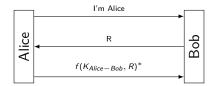
- Secure communication almost always includes an initial authentication handshake
  - in addition to integrity protection and/or encryption of data
- Designing a secure authentication handshake is not trivial
   minimit different protocols have different trade-offs
  - different situations require different protocols

- 3 →

Weakness:

• Authentication is not mutual




\*f is a secret key crypto or a hash function

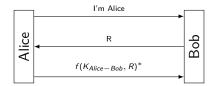
Zhi Wang (FSU)

CNT4406/5412 Network Security

Weakness:

- Authentication is not mutual
- Trudy may hijack the conversation after initial exchange (if this is the entire protocol)




\*f is a secret key crypto or a hash function

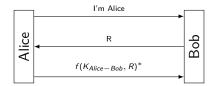
Zhi Wang (FSU)

CNT4406/5412 Network Security

Weakness:

- Authentication is not mutual
- Trudy may hijack the conversation after initial exchange (if this is the entire protocol)
- An eavesdropper could mount an off-line password-guessing attack




\*f is a secret key crypto or a hash function

Zhi Wang (FSU)

CNT4406/5412 Network Security

Weakness:

- Authentication is not mutual
- Trudy may hijack the conversation after initial exchange (if this is the entire protocol)
- An eavesdropper could mount an off-line password-guessing attack
- Trudy may compromise Bob's database and later impersonate Alice



\*f is a secret key crypto or a hash function

Zhi Wang (FSU)

CNT4406/5412 Network Security

Differences from the previous scheme:

• Function f needs to be reversible (cryptography but not hash)



Differences from the previous scheme:

- Function f needs to be reversible (cryptography but not hash)
- Trudy can mount a dictionary attack without eavesdropping
   *R* needs to be verifiable, such as having a structure
  - $\blacksquare$  e.g., *R* is a 32-bit random number padded on the right zeros



→ Ξ →

• It is simpler to replace sending cleartext password



- It is simpler to replace sending cleartext password
- The protocol is more efficient than the original
   me one message v.s. three messages; no states to keep for Bob



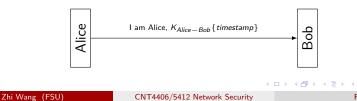
Zhi Wang (FSU)

CNT4406/5412 Network Security

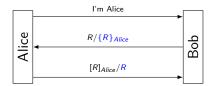
- It is simpler to replace sending cleartext password
- The protocol is more efficient than the original
   more message v.s. three messages; no states to keep for Bob
- Trudy can impersonate Alice within the acceptable clock skew
   to the same server; to other servers (how to prevent?)



- It is simpler to replace sending cleartext password
- The protocol is more efficient than the original
   me one message v.s. three messages; no states to keep for Bob
- Trudy can impersonate Alice within the acceptable clock skew
   to the same server; to other servers (how to prevent?)
- Trudy can reuse encrypted timestamps if Bob sets his clock back




- It is simpler to replace sending cleartext password
- The protocol is more efficient than the original
   me one message v.s. three messages; no states to keep for Bob
- Trudy can impersonate Alice within the acceptable clock skew
   to the same server; to other servers (how to prevent?)
- Trudy can reuse encrypted timestamps if Bob sets his clock back
- How to use hash instead of encryption in this protocol?

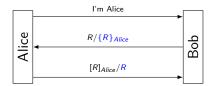



5 / 24

- It is simpler to replace sending cleartext password
- The protocol is more efficient than the original
   me one message v.s. three messages; no states to keep for Bob
- Trudy can impersonate Alice within the acceptable clock skew
   to the same server; to other servers (how to prevent?)
- Trudy can reuse encrypted timestamps if Bob sets his clock back
- How to use hash instead of encryption in this protocol?
   "I'm Alice, timestamp, hash(K<sub>Alice-Bob</sub>, timestamp)"

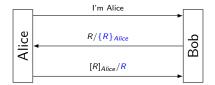


• Two variants:  $V_1: R \rightarrow [R]_{Alice}, V_2: \{R\}_{Alice} \rightarrow R$ 




Zhi Wang (FSU)

Fall 2014 6 / 24


→ ∃ →

- Two variants:  $V_1: R \rightarrow [R]_{Alice}, V_2: \{R\}_{Alice} \rightarrow R$
- Reading Bob's database is no longer security sensitive, why?
   m unauthorized modification still is



- 3 →

- Two variants:  $V_1: R \rightarrow [R]_{Alice}, V_2: \{R\}_{Alice} \rightarrow R$
- Reading Bob's database is no longer security sensitive, why?
   m unauthorized modification still is
- Trudy can trick Alice to provide a service to her (as a RPC):



- 4 ∃ ▶

- Two variants:  $V_1: R \rightarrow [R]_{Alice}, V_2: \{R\}_{Alice} \rightarrow R$
- Reading Bob's database is no longer security sensitive, why?
   m unauthorized modification still is
- Trudy can trick Alice to provide a service to her (as a RPC):
   to sign something in V<sub>1</sub>; to decrypt something in V<sub>2</sub>

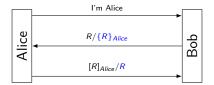
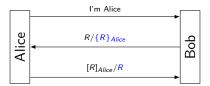
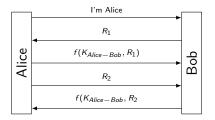
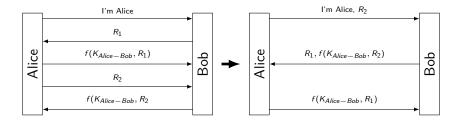




Image: A mathematical states and a mathem


- Two variants:  $V_1: R \rightarrow [R]_{Alice}, V_2: \{R\}_{Alice} \rightarrow R$
- Reading Bob's database is no longer security sensitive, why?
   munauthorized modification still is
- Trudy can trick Alice to provide a service to her (as a RPC):
   to sign something in V<sub>1</sub>; to decrypt something in V<sub>2</sub>
  - we use structures to distinguish types of messages (e.g., PKCS)
  - use different keys for different purposes (e.g., auth, email...)



伺 ト イ ヨ ト イ ヨ


## Mutual Authentication

• Bob and Alice challenge each other to achieve mutual authentication



## Mutual Authentication

- Bob and Alice challenge each other to achieve mutual authentication
- The protocol is inefficient **w** reduce it into three messages (flaw?)



Trudy connects to Bob and receives the challenge (R<sub>1</sub>) from Bob
 Trudy doesn't know how to respond it without K<sub>Alice-Bob</sub>



< 3 >

- Trudy connects to Bob and receives the challenge (R<sub>1</sub>) from Bob
   Trudy doesn't know how to respond it without K<sub>Alice-Bob</sub>
- Trudy starts a second session and tricks Bob to encrypt R<sub>2</sub> for her
   Trudy can now impersonate Alice on the first connection



◆ □ ▶ ◆ □ ▶

Lesson

Don't have Alice and Bob do exactly the same thing!

A D N A B N A B N A B N

Lesson

Don't have Alice and Bob do exactly the same thing!

・ 何 ト ・ ヨ ト ・ ヨ ト

Lesson

Don't have Alice and Bob do exactly the same thing!

- Use different keys to authenticate Alice from Bob
   → two keys or a transformation of the shared key (e.g., -K<sub>Alice-Bob</sub>)
- Encode the challenges in different structures (e.g., Bob|R)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### Lesson

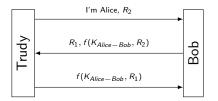
Don't have Alice and Bob do exactly the same thing!

- Use different keys to authenticate Alice from Bob
   → two keys or a transformation of the shared key (e.g., -K<sub>Alice-Bob</sub>)
- Encode the challenges in different structures (e.g., Bob|R)
- Make sure the initiator be the first to prove its identity
   assumption: Trudy is more likely to be the initiator

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

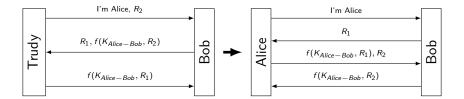
#### Lesson

Don't have Alice and Bob do exactly the same thing!


- Use different keys to authenticate Alice from Bob
   → two keys or a transformation of the shared key (e.g., -K<sub>Alice-Bob</sub>)
- Encode the challenges in different structures (e.g., Bob|R)
- Make sure the initiator be the first to prove its identity
   assumption: Trudy is more likely to be the initiator
  - the five-message scheme doesn't have the problem!

Fall 2014 9 / 24

・ 何 ト ・ ヨ ト ・ ヨ ト


#### Password Guessing

 Another weakness: Trudy can mount an offline password-guessing without needing to eavesdrop



#### Password Guessing

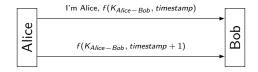
- Another weakness: Trudy can mount an offline password-guessing without needing to eavesdrop
- To fix it, make sure the initiator is the first to prove its identity
   assumption: Trudy is more likely to be the initiator



▲ □ ▶ ▲ □ ▶ ▲ □

## Mutual Authentication with Public Key

- Distribution of public keys is a critical issues
  - store Bob's public key encrypted with Alice's password
  - store a certificate (signed by Alice's key) for Bob's public key

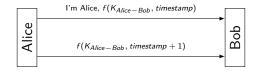



| Zhi | Wang | (FSU) |
|-----|------|-------|
|     |      |       |

Fall 2014 11 / 24

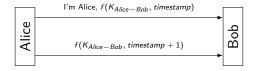
#### Mutual Authentication with Timestamps

• Alice and Bob's clocks should be reasonably synchronized




| Zhi | Wang | (FSU) |
|-----|------|-------|
|     |      |       |

Fall 2014 12 / 24


#### Mutual Authentication with Timestamps

- Alice and Bob's clocks should be reasonably synchronized
- Alice and Bob should do different things, how?



#### Mutual Authentication with Timestamps

- Alice and Bob's clocks should be reasonably synchronized
- Alice and Bob should do different things, how?
   im use different keys (two keys or key transformation)
  - indicate the sender in the message (e.g., Bob|timestamp+1)



# Data Integrity/Encryption: Session Key

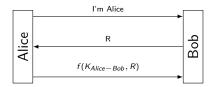
 Communication after mutual authentication should be protected establish a session key to avoid authentication key being overused we use the session key protect data integrity and secrecy

# Data Integrity/Encryption: Session Key

- Communication after mutual authentication should be protected establish a session key to avoid authentication key being overused ••• use the session key protect data integrity and secrecy
- Session key should be different for each session

# Data Integrity/Encryption: Session Key

- Communication after mutual authentication should be protected establish a session key to avoid authentication key being overused ••• use the session key protect data integrity and secrecy
- Session key should be different for each session
- Session key should be unpredictable

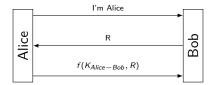

# Data Integrity/Encryption: Session Key

- Communication after mutual authentication should be protected establish a session key to avoid authentication key being overused we use the session key protect data integrity and secrecy
- Session key should be different for each session
- Session key should be unpredictable
- Breach of the authentication key should not reveal the session key Diffie-Hellman key exchange

A B A A B A

## Session Key Establishment for Secret Key

Modify  $K_{Alice-Bob}$  and encrypt R with the modified key. Use the result as the session key (e.g.,  $(K_{Alice-Bob} + 1)\{R\}$  or  $(-K_{Alice-Bob})\{R\}$ )




#### Session Key

## Session Key Establishment for Secret Key

Modify  $K_{Alice-Bob}$  and encrypt R with the modified key. Use the result as the session key (e.g.,  $(K_{Alice-Bob} + 1)\{R\}$  or  $(-K_{Alice-Bob})\{R\}$ )

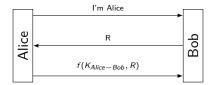
• Can we use  $K_{Alice-Bob}\{R\}$  as the session key?



Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 14 / 24

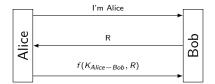

- 4 ∃ ▶

#### Session Key

## Session Key Establishment for Secret Key

Modify  $K_{Alice-Bob}$  and encrypt R with the modified key. Use the result as the session key (e.g.,  $(K_{Alice-Bob} + 1)\{R\}$  or  $(-K_{Alice-Bob})\{R\}$ )

- Can we use  $K_{Alice-Bob}\{R\}$  as the session key?
- Can we use  $K_{Alice-Bob}{R+1}$  as the session key?




→ Ξ →

### Session Key Establishment for Secret Key

Modify  $K_{Alice-Bob}$  and encrypt R with the modified key. Use the result as the session key (e.g.,  $(K_{Alice-Bob} + 1)\{R\}$  or  $(-K_{Alice-Bob})\{R\}$ )

- Can we use  $K_{Alice-Bob}\{R\}$  as the session key?
- Can we use K<sub>Alice-Bob</sub>{R + 1} as the session key?
   ➡ Trudy can store the data encrypted with K<sub>Alice-Bob</sub>{R + 1}, impersonate Bob, and challenge Alice with R + 1



通 ト イ ヨ ト イ ヨ ト

In some cases (e.g., SSL), only one party has a public/private key  $\blacksquare$  it's only necessary to authenticate the server

• Alice selects R and sends  $\{R\}_{Bob}$  to Bob. R is the session key

In some cases (e.g., SSL), only one party has a public/private key  $\implies$  it's only necessary to authenticate the server

Alice selects R and sends {R}<sub>Bob</sub> to Bob. R is the session key
 Trudy can decrypt the (recorded) conversation if she gets Bob's key

In some cases (e.g., SSL), only one party has a public/private key  $\implies$  it's only necessary to authenticate the server

- Alice selects R and sends {R}<sub>Bob</sub> to Bob. R is the session key
   Trudy can decrypt the (recorded) conversation if she gets Bob's key
- Alice and Bob do a Diffie-Hellman exchange with Bob signing his  $T_B$

In some cases (e.g., SSL), only one party has a public/private key  $\implies$  it's only necessary to authenticate the server

- Alice selects R and sends {R}<sub>Bob</sub> to Bob. R is the session key
   Trudy can decrypt the (recorded) conversation if she gets Bob's key
- Alice and Bob do a Diffie-Hellman exchange with Bob signing his  $T_B$
- Alice is not authenticated, but entire session is with a single party

#### Session Key

# Session Key Establishment for Two-way Public Key

#### • Alice picks R and sends $\{R\}_{Bob}$ to Bob

• • • • • • • • • • • •

- Alice picks R and sends  $[{R}_{Bob}]_{Alice}$  to Bob

A (10) < A (10) < A (10) </p>

- Alice picks R and sends [{R}<sub>Bob</sub>]<sub>Alice</sub> to Bob
   Trudy can decrypt the (recorded) session if she steals Bob's key

< 🗇 🕨 < 🖻 🕨 < 🖻

#### Session Key

# Session Key Establishment for Two-way Public Key

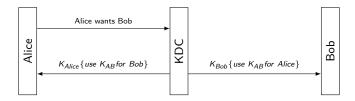
- Alice picks R and sends  $\{R\}_{Bob}$  to Bob Trudy can hijack (is it MITM?) the session by picking her  $R_T$
- Alice picks R and sends  $[{R}_{Bob}]_{Alice}$  to Bob
  - Trudy can decrypt the (recorded) session if she steals Bob's key
  - Can she do so by stealing Alice's key assuming Alice forgets R?

• Alice picks  $R_1$  and sends  $\{R_1\}_{Bob}$  to Bob, Bob picks  $R_2$  and sends  $\{R_2\}_{Alice}$  to Alice, the session key is  $R_1 \oplus R_2$ 

• Alice picks  $R_1$  and sends  $\{R_1\}_{Bob}$  to Bob, Bob picks  $R_2$  and sends  $\{R_2\}_{Alice}$  to Alice, the session key is  $R_1 \oplus R_2$ • Is it necessary to sign  $\{R_1\}_{Bob}$  and  $\{R_2\}_{Alice}$ ?

A (10) < A (10) < A (10) </p>

- Alice picks R<sub>1</sub> and sends {R<sub>1</sub>}<sub>Bob</sub> to Bob, Bob picks R<sub>2</sub> and sends {R<sub>2</sub>}<sub>Alice</sub> to Alice, the session key is R<sub>1</sub> ⊕ R<sub>2</sub>
  im Is it necessary to sign {R<sub>1</sub>}<sub>Bob</sub> and {R<sub>2</sub>}<sub>Alice</sub> ?
- Alice and Bob do a Diffie-Hellman exchange, each signs its T

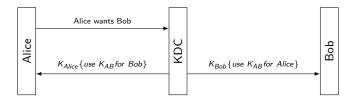

< 🗇 🕨 < 🖻 🕨 < 🖻

- Alice picks R<sub>1</sub> and sends {R<sub>1</sub>}<sub>Bob</sub> to Bob, Bob picks R<sub>2</sub> and sends {R<sub>2</sub>}<sub>Alice</sub> to Alice, the session key is R<sub>1</sub> ⊕ R<sub>2</sub>
  im Is it necessary to sign {R<sub>1</sub>}<sub>Bob</sub> and {R<sub>2</sub>}<sub>Alice</sub> ?
- Alice and Bob do a Diffie-Hellman exchange, each signs its T
   Trudy cannot decrypt session even she steals both private keys
   what's the assumption ?

#### Mediated Authentication with KDC

Some concerns:

- Trudy may claim to be Alice and talk to KDC
  - Trudy may mount an offline dictionary attack if K<sub>AB</sub> is structured

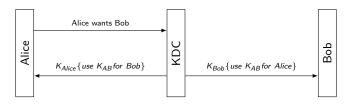



∃ >

#### Mediated Authentication with KDC

Some concerns:

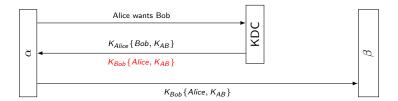
- Trudy may claim to be Alice and talk to KDC
   Trudy may mount an offline dictionary attack if K<sub>AB</sub> is structured
- Messages from Alice may get to Bob before he gets  $K_{AB}$  from KDC




< ∃ ▶

#### Mediated Authentication with KDC

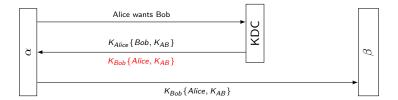
Some concerns:


- Trudy may claim to be Alice and talk to KDC
   Trudy may mount an offline dictionary attack if K<sub>AB</sub> is structured
- Messages from Alice may get to Bob before he gets  $K_{AB}$  from KDC
- It is inconvenient for KDC to connect to Bob
  - Alice is going to connect to Bob anyway



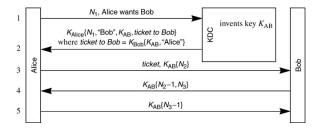
< ∃ ▶

## Mediated Authentication with KDC...


KDC gives Alice a ticket (containing  $K_{AB}$ ) to be forwarded to Bob

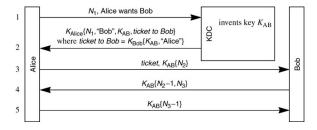


| Zhi | Wang | (FSU) |
|-----|------|-------|
|     |      |       |


### Mediated Authentication with KDC...

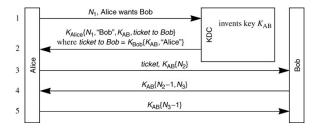
KDC gives Alice a ticket (containing  $K_{AB}$ ) to be forwarded to Bob Alice and Bob must authenticate each other after this




#### Needham-Schroeder

Needham-Schroeder is a classic protocol for authentication with KDC
 many protocols have been modeled after it (e.g., Kerberos)




#### Needham-Schroeder

- Needham-Schroeder is a classic protocol for authentication with KDC
   many protocols have been modeled after it (e.g., Kerberos)
- A complete protocol: mediated authentication+mutual authentication



#### Needham-Schroeder

- Needham-Schroeder is a classic protocol for authentication with KDC
   many protocols have been modeled after it (e.g., Kerberos)
- A complete protocol: mediated authentication+mutual authentication
- Nonce is a number that is used only once to prevent replay attacks



The ticket to Bob  $(K_{AB})$  is valid even after Alice changes her key

< □ > < 同 > < 回 > < 回 > < 回 >

The ticket to Bob  $(K_{AB})$  is valid even after Alice changes her key

• Trudy steals Alice's key, and impersonates Alice

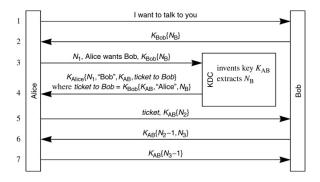
< □ > < 同 > < 回 > < 回 > < 回 >

The ticket to Bob  $(K_{AB})$  is valid even after Alice changes her key

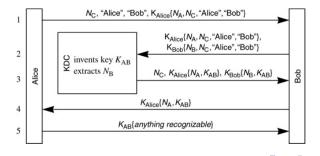
- Trudy steals Alice's key, and impersonates Alice
- Alice finds it and changes her key

< □ > < □ > < □ > < □ > < □ > < □ >

The ticket to Bob  $(K_{AB})$  is valid even after Alice changes her key

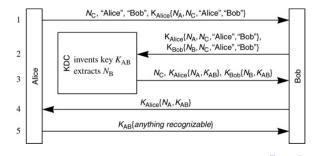

- Trudy steals Alice's key, and impersonates Alice
- Alice finds it and changes her key
- Trudy can still impersonate Alice to Bob because  $K_{AB}$  remains valid

The ticket to Bob  $(K_{AB})$  is valid even after Alice changes her key

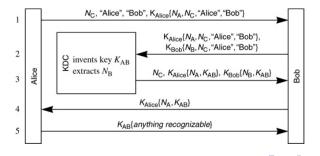

- Trudy steals Alice's key, and impersonates Alice
- Alice finds it and changes her key
- Trudy can still impersonate Alice to Bob because  $K_{AB}$  remains valid
- To prevent it, make sure Alice has talked to KDC (using her active key)

#### Expanded Needham-Schroeder

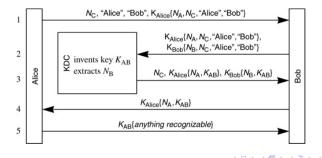
The first two messages assure Bob that Alice has talked to KDC since he generates  $N_B$ 




• How does KDC make sure it is really Alice and Bob?




Fall 2014 23 / 24


- How does KDC make sure it is really Alice and Bob?
- How does Alice make sure it is really KDC and Bob?



- How does KDC make sure it is really Alice and Bob?
- How does Alice make sure it is really KDC and Bob?
- How does Bob make sure it is really KDC and Alice?



- How does KDC make sure it is really Alice and Bob?
- How does Alice make sure it is really KDC and Bob?
- How does Bob make sure it is really KDC and Alice?
- How does this protocol invalidate tickets?



# Summary

- One-way Authentication
- Mutual Authentication
- Session Key Establishment
- Mediated Authentication
- Needham-Schroeder and Otway-Rees Protocols
- Next lecture: PKI