
CNT4406/5412 Network Security
Public Key Algorithms

Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 1 / 38

Public Key Algorithms Introduction

Introduction

Each principal has a pair of public and secret numbers (e, d)
à public key is announced to the public
à private key is kept secret

Public key algorithms are different in design
à Diffie-Hellman allows establishment of a shared secret

encryption signature key exchange
RSA y y y

Diffie-Hellman n n y
DSA n y n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 2 / 38

Public Key Algorithms Introduction

Introduction

Each principal has a pair of public and secret numbers (e, d)
à public key is announced to the public
à private key is kept secret
Public key algorithms are different in design
à Diffie-Hellman allows establishment of a shared secret

encryption signature key exchange
RSA y y y

Diffie-Hellman n n y
DSA n y n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 2 / 38

Public Key Algorithms Modular Arithmetic

Modular Addition

Modular addition is reversible for all numbers a < n
à Caesar cipher uses modular addition

Additive inverse of a is −a mod n
à e.g., 7 is 3 ’s additive inverse in mod 10

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 3 / 38

Public Key Algorithms Modular Arithmetic

Modular Addition

Modular addition is reversible for all numbers a < n
à Caesar cipher uses modular addition
Additive inverse of a is −a mod n
à e.g., 7 is 3 ’s additive inverse in mod 10

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 3 / 38

Public Key Algorithms Modular Arithmetic

Modular Multiplication

It is reversible for numbers relatively-prime to and less than n
à multiplicative inverse can be calculated by Euclid’s algorithm

Totient function φ(n): how many numbers less than and
relatively-prime to n
à if n is prime, φ(n) = n − 1
à if n = pq and p, q are prime, φ(n) = (p − 1)(q − 1) = φ(p)φ(q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 4 / 38

Public Key Algorithms Modular Arithmetic

Modular Multiplication

It is reversible for numbers relatively-prime to and less than n
à multiplicative inverse can be calculated by Euclid’s algorithm
Totient function φ(n): how many numbers less than and
relatively-prime to n
à if n is prime, φ(n) = n − 1
à if n = pq and p, q are prime, φ(n) = (p − 1)(q − 1) = φ(p)φ(q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 4 / 38

Public Key Algorithms Modular Arithmetic

Modular Exponentiation

Euler’s theorem: xy mod n = xy mod φ(n) mod n if n is prime or a
product of two distinct primes
à e.g., n = 10, φ(n) = 4, x1 = x5 = x9 mod 10

Exponentiative inverse: yz = 1 mod φ(n) (xy)z = xyz = x
à yz = 1 mod φ(n): z is y ’s multiplicative inverse mod φ(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 5 / 38

Public Key Algorithms Modular Arithmetic

Modular Exponentiation

Euler’s theorem: xy mod n = xy mod φ(n) mod n if n is prime or a
product of two distinct primes
à e.g., n = 10, φ(n) = 4, x1 = x5 = x9 mod 10
Exponentiative inverse: yz = 1 mod φ(n) (xy)z = xyz = x
à yz = 1 mod φ(n): z is y ’s multiplicative inverse mod φ(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 5 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman)

RSA provides both encryption and digital signature

Variable key length (512 bits or greater) and variable block size
à plaintext block must be shorter than the key size
à ciphertext block has the same length as the key size
Basis: factorization of large numbers is hard
RSA is slow, mostly used to encrypt/sign short messages
à e.g., shared session keys or message digests

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 6 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman)

RSA provides both encryption and digital signature
Variable key length (512 bits or greater) and variable block size
à plaintext block must be shorter than the key size
à ciphertext block has the same length as the key size

Basis: factorization of large numbers is hard
RSA is slow, mostly used to encrypt/sign short messages
à e.g., shared session keys or message digests

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 6 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman)

RSA provides both encryption and digital signature
Variable key length (512 bits or greater) and variable block size
à plaintext block must be shorter than the key size
à ciphertext block has the same length as the key size
Basis: factorization of large numbers is hard

RSA is slow, mostly used to encrypt/sign short messages
à e.g., shared session keys or message digests

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 6 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman)

RSA provides both encryption and digital signature
Variable key length (512 bits or greater) and variable block size
à plaintext block must be shorter than the key size
à ciphertext block has the same length as the key size
Basis: factorization of large numbers is hard
RSA is slow, mostly used to encrypt/sign short messages
à e.g., shared session keys or message digests

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 6 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Key Generation

Choose two large primes, p and q (about 256 bits each)
à never reveal p and q

Let n = p × q (φ(n) =???)
à factoring n (512 bit) into p and q is hard
Public key is < e, n >, e relatively prime to φ(n),
private key is < d , n >, ed = 1 mod φ(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 7 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Key Generation

Choose two large primes, p and q (about 256 bits each)
à never reveal p and q
Let n = p × q (φ(n) =???)
à factoring n (512 bit) into p and q is hard

Public key is < e, n >, e relatively prime to φ(n),
private key is < d , n >, ed = 1 mod φ(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 7 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Key Generation

Choose two large primes, p and q (about 256 bits each)
à never reveal p and q
Let n = p × q (φ(n) =???)
à factoring n (512 bit) into p and q is hard
Public key is < e, n >, e relatively prime to φ(n),
private key is < d , n >, ed = 1 mod φ(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 7 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

Public key < e, n >, private key < d , n >

Encryption of m < n: c = me mod n,
decryption: m = cd mod n
Signing m < n: s = md mod n
verification: m = se mod n
Who are the principles of these operations???

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

Public key < e, n >, private key < d , n >
Encryption of m < n: c = me mod n,
decryption: m = cd mod n

Signing m < n: s = md mod n
verification: m = se mod n
Who are the principles of these operations???

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

Public key < e, n >, private key < d , n >
Encryption of m < n: c = me mod n,
decryption: m = cd mod n
Signing m < n: s = md mod n
verification: m = se mod n

Who are the principles of these operations???

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

Public key < e, n >, private key < d , n >
Encryption of m < n: c = me mod n,
decryption: m = cd mod n
Signing m < n: s = md mod n
verification: m = se mod n
Who are the principles of these operations???

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p = 23, q = 11 n = pq = 253, φ(n) = (p − 1)(q − 1) = 220

e = 39 (relatively prime to 220) public key: < 39, 253 >
d = e−1 mod 220 = 79 private key: < 79, 253 >
à m = 80

encryption: c = me mod n = 8039 mod 253 = 37
decryption: m = cd mod n = 3779 mod 253 = 80
signature: s = md mod n = 8079 mod 253 = 224
verification: m = se mod n = 22439 mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p = 23, q = 11 n = pq = 253, φ(n) = (p − 1)(q − 1) = 220
e = 39 (relatively prime to 220) public key: < 39, 253 >

d = e−1 mod 220 = 79 private key: < 79, 253 >
à m = 80

encryption: c = me mod n = 8039 mod 253 = 37
decryption: m = cd mod n = 3779 mod 253 = 80
signature: s = md mod n = 8079 mod 253 = 224
verification: m = se mod n = 22439 mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p = 23, q = 11 n = pq = 253, φ(n) = (p − 1)(q − 1) = 220
e = 39 (relatively prime to 220) public key: < 39, 253 >
d = e−1 mod 220 = 79 private key: < 79, 253 >

à m = 80
encryption: c = me mod n = 8039 mod 253 = 37
decryption: m = cd mod n = 3779 mod 253 = 80
signature: s = md mod n = 8079 mod 253 = 224
verification: m = se mod n = 22439 mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p = 23, q = 11 n = pq = 253, φ(n) = (p − 1)(q − 1) = 220
e = 39 (relatively prime to 220) public key: < 39, 253 >
d = e−1 mod 220 = 79 private key: < 79, 253 >
à m = 80

encryption: c = me mod n = 8039 mod 253 = 37
decryption: m = cd mod n = 3779 mod 253 = 80

signature: s = md mod n = 8079 mod 253 = 224
verification: m = se mod n = 22439 mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p = 23, q = 11 n = pq = 253, φ(n) = (p − 1)(q − 1) = 220
e = 39 (relatively prime to 220) public key: < 39, 253 >
d = e−1 mod 220 = 79 private key: < 79, 253 >
à m = 80

encryption: c = me mod n = 8039 mod 253 = 37
decryption: m = cd mod n = 3779 mod 253 = 80
signature: s = md mod n = 8079 mod 253 = 224
verification: m = se mod n = 22439 mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Why RSA Works

n = pq, φ(n) = (p − 1)(q − 1), and de = 1 mod φ(n)
 xde = x mod n (Euler’s theorem, x ∈ Zn)

à encryption: x e , decryption: (x e)d = x ed = x
à signature and verification are the reverse

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 10 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Why RSA Works

n = pq, φ(n) = (p − 1)(q − 1), and de = 1 mod φ(n)
 xde = x mod n (Euler’s theorem, x ∈ Zn)
à encryption: x e , decryption: (x e)d = x ed = x
à signature and verification are the reverse

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 10 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Why RSA is Secure

Public key < e, n > is a public information
Factoring large number n into p × q is difficult
à if factored φ(n) = (p − 1)(q − 1)
 d = e−1 mod φ(n) < d , n >

à 1024 bits are consider secure for now, 2048 bits are better

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 11 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Why RSA is Secure

Public key < e, n > is a public information
Factoring large number n into p × q is difficult
à if factored φ(n) = (p − 1)(q − 1)
 d = e−1 mod φ(n) < d , n >

à 1024 bits are consider secure for now, 2048 bits are better

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 11 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Implementation

Basic operation: exponentiating with big numbers
Generating RSA keys:
à finding big primes p and q, and selecting d and e

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 12 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123

102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678

1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678

11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678

110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678

1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute ax mod t, use repeated squaring and do modular reduction
at each step

Example
a = 123, x = 54 = 1101102, t = 678, a54 = (((((a)2a)2)2a)2a)2

12 123
102 � 1232 = 123× 123 = 15129 = 213 mod 678
112 +1 1233 = 213× 123 = 26199 = 435 mod 678
1102 � 1236 = 435× 435 = 189225 = 63 mod 678
11002 � 12312 = 63× 63 = 3969 = 579 mod 678
11012 +1 12313 = 579× 123 = 71217 = 27 mod 678
110102 � 12326 = 27× 27 = 729 = 51 mod 678
110112 +1 12327 = 51× 123 = 6273 = 171 mod 678
1101102 � 12354 = 171× 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

Pseudo code to compute ax mod t, assuming x has k bits
r = a
for i = k − 1 to 1:

r = r × r mod t
if xi == 1:

r = r × a mod t
return r

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 14 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating: Timing Attacks

Timing attack: to recover the private key from the running time of
the decryption algorithm (m = cd mod n)

à the attack proceeds bit by bit (assuming he knows c and m):
à r = r × a mod t is only executed if di = 1

for some c and m combination, this step is extremely slow
à attackers can determine bits of d by comparing time∗

To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

∗http://www.cs.sjsu.edu/faculty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating: Timing Attacks

Timing attack: to recover the private key from the running time of
the decryption algorithm (m = cd mod n)
à the attack proceeds bit by bit (assuming he knows c and m):

à r = r × a mod t is only executed if di = 1
for some c and m combination, this step is extremely slow

à attackers can determine bits of d by comparing time∗

To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

∗http://www.cs.sjsu.edu/faculty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating: Timing Attacks

Timing attack: to recover the private key from the running time of
the decryption algorithm (m = cd mod n)
à the attack proceeds bit by bit (assuming he knows c and m):
à r = r × a mod t is only executed if di = 1

for some c and m combination, this step is extremely slow

à attackers can determine bits of d by comparing time∗

To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

∗http://www.cs.sjsu.edu/faculty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating: Timing Attacks

Timing attack: to recover the private key from the running time of
the decryption algorithm (m = cd mod n)
à the attack proceeds bit by bit (assuming he knows c and m):
à r = r × a mod t is only executed if di = 1

for some c and m combination, this step is extremely slow
à attackers can determine bits of d by comparing time∗

To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

∗http://www.cs.sjsu.edu/faculty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating: Timing Attacks

Timing attack: to recover the private key from the running time of
the decryption algorithm (m = cd mod n)
à the attack proceeds bit by bit (assuming he knows c and m):
à r = r × a mod t is only executed if di = 1

for some c and m combination, this step is extremely slow
à attackers can determine bits of d by comparing time∗

To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

∗http://www.cs.sjsu.edu/faculty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Infinite number of primes, but thin out when getting bigger
à probability of a random number n being prime is 1

ln n
à e.g., 1 in 23 for a ten-digit number, 1 in 230 for hundred-digits

Method: choose a random number then test if it is a prime

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 16 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Infinite number of primes, but thin out when getting bigger
à probability of a random number n being prime is 1

ln n
à e.g., 1 in 23 for a ten-digit number, 1 in 230 for hundred-digits
Method: choose a random number then test if it is a prime

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 16 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Theorem
Fermat’s theorem: if p is prime and 0 < a < p, ap−1 = 1 mod p

It is a specialization of Euler’s theorem: a relatively prime to
n aφ(n) = 1 mod n
Probability of p is not prime but ap−1 = 1 mod p is 1

1013

à test multiple a to increase confidence
à Carmichael numbers are special cases

Miller and Rabin test
If n is a prime, the only mod n square roots of 1 are 1 and -1, but many
square roots if n is not a power of a prime (exercise: why??)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Theorem
Fermat’s theorem: if p is prime and 0 < a < p, ap−1 = 1 mod p

It is a specialization of Euler’s theorem: a relatively prime to
n aφ(n) = 1 mod n

Probability of p is not prime but ap−1 = 1 mod p is 1
1013

à test multiple a to increase confidence
à Carmichael numbers are special cases

Miller and Rabin test
If n is a prime, the only mod n square roots of 1 are 1 and -1, but many
square roots if n is not a power of a prime (exercise: why??)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Theorem
Fermat’s theorem: if p is prime and 0 < a < p, ap−1 = 1 mod p

It is a specialization of Euler’s theorem: a relatively prime to
n aφ(n) = 1 mod n
Probability of p is not prime but ap−1 = 1 mod p is 1

1013

à test multiple a to increase confidence
à Carmichael numbers are special cases

Miller and Rabin test
If n is a prime, the only mod n square roots of 1 are 1 and -1, but many
square roots if n is not a power of a prime (exercise: why??)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding Big Primes

Theorem
Fermat’s theorem: if p is prime and 0 < a < p, ap−1 = 1 mod p

It is a specialization of Euler’s theorem: a relatively prime to
n aφ(n) = 1 mod n
Probability of p is not prime but ap−1 = 1 mod p is 1

1013

à test multiple a to increase confidence
à Carmichael numbers are special cases

Miller and Rabin test
If n is a prime, the only mod n square roots of 1 are 1 and -1, but many
square roots if n is not a power of a prime (exercise: why??)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding d and e

Choose a number that is relatively-prime to φ(n) as e
à e is public and can be a small number such as 3 or 65537

Compute d using Euclid’s algorithm
à d must be big to avoid being searchable

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 18 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Finding d and e

Choose a number that is relatively-prime to φ(n) as e
à e is public and can be a small number such as 3 or 65537
Compute d using Euclid’s algorithm
à d must be big to avoid being searchable

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 18 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Issues with e = 3

Messages less than n 1
3 will be encrypted as m3

à take cube root of the ciphertext to decrypt

Same message enctyped and sent to ≥ 3 recipients with e = 3
à plaintext can be revealed by using Chinese Remainder Theorem
à to address it, use random/individualized padding

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 19 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Issues with e = 3

Messages less than n 1
3 will be encrypted as m3

à take cube root of the ciphertext to decrypt

Same message enctyped and sent to ≥ 3 recipients with e = 3
à plaintext can be revealed by using Chinese Remainder Theorem

à to address it, use random/individualized padding

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 19 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Issues with e = 3

Messages less than n 1
3 will be encrypted as m3

à take cube root of the ciphertext to decrypt

Same message enctyped and sent to ≥ 3 recipients with e = 3
à plaintext can be revealed by using Chinese Remainder Theorem
à to address it, use random/individualized padding

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 19 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats with e = 3

Cube root problem: forge signature on any messages
à assume message are padded on the right with random numbers

à to forge signature, digest the message to h, pad it on the right
with zeros, then set the signature to r = h 1

3

à signature is forged because r 3 = h (padded with random numbers)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 20 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats with e = 3

Cube root problem: forge signature on any messages
à assume message are padded on the right with random numbers
à to forge signature, digest the message to h, pad it on the right
with zeros, then set the signature to r = h 1

3

à signature is forged because r 3 = h (padded with random numbers)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 20 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats with e = 3

Cube root problem: forge signature on any messages
à assume message are padded on the right with random numbers
à to forge signature, digest the message to h, pad it on the right
with zeros, then set the signature to r = h 1

3

à signature is forged because r 3 = h (padded with random numbers)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 20 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats: Smooth Numbers

Smooth number is the product of reasonably small primes
Smooth number threat
à RSA signs a message by md mod n

à with signature on m1 and m2, the attacker can forge signature on:
m1 ×m2,

m1
m2
,mj

1,m
j
1 ×mk

2 , ...
à “small” primes provide flexible building blocks

attackers can forge signatures on any product from his collection

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 21 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats: Smooth Numbers

Smooth number is the product of reasonably small primes
Smooth number threat
à RSA signs a message by md mod n
à with signature on m1 and m2, the attacker can forge signature on:
m1 ×m2,

m1
m2
,mj

1,m
j
1 ×mk

2 , ...

à “small” primes provide flexible building blocks
attackers can forge signatures on any product from his collection

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 21 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

RSA Threats: Smooth Numbers

Smooth number is the product of reasonably small primes
Smooth number threat
à RSA signs a message by md mod n
à with signature on m1 and m2, the attacker can forge signature on:
m1 ×m2,

m1
m2
,mj

1,m
j
1 ×mk

2 , ...
à “small” primes provide flexible building blocks

attackers can forge signatures on any product from his collection

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 21 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls

à encrypting guessable message
à signing smooth number
à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3
à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls
à encrypting guessable message

à signing smooth number
à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3
à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls
à encrypting guessable message
à signing smooth number

à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3
à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls
à encrypting guessable message
à signing smooth number
à multiple recipients of a message when e = 3

à encrypting messages ≤ n 1
3 when e = 3

à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls
à encrypting guessable message
à signing smooth number
à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3

à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Public Key Cryptography Standards (PKCS)

Correct use of RSA could be tricky
PKCS is the operational standards to avoid pitfalls
à encrypting guessable message
à signing smooth number
à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3
à signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

PKCS #1 Encryption

How does PKCS #1 address the following pitfalls?
à encrypting guessable message
à multiple recipients of a message when e = 3
à encrypting messages ≤ n 1

3 when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 23 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

PKCS #1 Signature

How does PKCS #1 address the following pitfalls?
à signing smooth number
à signing messages with random padding on the right when e = 3

Why 8 octets of ff16 instead of random bytes?

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 24 / 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

PKCS #1 Signature

How does PKCS #1 address the following pitfalls?
à signing smooth number
à signing messages with random padding on the right when e = 3
Why 8 octets of ff16 instead of random bytes?

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 24 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman

Diffie-Hellman is designed to negotiate a shared secret key using only
public communication
à i.e. not suitable for public key encryption

Diffie-Hellman does not provide authentication of the principles
à you could negotiate a key with a complete stranger

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 25 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman

Diffie-Hellman is designed to negotiate a shared secret key using only
public communication
à i.e. not suitable for public key encryption
Diffie-Hellman does not provide authentication of the principles
à you could negotiate a key with a complete stranger

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 25 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman Protocol

Publicly publish two numbers, p and g
à p is a large prime (about 512 bits), and g < p

Alice and Bob exchange two numbers Ta and Tb

They agree upon gSaSb mod p after DH exchange

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 26 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman Protocol

Publicly publish two numbers, p and g
à p is a large prime (about 512 bits), and g < p
Alice and Bob exchange two numbers Ta and Tb

They agree upon gSaSb mod p after DH exchange

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 26 / 38

Public Key Algorithms Diffie-Hellman

Example

Let p = 353, g = 3,Sa = 97,Sb = 233

Alice computes Ta = gSa mod p = 397 mod 353 = 40
Bob computes Tb = gSb mod p = 3233 mod 353 = 248
Alice and Bob exchanges Ta and Tb

Alice computes K = T Sa
b mod p = 24897 mod 353 = 160

Bob computes K = T Sba mod p = 40233 mod 353 = 160

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Public Key Algorithms Diffie-Hellman

Example

Let p = 353, g = 3,Sa = 97,Sb = 233
Alice computes Ta = gSa mod p = 397 mod 353 = 40
Bob computes Tb = gSb mod p = 3233 mod 353 = 248

Alice and Bob exchanges Ta and Tb

Alice computes K = T Sa
b mod p = 24897 mod 353 = 160

Bob computes K = T Sba mod p = 40233 mod 353 = 160

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Public Key Algorithms Diffie-Hellman

Example

Let p = 353, g = 3,Sa = 97,Sb = 233
Alice computes Ta = gSa mod p = 397 mod 353 = 40
Bob computes Tb = gSb mod p = 3233 mod 353 = 248
Alice and Bob exchanges Ta and Tb

Alice computes K = T Sa
b mod p = 24897 mod 353 = 160

Bob computes K = T Sba mod p = 40233 mod 353 = 160

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Public Key Algorithms Diffie-Hellman

Example

Let p = 353, g = 3,Sa = 97,Sb = 233
Alice computes Ta = gSa mod p = 397 mod 353 = 40
Bob computes Tb = gSb mod p = 3233 mod 353 = 248
Alice and Bob exchanges Ta and Tb

Alice computes K = T Sa
b mod p = 24897 mod 353 = 160

Bob computes K = T Sba mod p = 40233 mod 353 = 160

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sb and publishes Tb

Bob publishes < pb, gb,Tb >

Alice picks a random Sa, and computes Kab = T Sa
b mod pb

Alice encrypts the message with Kab

Alice sends ciphertext and Ta = gSa
b mod pb to Bob

Bob computes Kab = T Sba , and decrypt the message with it

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 28 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sb and publishes Tb

Bob publishes < pb, gb,Tb >

Alice picks a random Sa, and computes Kab = T Sa
b mod pb

Alice encrypts the message with Kab

Alice sends ciphertext and Ta = gSa
b mod pb to Bob

Bob computes Kab = T Sba , and decrypt the message with it

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 28 / 38

Public Key Algorithms Diffie-Hellman

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sb and publishes Tb

Bob publishes < pb, gb,Tb >

Alice picks a random Sa, and computes Kab = T Sa
b mod pb

Alice encrypts the message with Kab

Alice sends ciphertext and Ta = gSa
b mod pb to Bob

Bob computes Kab = T Sba , and decrypt the message with it

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 28 / 38

Public Key Algorithms Diffie-Hellman

Why DH is Secure

Discrete logarithms problem is difficult
à given gS mod p, g , and p, it is computationally difficult to get S
à no guarantee, but remember Fundamental Tenet of Cryptograph?

For “obscure mathematical reasons:”
à p and p−1

2 should be prime
à g

p−1
2 = −1 mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 29 / 38

Public Key Algorithms Diffie-Hellman

Why DH is Secure

Discrete logarithms problem is difficult
à given gS mod p, g , and p, it is computationally difficult to get S
à no guarantee, but remember Fundamental Tenet of Cryptograph?
For “obscure mathematical reasons:”
à p and p−1

2 should be prime
à g

p−1
2 = −1 mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 29 / 38

Public Key Algorithms Diffie-Hellman

Man-in-the-Middle Attack

Alice and Bob both negotiated a key with Trudy

Trudy forwards messages between Alice and Bob
à Alice → Bob: E (Kbt ,D(Kat , cab))
à Bob → Alice: E (Kat ,D(Kbt , cba))

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 30 / 38

Public Key Algorithms Diffie-Hellman

Man-in-the-Middle Attack

Alice and Bob both negotiated a key with Trudy
Trudy forwards messages between Alice and Bob
à Alice → Bob: E (Kbt ,D(Kat , cab))
à Bob → Alice: E (Kat ,D(Kbt , cba))

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 30 / 38

Public Key Algorithms Diffie-Hellman

Defense Against MITM Attacks

Published DH numbers
à everybody agrees upon a p and g , and publishes his gS

à grab the other’s gS then compute the secret
à eliminate the need for the first two messages in DH protocol

Authenticated Diffie-Hellman
à share a secret or publish one’s public key in advance
à there are various ways to mix Diffie-Hellman and authentication

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 31 / 38

Public Key Algorithms Diffie-Hellman

Defense Against MITM Attacks

Published DH numbers
à everybody agrees upon a p and g , and publishes his gS

à grab the other’s gS then compute the secret
à eliminate the need for the first two messages in DH protocol
Authenticated Diffie-Hellman
à share a secret or publish one’s public key in advance
à there are various ways to mix Diffie-Hellman and authentication

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 31 / 38

Public Key Algorithms DSS (Digital Signature Standard)

DSS (Digital Signature Standard)

An algorithm designed by NIST for digital signature
à the algorithm is known as DSA (digital signature algorithm)
à messages are digested first, the digest is then signed
à the sister function, SHS, is a message digesting function

Signing is faster than verification
à e.g., for use in the smart cards

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 32 / 38

Public Key Algorithms DSS (Digital Signature Standard)

DSS (Digital Signature Standard)

An algorithm designed by NIST for digital signature
à the algorithm is known as DSA (digital signature algorithm)
à messages are digested first, the digest is then signed
à the sister function, SHS, is a message digesting function
Signing is faster than verification
à e.g., for use in the smart cards

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 32 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm

To generate DSA signature
1 Generate p and q (public)

à q: 160-bit prime, p: 512-bit prime, and p = kq + 1

2 Generate g such that gq = 1 mod p (public)
à pick random number h, let g = h

p−1
q = hk (Fermat’s theorem)

3 Choose a long-term public/private key pair < T , S >
à pick a random number S < q, let T = gS mod p

4 Choose a per message public/private key pair < Tm, Sm >
à pick a random Sm, let Tm = ((gSm mod p) mod q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm

To generate DSA signature
1 Generate p and q (public)

à q: 160-bit prime, p: 512-bit prime, and p = kq + 1
2 Generate g such that gq = 1 mod p (public)

à pick random number h, let g = h
p−1

q = hk (Fermat’s theorem)

3 Choose a long-term public/private key pair < T , S >
à pick a random number S < q, let T = gS mod p

4 Choose a per message public/private key pair < Tm, Sm >
à pick a random Sm, let Tm = ((gSm mod p) mod q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm

To generate DSA signature
1 Generate p and q (public)

à q: 160-bit prime, p: 512-bit prime, and p = kq + 1
2 Generate g such that gq = 1 mod p (public)

à pick random number h, let g = h
p−1

q = hk (Fermat’s theorem)
3 Choose a long-term public/private key pair < T , S >

à pick a random number S < q, let T = gS mod p

4 Choose a per message public/private key pair < Tm, Sm >
à pick a random Sm, let Tm = ((gSm mod p) mod q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm

To generate DSA signature
1 Generate p and q (public)

à q: 160-bit prime, p: 512-bit prime, and p = kq + 1
2 Generate g such that gq = 1 mod p (public)

à pick random number h, let g = h
p−1

q = hk (Fermat’s theorem)
3 Choose a long-term public/private key pair < T , S >

à pick a random number S < q, let T = gS mod p
4 Choose a per message public/private key pair < Tm, Sm >

à pick a random Sm, let Tm = ((gSm mod p) mod q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To generate DSA signature
5 Calculate message digest dm

6 Compute the signature X = S−1
m (dm + STm) mod q

7 The signed message include
à m: the message, Tm: per-message publish key, X : signature
à the public key is < p, q, g ,T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 34 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To generate DSA signature
5 Calculate message digest dm
6 Compute the signature X = S−1

m (dm + STm) mod q

7 The signed message include
à m: the message, Tm: per-message publish key, X : signature
à the public key is < p, q, g ,T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 34 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To generate DSA signature
5 Calculate message digest dm
6 Compute the signature X = S−1

m (dm + STm) mod q
7 The signed message include

à m: the message, Tm: per-message publish key, X : signature
à the public key is < p, q, g ,T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 34 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To generate DSA signature
5 Calculate message digest dm
6 Compute the signature X = S−1

m (dm + STm) mod q
7 The signed message include

à m: the message, Tm: per-message publish key, X : signature
à the public key is < p, q, g ,T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 34 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To verify DSA signature
public information: < p, q, g ,T ,Tm,m,X >

1 calculate X−1 mod q and dm

2 x = dmX−1 mod q
y = TmX−1 mod q
z = (gx T y mod p) mod q

3 if z = Tm, the signature is verified

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 35 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To verify DSA signature
public information: < p, q, g ,T ,Tm,m,X >

1 calculate X−1 mod q and dm
2 x = dmX−1 mod q

y = TmX−1 mod q
z = (gx T y mod p) mod q

3 if z = Tm, the signature is verified

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 35 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Digital Signature Algorithm...

To verify DSA signature
public information: < p, q, g ,T ,Tm,m,X >

1 calculate X−1 mod q and dm
2 x = dmX−1 mod q

y = TmX−1 mod q
z = (gx T y mod p) mod q

3 if z = Tm, the signature is verified

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 35 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Why DSA Works

Let v = (dm + STm)
−1 mod q :

à X−1 = (S−1
m (dm + STm))

−1 = Sm(dm + STm)
−1 = Smv mod q

à x = dmX−1 = dmSmv mod q
à y = TmX−1 = TmSmv mod q
à z = gx T y = gdmSmv gSTmSmv = g (dm+STm)Smv

= gSm = Tm mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Why DSA Works

Let v = (dm + STm)
−1 mod q :

à X−1 = (S−1
m (dm + STm))

−1 = Sm(dm + STm)
−1 = Smv mod q

à x = dmX−1 = dmSmv mod q
à y = TmX−1 = TmSmv mod q
à z = gx T y = gdmSmv gSTmSmv = g (dm+STm)Smv

= gSm = Tm mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Why DSA Works

Let v = (dm + STm)
−1 mod q :

à X−1 = (S−1
m (dm + STm))

−1 = Sm(dm + STm)
−1 = Smv mod q

à x = dmX−1 = dmSmv mod q

à y = TmX−1 = TmSmv mod q
à z = gx T y = gdmSmv gSTmSmv = g (dm+STm)Smv

= gSm = Tm mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Why DSA Works

Let v = (dm + STm)
−1 mod q :

à X−1 = (S−1
m (dm + STm))

−1 = Sm(dm + STm)
−1 = Smv mod q

à x = dmX−1 = dmSmv mod q
à y = TmX−1 = TmSmv mod q

à z = gx T y = gdmSmv gSTmSmv = g (dm+STm)Smv

= gSm = Tm mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Why DSA Works

Let v = (dm + STm)
−1 mod q :

à X−1 = (S−1
m (dm + STm))

−1 = Sm(dm + STm)
−1 = Smv mod q

à x = dmX−1 = dmSmv mod q
à y = TmX−1 = TmSmv mod q
à z = gx T y = gdmSmv gSTmSmv = g (dm+STm)Smv

= gSm = Tm mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Public Key Algorithms DSS (Digital Signature Standard)

DSA Pitfalls

Private key (S) can be revealed if
per-message private key Sm is leaked
à Xm = S−1

m (dm + STm) (XmSm − dm)T−1
m mod q = S mod q

two messages are signed with the same per-message private key
à (Xm − X ′m)−1(dm − d ′m) mod q = Sm mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 37 / 38

Public Key Algorithms DSS (Digital Signature Standard)

DSA Pitfalls

Private key (S) can be revealed if
per-message private key Sm is leaked
à Xm = S−1

m (dm + STm) (XmSm − dm)T−1
m mod q = S mod q

two messages are signed with the same per-message private key
à (Xm − X ′m)−1(dm − d ′m) mod q = Sm mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 37 / 38

Public Key Algorithms DSS (Digital Signature Standard)

Summary

Modular arithmetic
RSA
Diffie-Hellman
DSA

Next lecture: authentication

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 38 / 38

	Public Key Algorithms
	Introduction
	Modular Arithmetic
	RSA (Rivest, Shamir, Adleman)
	Diffie-Hellman
	DSS (Digital Signature Standard)

