CNT4406/5412 Network Security
Public Key Algorithms

Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 1/38

Public Key Algorithms Introduction

Introduction

@ Each principal has a pair of public and secret numbers (e, d)
w public key is announced to the public
w private key is kept secret

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 2 /38

Public Key Algorithms Introduction

Introduction

@ Each principal has a pair of public and secret numbers (e, d)
w public key is announced to the public
w private key is kept secret

@ Public key algorithms are different in design
m Diffie-Hellman allows establishment of a shared secret

‘encryption signature key exchange

RSA y y y
Diffie-Hellman n n y
DSA n y n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

2/ 38

Modular Arithmetic
Modular Addition

@ Modular addition is reversible for all numbers a < n
w» Caesar cipher uses modular addition

+ 0 1 2 3 4 5 6 7 8 9
i 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5] 7 8 4 0
2 2 3 4 5 6 7 8 9 0 |
3 3 4 5 6 7 8 9 1] 1 2
4 4 5 & 7 8§ 9 [1] 1 2 3
5 5] 7 8 v 1] 1 2 i 4
(4] [i] 7 B 9 0 1 2 3 4 3
7 7 8 9 0 1 2 3 4 5 [
8 g 9 0 1 2 3 4 5 6 7
9 9 4] 1 2 3 4 5 6 7 8

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 3/38

Modular Arithmetic
Modular Addition

@ Modular addition is reversible for all numbers a < n
w» Caesar cipher uses modular addition

@ Additive inverse of ais —a mod n
m e o 7is 3 's additive inverse in mod 10

+ 0 1 2 3 4 5 6 7 8 9
i 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5] 7 8 4 0
2 2 3 4 5 6 7 8 9 0 |
3 3 4 5 6 7 8 9 1] 1 2
4 4 5 & 7 8 L] [1] 1 2 3
5 5] 7 8 v 1] 1 2 i 4
(4] [i] 7 B 9 0 1 2 3 4 3
7 7 8 9 0 1 2 3 4 5 [
8 g 9 0 1 2 3 4 5 6 7
9 9 4] 1 2 3 4 5 6 7 8

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 3/38

I
Modular Multiplication

@ It is reversible for numbers relatively-prime to and less than n
w multiplicative inverse can be calculated by Euclid’s algorithm

] 1 2 3 4 5 [7 8 ¢
0 0 0 0 0 0 0 0 0 i} [}
| [i] 1 2 3 4 5 [7 8 @
2 1] 2 4 [8 0 2 4 6 8
3 1] 3 [9 2 5 8 | 4 7
4 1] 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
[] 6 2 8 4 0 [})) 4

1] 7 4 1 8 5 2 9 6]
8 1] 5 6 4 2 0 8 [4 2
v 0 E 8 T 6 5 4 3 2 1

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 4 /38

SO A=
Modular Multiplication

@ It is reversible for numbers relatively-prime to and less than n
w multiplicative inverse can be calculated by Euclid’s algorithm
@ Totient function ¢(n): how many numbers less than and
relatively-prime to n
w if nis prime, ¢(n) =n—1
w if n=pq and p,q are prime, ¢(n) = (p —1)(q — 1) = ¢(p)#(q)

] 1 2 3 4 5 [T 8 ¢
0 0 0 0 0 0 0 0 0 i} [}
| [i] 1 2 3 4 5 L] 7 8 @
2] 2 4 4] 8 0 2 4 6 8
3 1] 3 [9 2 5 8 | 4 7
4 1] 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
[] 6 2 8 4 0 [})) 4

1] 7 4 1 8 5 2 9 6]
8 1] 5 6 4 2 0 8 [4 2
v 0 E 8 T 6 5 4 3 2 1

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 4 /38

Public Key Algorithms Modular Arithmetic

Modular Exponentiation

o Euler's theorem: x¥ mod n= x¥ M4 4" mod nif nis prime or a
product of two distinct primes

m eg, n=10¢(n) =4 x*=x%=x% mod 10

Zhi Wang (FSU)

I I Y A

)

0 1 2 3 4 5 6 7T 8 9 1w 11 a2
Ojlofojofojofo]d0 0lo |00
1 1 1 1 1 1 1 1 1 1 1 1 1
1 214 8 6| 2 4 8|6 2 4 B | 6
1 319 7 1 3 9|7 1 3 9|7 1
1 4 | 6| 4 6 [4 6 4] 6|4 6 | 4 |6
1] 5 5 5 5 5 5 5 5 5 5 5
1 6 |6 |6 |66 666 6|16 |6 |6
1 7|9 3 1 7 9 3 1 7 9|3 1
1 B | 4 2 6 [8 [4 2|6 8 4 2|6
1 9 1 9 1 9 1 9 1 9 1 9 1

CNT4406/5412 Network Security

Fall 2014

5/ 38

Public Key Algorithms Modular Arithmetic

Modular Exponentiation

o Euler's theorem: x¥ mod n= x¥ M4 4" mod nif nis prime or a
product of two distinct primes
m eg, n=10¢(n) =4 x*=x%=x% mod 10

e Exponentiative inverse: yz =1 mod ¢(n) ~ (x¥)* = x¥* = x
m yz =1 mod ¢(n): zis y 's multiplicative inverse mod ¢(n)

A0 1 2 3 4 5 6 7T 8 9 1w 11 a2
0 Ojlofojofojofo]d0 0lo |00
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 214 8 6| 2 4 816 2 4 8 | 6
3 1 319 7 1 3 9|7 1 3 9|7 1
4 1 4 | 6| 4 6 [4 6 4] 6|4 6 | 4 |6
5 1] 5 5 5 5 5 5 5 5 5 5 5
6 1 6 | 6 6|6 |6 |66 |6 6|16 |6 |6
7 1 7|9 3 1 7 9 K} 1 7 9 3 1
8 1 B | 4 2 6 [8 [4 2|6 8 4 2|6
9 1 9 1 9 1 9 1 9 1 9 1 9 1

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 5/38

GER G i Gl
RSA (Rivest, Shamir, Adleman)

@ RSA provides both encryption and digital signature

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 6 /38

RSA (Rivest, Shamir, Adieman)
RSA (Rivest, Shamir, Adleman)

@ RSA provides both encryption and digital signature

e Variable key length (512 bits or greater) and variable block size
w plaintext block must be shorter than the key size
m ciphertext block has the same length as the key size

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

6 /38

RSA (Rivest, Shamir, Adieman)
RSA (Rivest, Shamir, Adleman)

@ RSA provides both encryption and digital signature

e Variable key length (512 bits or greater) and variable block size
w plaintext block must be shorter than the key size
m ciphertext block has the same length as the key size

@ Basis: factorization of large numbers is hard

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

6 /38

RSA (Rivest, Shamir, Adieman)
RSA (Rivest, Shamir, Adleman)

@ RSA provides both encryption and digital signature

e Variable key length (512 bits or greater) and variable block size
w plaintext block must be shorter than the key size
m ciphertext block has the same length as the key size

@ Basis: factorization of large numbers is hard

@ RSA is slow, mostly used to encrypt/sign short messages
m e o shared session keys or message digests

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

6/ 38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Key Generation

@ Choose two large primes, p and g (about 256 bits each)
w never reveal p and g

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 7 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Key Generation

@ Choose two large primes, p and g (about 256 bits each)
w never reveal p and g

o Let n=p x q (¢(n) =777)
w factoring n (512 bit) into p and g is hard

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

738

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Key Generation

@ Choose two large primes, p and g (about 256 bits each)
w never reveal p and g

o Let n=p x q (¢(n) =777)
w factoring n (512 bit) into p and g is hard

@ Public key is < e, n >, e relatively prime to ¢(n),
private key is < d,n >, ed =1 mod ¢(n)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

738

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Operations

@ Public key < e, n >, private key < d,n >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 /38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Operations

@ Public key < e, n >, private key < d,n >

@ Encryption of m < n: ¢ = m® mod n,
decryption: m=c? mod n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

8 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

@ Public key < e, n >, private key < d,n >

@ Encryption of m < n: ¢ = m® mod n,
decryption: m=c? mod n

d

@ Signing m< n: s=m° mod n

verification: m = s mod n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

8 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Operations

@ Public key < e, n >, private key < d,n >

@ Encryption of m < n: ¢ = m® mod n,
decryption: m=c? mod n

@ Signing m< n: s = m9 mod n

verification: m =s€ mod n

@ Who are the principles of these operations???

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 8 /38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Example

p=23,9g =11~ n=pq=253,¢(n) = (p—1)(g—1) =220

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p=23,g=11~ n=pq=253,¢(n) = (p—1)(qg—1) =220
e = 39 (relatively prime to 220) ~~ public key: < 39,253 >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p=23,g=11~ n=pq=253,¢(n) = (p—1)(qg—1) =220
e = 39 (relatively prime to 220) ~~ public key: < 39,253 >
d=e"! mod 220 = 79 ~ private key: < 79,253 >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

9/38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p=23,g=11~>n=pqg=253,¢(n) =(p—1)(qg—1) =220
e = 39 (relatively prime to 220) ~~ public key: < 39,253 >
d=e"! mod 220 = 79 ~ private key: < 79,253 >

- m = 80

e encryption: ¢ = m® mod n = 80%° mod 253 = 37
o decryption: m = c? mod n= 37" mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

9/38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Example

p=23,g=11~>n=pqg=253,¢(n) =(p—1)(qg—1) =220
e = 39 (relatively prime to 220) ~~ public key: < 39,253 >
d=e"! mod 220 = 79 ~ private key: < 79,253 >

- m = 80

encryption: ¢ = m® mod n =803 mod 253 = 37
decryption: m = c? mod n= 37" mod 253 = 80
signature: s = m? mod n =807 mod 253 = 224
verification: m = s¢ mod n = 224%° mod 253 = 80

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

9/38

Why RSA Works

n=pq,(n)=(p—1)(g—1), and de =1 mod $(n)

~~ x% = x mod n (Euler's theorem, x € Z,,)

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

10/ 38

Why RSA Works

n=pq,(n)=(p—1)(g—1), and de =1 mod $(n)

~~ x% = x mod n (Euler's theorem, x € Z,,)

w encryption: x€, decryption: (x€)? = x®@ = x

m signature and verification are the reverse

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

10/ 38

RSA. (Rivest, Shamir, Adleman)
Why RSA is Secure

@ Public key < e, n > is a public information

@ Factoring large number n into p x g is difficult
w if factored ~~ ¢(n) = (p —1)(g — 1)
~d=e"1 mod ¢(n) ~<d,n>

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

11/ 38

RSA. (Rivest, Shamir, Adleman)
Why RSA is Secure

@ Public key < e, n > is a public information

@ Factoring large number n into p x g is difficult
w if factored ~~ ¢(n) = (p —1)(g — 1)
~d=e"1 mod ¢(n) ~<d,n>
w1024 bits are consider secure for now, 2048 bits are better

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

11/ 38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Implementation

@ Basic operation: exponentiating with big numbers

@ Generating RSA keys:
- finding big primes p and g, and selecting d and e

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

12 /38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example
a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

RSA. (Rivest, Shamir, Adleman)
Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example
a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

10, 9 1232 =123 x 123 = 15129 = 213 mod 678
11, +1 1233 =213 x 123 = 26199 = 435 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example

a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

10, 9 1232 =123 x 123 = 15129 = 213 mod 678
11, +1 1233 =213 x 123 = 26199 = 435 mod 678
110, 9 123°% =435 x 435 = 189225 = 63 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

RSA. (Rivest, Shamir, Adleman)
Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example
a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

10, 9 1232 =123 x 123 = 15129 = 213 mod 678
11, +1 1233 =213 x 123 = 26199 = 435 mod 678
110, 9 123°% =435 x 435 = 189225 = 63 mod 678

1100, 9 12312 =63 x 63 = 3969 = 579 mod 678
1101, +1 12313 =579 x 123 = 71217 = 27 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

RSA. (Rivest, Shamir, Adleman)
Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example
a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

10, 9 1232 =123 x 123 = 15129 = 213 mod 678
11, +1 1233 =213 x 123 = 26199 = 435 mod 678
110, 9 123°% =435 x 435 = 189225 = 63 mod 678

1100, 9 1232 =63 x 63 = 3969 = 579 mod 678
1101, +1 12313 =579 x 123 = 71217 = 27 mod 678
11010, 9 12326 =27 x 27 =729 =51 mod 678
11011, +1 12327 =51 x 123 =6273 =171 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

RSA. (Rivest, Shamir, Adleman)
Exponentiating

To compute a* mod t, use repeated squaring and do modular reduction
at each step

Example
a=123,x = 54 = 110110, t = 678, a>* = (((((a)?a)?)?a)?a)?

1o 123

10, 9 1232 =123 x 123 = 15129 = 213 mod 678
11, +1 1233 =213 x 123 = 26199 = 435 mod 678
110, 9 123°% =435 x 435 = 189225 = 63 mod 678

1100, 9 1232 =63 x 63 = 3969 = 579 mod 678
1101, +1 12313 =579 x 123 = 71217 = 27 mod 678
11010, 9 12326 =27 x 27 =729 =51 mod 678
11011, +1 12327 =51 x 123 =6273 =171 mod 678
110110, 9 123%% =171 x 171 = 29241 = 87 mod 678

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 /38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Exponentiating

Pseudo code to compute a* mod t, assuming x has k bits
r=a
fori=k—1tol:
r=rxr modt
if x; == 1:
r=rxa modt
return r

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 14 / 38

e e Yire)
Exponentiating: Timing Attacks

@ Timing attack: to recover the private key from the running time of
the decryption algorithm (m = ¢ mod n)

>khttp://www.cs.sjsu.edu/1’acuIty/stam|;a/students/artic|e.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

e e Yire)
Exponentiating: Timing Attacks

@ Timing attack: to recover the private key from the running time of
the decryption algorithm (m = ¢ mod n)
m the attack proceeds bit by bit (assuming he knows ¢ and m):

*http://www.cs.sjsu.edu/facuIty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

e e Yire)
Exponentiating: Timing Attacks

@ Timing attack: to recover the private key from the running time of
the decryption algorithm (m = ¢ mod n)
m the attack proceeds bit by bit (assuming he knows ¢ and m):
m r=r x a mod t is only executed if d; =1
for some ¢ and m combination, this step is extremely slow

*http://www.cs.sjsu.edu/facuIty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

e e Yire)
Exponentiating: Timing Attacks

@ Timing attack: to recover the private key from the running time of
the decryption algorithm (m = ¢ mod n)
m the attack proceeds bit by bit (assuming he knows ¢ and m):
m r=r x a mod t is only executed if d; =1
for some ¢ and m combination, this step is extremely slow
m attackers can determine bits of d by comparing time*

*http://www.cs.sjsu.edu/facuIty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

e e Yire)
Exponentiating: Timing Attacks

@ Timing attack: to recover the private key from the running time of
the decryption algorithm (m = ¢ mod n)
m the attack proceeds bit by bit (assuming he knows ¢ and m):
m r=r x a mod t is only executed if d; =1
for some ¢ and m combination, this step is extremely slow
m attackers can determine bits of d by comparing time*

o To mitigate, use blinding: multiply the ciphertext by a random
number before decryption

*http://www.cs.sjsu.edu/facuIty/stamp/students/article.html
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 15 / 38

http://www.cs.sjsu.edu/faculty/stamp/students/article.html

RSA. (Rivest, Shamir, Adleman)
Finding Big Primes

@ Infinite number of primes, but thin out when getting bigger
w probability of a random number n being prime is ﬁ
m e.g 1in 23 for a ten-digit number, 1 in 230 for hundred-digits

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 16 / 38

RSA. (Rivest, Shamir, Adleman)
Finding Big Primes

@ Infinite number of primes, but thin out when getting bigger
w probability of a random number n being prime is ﬁ
m e.g 1in 23 for a ten-digit number, 1 in 230 for hundred-digits

@ Method: choose a random number then test if it is a prime

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 16 / 38

e e Yire)
Finding Big Primes

Theorem

Fermat's theorem: if p is prime and 0 < a < p, a1 =1 mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

RSA. (Rivest, Shamir, Adleman)
Finding Big Primes

Theorem

Fermat's theorem: if p is prime and 0 < a < p, a1 =1 mod p

@ |t is a specialization of Euler's theorem: a relatively prime to
n~a®" =1 mod n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

RSA. (Rivest, Shamir, Adleman)
Finding Big Primes

Theorem

Fermat's theorem: if p is prime and 0 < a < p, a1 =1 mod p

@ |t is a specialization of Euler's theorem: a relatively prime to
n~a®" =1 mod n

@ Probability of p is not prime but a?~1 =1 mod p is
> test multiple a to increase confidence
w» Carmichael numbers are special cases

1
o8

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

17 / 38

RSA. (Rivest, Shamir, Adleman)
Finding Big Primes

Theorem

Fermat's theorem: if p is prime and 0 < a < p, a1 =1 mod p

@ |t is a specialization of Euler's theorem: a relatively prime to
n~a®" =1 mod n

@ Probability of p is not prime but a?~1 =1 mod p is
> test multiple a to increase confidence
w» Carmichael numbers are special cases

1
o8

Miller and Rabin test

If nis a prime, the only mod n square roots of 1 are 1 and -1, but many
square roots if n is not a power of a prime (exercise: why?7?)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 17 / 38

RSA. (Rivest, Shamir, Adleman)
Finding d and e

@ Choose a number that is relatively-prime to ¢(n) as e
m e is public and can be a small number such as 3 or 65537

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 18 / 38

RSA. (Rivest, Shamir, Adleman)
Finding d and e

@ Choose a number that is relatively-prime to ¢(n) as e
m e is public and can be a small number such as 3 or 65537

@ Compute d using Euclid’s algorithm
w d must be big to avoid being searchable

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

18 / 38

OGN ECIGOTGEI RSA (Rivest, Shamir, Adleman)

Issues with e = 3

1
@ Messages less than n3 will be encrypted as m>

> take cube root of the ciphertext to decrypt

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

19 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Issues with e = 3

1
@ Messages less than n3 will be encrypted as m>

> take cube root of the ciphertext to decrypt

@ Same message enctyped and sent to > 3 recipients with e = 3
m plaintext can be revealed by using Chinese Remainder Theorem

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

19 /38

Public Key Algorithms RSA (Rivest, Shamir, Adleman)

Issues with e = 3

1
@ Messages less than n3 will be encrypted as m>

> take cube root of the ciphertext to decrypt

@ Same message enctyped and sent to > 3 recipients with e = 3
m plaintext can be revealed by using Chinese Remainder Theorem
m to address it, use random/individualized padding

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 19 / 38

RSA (Rivest, Shamir, Adleman)
RSA Threats with e = 3

@ Cube root problem: forge signature on any messages

m assume message are padded on the right with random numbers

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

20 / 38

RSA (Rivest, Shamir, Adleman)
RSA Threats with e = 3

@ Cube root problem: forge signature on any messages
m assume message are padded on the right with random numbers
m to forge signature, digest the message to h, pad it on the right
with zeros, then set the signature to r = h3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 20 / 38

RSA (Rivest, Shamir, Adleman)
RSA Threats with e = 3

@ Cube root problem: forge signature on any messages
m assume message are padded on the right with random numbers
m to forge signature, digest the message to h, pad it on the right
with zeros, then set the signature to r = h3
m signature is forged because r3 = h (padded with random numbers)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 20 / 38

RSA (Rivest, Shamir, Adleman)
RSA Threats: Smooth Numbers

@ Smooth number is the product of reasonably small primes

@ Smooth number threat
m RSA signs a message by m? mod n

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

21/ 38

RSA (Rivest, Shamir, Adleman)
RSA Threats: Smooth Numbers

@ Smooth number is the product of reasonably small primes

@ Smooth number threat
m RSA signs a message by m? mod n
m with signature on m; and mo, the attacker can forge signature on:
my X mz,%,m’l,m’1 x mh, ...

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 21 /38

RSA (Rivest, Shamir, Adleman)
RSA Threats: Smooth Numbers

@ Smooth number is the product of reasonably small primes

@ Smooth number threat
m RSA signs a message by m? mod n
m with signature on m; and mo, the attacker can forge signature on:
my X mz,%,m’l,m’1 x mh, ...
- “small” primes provide flexible building blocks
attackers can forge signatures on any product from his collection

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 21 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky
@ PKCS is the operational standards to avoid pitfalls

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

22 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky

@ PKCS is the operational standards to avoid pitfalls
m encrypting guessable message

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

22 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky

@ PKCS is the operational standards to avoid pitfalls
m encrypting guessable message
m signing smooth number

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

22 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky

@ PKCS is the operational standards to avoid pitfalls
m encrypting guessable message
m signing smooth number
m multiple recipients of a message when e =3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

22 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky

@ PKCS is the operational standards to avoid pitfalls
m encrypting guessable message
m signing smooth number
m multiple recipients of a message when e =3
m encrypting messages < n3 when e =3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

22 /38

e e Yire)
Public Key Cryptography Standards (PKCS)

@ Correct use of RSA could be tricky

@ PKCS is the operational standards to avoid pitfalls
m encrypting guessable message
m signing smooth number
m multiple recipients of a message when e =3
m encrypting messages < n3 when e =3
- signing messages with random padding on the right when e = 3

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 22 /38

e e Yire)
PKCS #1 Encryption

@ How does PKCS #1 address the following pitfalls?
- encrypting guessable message
w multiple recipients of a message when e =3
m encrypting messages < n3 when e = 3

| 0 | 2 | at least 8 random non-zero octets | 0 | data

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

23 /38

e e Yire)
PKCS #1 Signature

@ How does PKCS #1 address the following pitfalls?
m signing smooth number
m signing messages with random padding on the right when e = 3

| 0 | 1 | at least 8 octets of ffyg | 0 | ASN. 1-encoded

digest type/value

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 24 / 38

e e Yire)
PKCS #1 Signature

@ How does PKCS #1 address the following pitfalls?
m signing smooth number
m signing messages with random padding on the right when e = 3

o Why 8 octets of ffg instead of random bytes?

ASN.1-encoded

| 0 | 1 | at least 8 octets of ffyg | 0 | digest type/value

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 24 / 38

Diffie-Hellman
Diffie-Hellman

o Diffie-Hellman is designed to negotiate a shared secret key using only
public communication
w j.e. not suitable for public key encryption

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 25 /38

Diffie-Hellman
Diffie-Hellman

o Diffie-Hellman is designed to negotiate a shared secret key using only
public communication
w j.e. not suitable for public key encryption

o Diffie-Hellman does not provide authentication of the principles
m you could negotiate a key with a complete stranger

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 25 /38

Diffie-Hellman
Diffie-Hellman Protocol

@ Publicly publish two numbers, p and g
m pis a large prime (about 512 bits), and g < p

Alice Bob
pick random number S, pick random number S,
compute 7,=g%mod p compute 7,=g% mod p

Ta
DUNSS—

compute (7)5*mod p compute (7,)* mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 26 / 38

Diffie-Hellman
Diffie-Hellman Protocol

@ Publicly publish two numbers, p and g
m pis a large prime (about 512 bits), and g < p

@ Alice and Bob exchange two numbers T, and T,

SaSh

@ They agree upon g mod p after DH exchange

Alice Bob
pick random number S, pick random number S,
compute 7,=g% mod p compute 7,=g% mod p

Ta
— T

compute (7)5*mod p compute (7,)* mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

26 / 38

Public Key Algorithms Diffie-Hellman

Example

o Let p=353,g=3,5,=097,5, =233

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Public Key Algorithms Diffie-Hellman

Example

o Let p=353,g=3,5,=097,5, =233
@ Alice computes T, = g> mod p = 3% mod 353 = 40
Bob computes T, = g% mod p = 3233 mod 353 = 248

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

27 / 38

Public Key Algorithms Diffie-Hellman

Example

o Let p=353,g=3,5,=097,5, =233
@ Alice computes T, = g> mod p = 3% mod 353 = 40
Bob computes T, = g% mod p = 3233 mod 353 = 248

@ Alice and Bob exchanges T, and T,

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

27 / 38

Public Key Algorithms Diffie-Hellman

Example

o Let p=353,g=3,5,=097,5, =233
@ Alice computes T, = g> mod p = 3% mod 353 = 40
Bob computes T, = g% mod p = 3233 mod 353 = 248

@ Alice and Bob exchanges T, and T,

@ Alice computes K = T, mod p = 24897 mod 353 = 160
Bob computes K = be mod p = 40233 mod 353 = 160

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 27 / 38

Diffie-Hellman
Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sp, and publishes T
@ Bob publishes < pp, gp, Tp >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 28 / 38

Diffie-Hellman
Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sp, and publishes T
Bob publishes < pp, gp, Tp >

@ Alice picks a random S;, and computes K,, = Tbs"" mod pp
@ Alice encrypts the message with K
@ Alice sends ciphertext and T, = gfa mod pp to Bob

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 28 / 38

Diffie-Hellman
Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his Sp, and publishes T

@ Bob publishes < pp, gp, Tp >

@ Alice picks a random S;, and computes K,, = Tbs"" mod pp
@ Alice encrypts the message with K

@ Alice sends ciphertext and T, = gfa mod pp to Bob

@ Bob computes K, = be, and decrypt the message with it

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

28 / 38

Diffe-Hellman
Why DH is Secure

@ Discrete logarithms problem is difficult
m given g° mod p, g, and p, it is computationally difficult to get S
w no guarantee, but remember Fundamental Tenet of Cryptograph?

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 29 / 38

Diffe-Hellman
Why DH is Secure

@ Discrete logarithms problem is difficult
m given g° mod p, g, and p, it is computationally difficult to get S
w no guarantee, but remember Fundamental Tenet of Cryptograph?

@ For “obscure mathematical reasons:”
p—1 :
" p and == should be prime

L gp%l =—1 mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 29 / 38

Diffie-Hellman
Man-in-the-Middle Attack

@ Alice and Bob both negotiated a key with Trudy

Alice Trudy Bob
gSa ——————— gSr —————
—— gSr’ — e ng
Kat = (gSa)Sr’ Kbt = (ng)Sr

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 30/ 38

Diffie-Hellman
Man-in-the-Middle Attack

@ Alice and Bob both negotiated a key with Trudy

@ Trudy forwards messages between Alice and Bob
w Alice — Bob: E(Kpe, D(Kat, Cab))
m Bob — Alice: E(Kat, D(Kbta Cba))

Alice Trudy Bob
gSa ——————— gSr —————
—— gSr’ — e ng
Ky = (g5 Kyt = (g5

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

30 / 38

Diffe-Hellman
Defense Against MITM Attacks

@ Published DH numbers
m everybody agrees upon a p and g, and publishes his g°
m grab the other's g° then compute the secret
w eliminate the need for the first two messages in DH protocol

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

31/ 38

Diffe-Hellman
Defense Against MITM Attacks

@ Published DH numbers
m everybody agrees upon a p and g, and publishes his g°
m grab the other's g° then compute the secret
w eliminate the need for the first two messages in DH protocol
@ Authenticated Diffie-Hellman
m share a secret or publish one’s public key in advance
w there are various ways to mix Diffie-Hellman and authentication

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 31/38

DS (Digital Signature Standard)
DSS (Digital Signature Standard)

@ An algorithm designed by NIST for digital signature
w the algorithm is known as DSA (digital signature algorithm)
m messages are digested first, the digest is then signed
> the sister function, SHS, is a message digesting function

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

32/ 38

DS (Digital Signature Standard)
DSS (Digital Signature Standard)

@ An algorithm designed by NIST for digital signature
w the algorithm is known as DSA (digital signature algorithm)
m messages are digested first, the digest is then signed
> the sister function, SHS, is a message digesting function

@ Signing is faster than verification
w e o for use in the smart cards

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

32/ 38

el el k)
Digital Signature Algorithm

To generate DSA signature

© Generate p and g (public)
we q: 160-bit prime, p: 512-bit prime, and p = kg + 1

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

33 /38

DSS (Digital Signature Standard)
Digital Signature Algorithm

To generate DSA signature

© Generate p and g (public)
- q: 160-bit prime, p: 512-bit prime, and p = kg + 1

@ Generate g such that g9 =1 mod p (public)

1
w pick random number h, let g = h'T = hk (Fermat's theorem)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 /38

DSS (Digital Signature Standard)
Digital Signature Algorithm

To generate DSA signature

© Generate p and g (public)
we q: 160-bit prime, p: 512-bit prime, and p = kg + 1

@ Generate g such that g9 =1 mod p (public)
1
w pick random number h, let g = h'T = hk (Fermat's theorem)

© Choose a long-term public/private key pair < T,S >
m pick a random number S < g, let T =g° mod p

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 /38

DSS (Digital Signature Standard)
Digital Signature Algorithm

To generate DSA signature

o

2]

Generate p and g (public)
- q: 160-bit prime, p: 512-bit prime, and p = kg + 1

Generate g such that g9 =1 mod p (public)
1
w pick random number h, let g = h'T = hk (Fermat's theorem)

Choose a long-term public/private key pair < T,S >
m pick a random number S < g, let T =g° mod p

Choose a per message public/private key pair < Tp,, Sy >
w pick a random S, let T, = ((g> mod p) mod q)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 33 /38

el el k)
Digital Signature Algorithm...

To generate DSA signature
© Calculate message digest d,

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

34 /38

el el k)
Digital Signature Algorithm...

To generate DSA signature
© Calculate message digest d,
@ Compute the signature X = S.1(dy, + ST,) mod g

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

34 /38

DSS (Digital Signature Standard)
Digital Signature Algorithm...

To generate DSA signature
© Calculate message digest d,
@ Compute the signature X = S.1(dy, + ST,) mod g

@ The signed message include
w m: the message, T,,: per-message publish key, X: signature
w the public key is < p,q,g, T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

34 /38

DSS (Digital Signature Standard)
Digital Signature Algorithm...

To generate DSA signature
© Calculate message digest d,
@ Compute the signature X = S.1(dy, + ST,) mod g

@ The signed message include
w m: the message, T,,: per-message publish key, X: signature
w the public key is < p,q,g, T >

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

34 /38

el el k)
Digital Signature Algorithm...

To verify DSA signature
public information: < p,q,g, T, Ty, m, X >
@ calculate X! mod g and d,

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

35/ 38

el el k)
Digital Signature Algorithm...

To verify DSA signature
public information: < p,q,g, T, Ty, m, X >
@ calculate X! mod g and d,
Q@ x=d,X ! mod q
y=TmX"! mod g
z=(g*TY mod p) mod g

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

35/ 38

DSS (Digital Signature Standard)
Digital Signature Algorithm...

To verify DSA signature
public information: < p,q,g, T, Ty, m, X >
@ calculate X! mod g and d,
Q@ x=d,X ! mod q
y=TmX"! mod g
z=(g*TY mod p) mod g

@ if z= T,,, the signature is verified

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 35 /38

Why DSA Works

Let v = (dm+ STm)"! mod q:

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Why DSA Works

Let v = (dm+ STm)"! mod q:
e X~ = (S-1(dm + STm)) ™t = Sp(dm + STm) ™t = Spv mod g

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Why DSA Works

Let v = (dm+ STm)"! mod q:
e X~ = (S-1(dm + STm)) ™t = Sp(dm + STm) ™t = Spv mod g
mw x = dpX" 1 =dnSmv mod g

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Why DSA Works

Let v = (dm+ STm)"! mod q:

e X~ = (S-1(dm + STm)) ™t = Sp(dm + STm) ™t = Spv mod g
mw x = dpX" 1 =dnSmv mod g

mw y =T, Xt=T,5,v modq

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 36 / 38

Why DSA Works

Let v = (dm+ STm)"! mod q:

e X~ = (S-1(dm + STm)) ™t = Sp(dm + STm) ™t = Spv mod g

e — de_]‘ = demV mod q

mw y =T Xt = Ty,Smv mod g

STmSmv — o(dm+STm)Smv

7 — gx TY = gdmsmvg g(

=g =T, mod p mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014

36 / 38

DSA Pitfalls

Private key (S) can be revealed if

@ per-message private key S, is leaked

w X = S-1(dm + STm) ~ (XmSm — dm) T, mod g =S mod g

m

Zhi Wang (FSU) CNT4406/5412 Network Security

Fall 2014

37 /38

DSA Pitfalls

Private key (S) can be revealed if

@ per-message private key S, is leaked
w X = S-1(dm + STm) ~ (XmSm — dm) T, mod g =S mod g
@ two messages are signed with the same per-message private key
(X — X)) "Hdm — d) mod g =S, mod q

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 37 /38

OLICYAECTGIGEI DSS (Digital Signature Standard)

Summary

Modular arithmetic
RSA

Diffie-Hellman
DSA

Next lecture: authentication

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 38 /38

	Public Key Algorithms
	Introduction
	Modular Arithmetic
	RSA (Rivest, Shamir, Adleman)
	Diffie-Hellman
	DSS (Digital Signature Standard)

