CNT4406/5412 Network Security
 Public Key Algorithms

Zhi Wang

Florida State University

Fall 2014

Introduction

- Each principal has a pair of public and secret numbers (e, d) IUN public key is announced to the public |"I* private key is kept secret

Introduction

- Each principal has a pair of public and secret numbers (e, d)
num public key is announced to the public
mer private key is kept secret
- Public key algorithms are different in design

Int Diffie-Hellman allows establishment of a shared secret

	encryption	signature	key exchange
RSA	y	y	y
Diffie-Hellman	n	n	y
DSA	n	y	n

Modular Addition

- Modular addition is reversible for all numbers $a<n$ nut Caesar cipher uses modular addition

$+$	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Modular Addition

- Modular addition is reversible for all numbers $a<n$

Num Caesar cipher uses modular addition

- Additive inverse of a is $-a \bmod n$
mile e.g., 7 is 3 's additive inverse in $\bmod 10$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Modular Multiplication

- It is reversible for numbers relatively-prime to and less than n
${ }^{n} 1+$ multiplicative inverse can be calculated by Euclid's algorithm

-	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Modular Multiplication

- It is reversible for numbers relatively-prime to and less than n
nut multiplicative inverse can be calculated by Euclid's algorithm
- Totient function $\phi(n)$: how many numbers less than and relatively-prime to n
nult if n is prime, $\phi(n)=n-1$
if $n=p q$ and p, q are prime, $\phi(n)=(p-1)(q-1)=\phi(p) \phi(q)$

-	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Modular Exponentiation

- Euler's theorem: $x^{y} \bmod n=x^{y} \bmod \phi(n) \bmod n$ if n is prime or a product of two distinct primes
Int e.g., $n=10, \phi(n)=4, x^{1}=x^{5}=x^{9} \bmod 10$

x^{y}	0	1	2	3	4	5	6	7	8	9	10	11	12
0		0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	6	2	4	8	6	2	4	8	6
3	1	3	9	7	1	3	9	7	1	3	9	7	1
4	1	4	6	4	6	4	6	4	6	4	6	4	6
5	1	5	5	5	5	5	5	5	5	5	5	5	5
6	1	6	6	6	6	6	6	6	6	6	6	6	6
7	1	7	9	3	1	7	9	3	1	7	9	3	1
8	1	8	4	2	6	8	4	2	6	8	4	2	6
9	1	9	1	9	1	9	1	9	1	9	1	9	1

Modular Exponentiation

- Euler's theorem: $x^{y} \bmod n=x^{y} \bmod \phi(n) \bmod n$ if n is prime or a product of two distinct primes
InIt e.g., $n=10, \phi(n)=4, x^{1}=x^{5}=x^{9} \bmod 10$
- Exponentiative inverse: $y z=1 \bmod \phi(n) \rightsquigarrow\left(x^{y}\right)^{z}=x^{y z}=x$ $y z=1 \bmod \phi(n): z$ is y 's multiplicative inverse $\bmod \phi(n)$

x^{y}	0	1	2	3	4	5	6	7	8	9	10	11	12
0		0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	6	2	4	8	6	2	4	8	6
3	1	3	9	7	1	3	9	7	1	3	9	7	1
4	1	4	6	4	6	4	6	4	6	4	6	4	6
5	1	5	5	5	5	5	5	5	5	5	5	5	5
6	1	6	6	6	6	6	6	6	6	6	6	6	6
7	1	7	9	3	1	7	9	3	1	7	9	3	1
8	1	8	4	2	6	8	4	2	6	8	4	2	6
9	1	9	1	9	1	9	1	9	1	9	1	9	1

RSA (Rivest, Shamir, Adleman)

- RSA provides both encryption and digital signature

RSA (Rivest, Shamir, Adleman)

- RSA provides both encryption and digital signature
- Variable key length (512 bits or greater) and variable block size
null plaintext block must be shorter than the key size
nnla ciphertext block has the same length as the key size

RSA (Rivest, Shamir, Adleman)

- RSA provides both encryption and digital signature
- Variable key length (512 bits or greater) and variable block size
null plaintext block must be shorter than the key size
nIn ciphertext block has the same length as the key size
- Basis: factorization of large numbers is hard

RSA (Rivest, Shamir, Adleman)

- RSA provides both encryption and digital signature
- Variable key length (512 bits or greater) and variable block size
null plaintext block must be shorter than the key size
nnlo ciphertext block has the same length as the key size
- Basis: factorization of large numbers is hard
- RSA is slow, mostly used to encrypt/sign short messages nut e.g., shared session keys or message digests

Key Generation

- Choose two large primes, p and q (about 256 bits each) nut never reveal p and q

Key Generation

- Choose two large primes, p and q (about 256 bits each) net never reveal p and q
- Let $n=p \times q(\phi(n)=? ? ?)$
nin factoring n (512 bit) into p and q is hard

Key Generation

- Choose two large primes, p and q (about 256 bits each) nut never reveal p and q
- Let $n=p \times q(\phi(n)=? ? ?)$
natoring n (512 bit) into p and q is hard
- Public key is $\langle e, n\rangle$, e relatively prime to $\phi(n)$, private key is $\langle d, n\rangle$, ed $=1 \bmod \phi(n)$

Operations

- Public key $\langle e, n\rangle$, private key $\langle d, n\rangle$

Operations

- Public key $\langle e, n\rangle$, private key $\langle d, n\rangle$
- Encryption of $m<n: c=m^{e} \bmod n$, decryption: $m=c^{d} \bmod n$

Operations

- Public key $\langle e, n\rangle$, private key $\langle d, n\rangle$
- Encryption of $m<n: c=m^{e} \bmod n$, decryption: $m=c^{d} \bmod n$
- Signing $m<n: s=m^{d} \bmod n$ verification: $m=s^{e} \bmod n$

Operations

- Public key $\langle e, n\rangle$, private key $\langle d, n\rangle$
- Encryption of $m<n: c=m^{e} \bmod n$, decryption: $m=c^{d} \bmod n$
- Signing $m<n: s=m^{d} \bmod n$ verification: $m=s^{e} \bmod n$
- Who are the principles of these operations???

Example

$$
p=23, q=11 \rightsquigarrow n=p q=253, \phi(n)=(p-1)(q-1)=220
$$

Example

$$
p=23, q=11 \rightsquigarrow n=p q=253, \phi(n)=(p-1)(q-1)=220
$$

$e=39$ (relatively prime to 220) \rightsquigarrow public key: $<39,253>$

Example

$$
p=23, q=11 \rightsquigarrow n=p q=253, \phi(n)=(p-1)(q-1)=220
$$

$e=39$ (relatively prime to 220) \rightsquigarrow public key: $<39,253>$
$d=e^{-1} \bmod 220=79 \rightsquigarrow$ private key: $\langle 79,253\rangle$

Example

$p=23, q=11 \rightsquigarrow n=p q=253, \phi(n)=(p-1)(q-1)=220$
$e=39$ (relatively prime to 220) \rightsquigarrow public key: $<39,253>$
$d=e^{-1} \bmod 220=79 \rightsquigarrow$ private key: $<79,253>$
|n $m=80$

- encryption: $c=m^{e} \bmod n=80^{39} \bmod 253=37$
- decryption: $m=c^{d} \bmod n=37^{79} \bmod 253=80$

Example

$p=23, q=11 \rightsquigarrow n=p q=253, \phi(n)=(p-1)(q-1)=220$
$e=39$ (relatively prime to 220) \rightsquigarrow public key: $<39,253>$
$d=e^{-1} \bmod 220=79 \rightsquigarrow$ private key: $<79,253>$
|n $m=80$

- encryption: $c=m^{e} \bmod n=80^{39} \bmod 253=37$
- decryption: $m=c^{d} \bmod n=37^{79} \bmod 253=80$
- signature: $s=m^{d} \bmod n=80^{79} \bmod 253=224$
- verification: $m=s^{e} \bmod n=224^{39} \bmod 253=80$

Why RSA Works

$n=p q, \phi(n)=(p-1)(q-1)$, and $d e=1 \bmod \phi(n)$
$\rightsquigarrow x^{d e}=x \bmod n\left(\right.$ Euler's theorem, $\left.x \in Z_{n}\right)$

Why RSA Works

$n=p q, \phi(n)=(p-1)(q-1)$, and $d e=1 \bmod \phi(n)$
$\rightsquigarrow x^{d e}=x \bmod n$ (Euler's theorem, $\left.x \in Z_{n}\right)$
Int encryption: x^{e}, decryption: $\left(x^{e}\right)^{d}=x^{e d}=x$
nut signature and verification are the reverse

Why RSA is Secure

- Public key $<e, n>$ is a public information
- Factoring large number n into $p \times q$ is difficult

In if factored $\rightsquigarrow \phi(n)=(p-1)(q-1)$
$\rightsquigarrow d=e^{-1} \bmod \phi(n) \rightsquigarrow<d, n>$

Why RSA is Secure

- Public key $<e, n>$ is a public information
- Factoring large number n into $p \times q$ is difficult

In if factored $\rightsquigarrow \phi(n)=(p-1)(q-1)$
$\rightsquigarrow d=e^{-1} \bmod \phi(n) \rightsquigarrow<d, n>$
nnt 1024 bits are consider secure for now, 2048 bits are better

Implementation

- Basic operation: exponentiating with big numbers
- Generating RSA keys:
nult finding big primes p and q, and selecting d and e

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example
$a=123, x=54=110110_{2}, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}$
1_{2} 123

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example
$a=123, x=54=1101102, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}$

| 1_{2} |
| :--- | ---: | :--- |
| 10_{2} |
| 11_{2} |$\quad+\quad$| 123 |
| :--- |
| $123^{2}=123 \times 123=15129=213$ |
| +1 |$\quad 123^{3}=213 \times 123=26199=435 \bmod 678$

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example
$a=123, x=54=1101102, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}$

1_{2}		123
10_{2}		
11_{2}		
10_{2}	\uparrow	$123^{2}=123 \times 123=15129=213$
+1	$123^{3}=213 \times 123=26199=435$	$\bmod 678$
$123^{6}=435 \times 435=189225=63$	$\bmod 678$	

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example $a=123, x=54=1101102, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}$

1_{2}		123
10_{2}	†	$123^{2}=123 \times 123=15129=213 \bmod 678$
11_{2}	+1	$123^{3}=213 \times 123=26199=435 \bmod 678$
110_{2}	†	$123^{6}=435 \times 435=189225=63 \bmod 678$
1100_{2}	母	$123^{12}=63 \times 63=3969=579 \bmod 678$
1101_{2}	+1	$123^{13}=579 \times 123=71217=27 \bmod 678$

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example

$$
a=123, x=54=1101102, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}
$$

12		123
10_{2}	\dagger	$123^{2}=123 \times 123=15129=213 \bmod 678$
11_{2}	+1	$123^{3}=213 \times 123=26199=435 \bmod 678$
110_{2}	\dagger	$123^{6}=435 \times 435=189225=63 \bmod 678$
1100_{2}	\dagger	$123^{12}=63 \times 63=3969=579 \bmod 678$
11012	+1	$123^{13}=579 \times 123=71217=27 \bmod 678$
11010_{2}	¢	$123^{26}=27 \times 27=729=51 \bmod 678$
$1011{ }_{2}$	+1	$123^{27}=51 \times 123=6273=171 \bmod 678$

Exponentiating

To compute $a^{x} \bmod t$, use repeated squaring and do modular reduction at each step

Example

$$
a=123, x=54=110110_{2}, t=678, a^{54}=\left(\left(\left(\left((a)^{2} a\right)^{2}\right)^{2} a\right)^{2} a\right)^{2}
$$

12		123
10_{2}	\dagger	$123^{2}=123 \times 123=15129=213 \bmod 678$
11_{2}	+1	$123^{3}=213 \times 123=26199=435 \bmod 678$
110_{2}	\checkmark	$123^{6}=435 \times 435=189225=63 \bmod 678$
1100_{2}	\dagger	$123^{12}=63 \times 63=3969=579 \bmod 678$
11012	+1	$123{ }^{13}=579 \times 123=71217=27 \bmod 678$
11010_{2}	'	$123^{26}=27 \times 27=729=51 \bmod 678$
11011_{2}	+1	$123^{27}=51 \times 123=6273=171 \bmod 678$
110110_{2}	¢	$123^{54}=171 \times 171=29241=87 \bmod$

Exponentiating

Pseudo code to compute $a^{x} \bmod t$, assuming x has k bits $r=a$ for $i=k-1$ to 1 : $r=r \times r \bmod t$ if $x_{i}==1$:

$$
r=r \times a \bmod t
$$

return r

Exponentiating: Timing Attacks

- Timing attack: to recover the private key from the running time of the decryption algorithm $\left(m=c^{d} \bmod n\right)$
${ }^{*}$ http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Exponentiating: Timing Attacks

- Timing attack: to recover the private key from the running time of the decryption algorithm $\left(m=c^{d} \bmod n\right)$
nelt the attack proceeds bit by bit (assuming he knows c and m):
${ }^{*}$ http://www.cs.sjsu.edu/faculty/stamp/students/article.html

Exponentiating: Timing Attacks

- Timing attack: to recover the private key from the running time of the decryption algorithm $\left(m=c^{d} \bmod n\right)$
nut the attack proceeds bit by bit (assuming he knows c and m):
$r=r \times a \bmod t$ is only executed if $d_{i}=1$ for some c and m combination, this step is extremely slow

Exponentiating: Timing Attacks

- Timing attack: to recover the private key from the running time of the decryption algorithm $\left(m=c^{d} \bmod n\right)$
Nut the attack proceeds bit by bit (assuming he knows c and m):
$r=r \times a \bmod t$ is only executed if $d_{i}=1$ for some c and m combination, this step is extremely slow ${ }^{n} \|+$ attackers can determine bits of d by comparing time*

Exponentiating: Timing Attacks

- Timing attack: to recover the private key from the running time of the decryption algorithm $\left(m=c^{d} \bmod n\right)$
nul the attack proceeds bit by bit (assuming he knows c and m):
nut $r=r \times a \bmod t$ is only executed if $d_{i}=1$
for some c and m combination, this step is extremely slow
${ }^{n} \mid+$ attackers can determine bits of d by comparing time*
- To mitigate, use blinding: multiply the ciphertext by a random number before decryption

Finding Big Primes

- Infinite number of primes, but thin out when getting bigger

NIIN probability of a random number n being prime is $\frac{1}{\ln n}$
e.g., 1 in 23 for a ten-digit number, 1 in 230 for hundred-digits

Finding Big Primes

- Infinite number of primes, but thin out when getting bigger
num probability of a random number n being prime is $\frac{1}{\ln n}$
e.g., 1 in 23 for a ten-digit number, 1 in 230 for hundred-digits
- Method: choose a random number then test if it is a prime

Finding Big Primes

Theorem
Fermat's theorem: if p is prime and $0<a<p, a^{p-1}=1 \bmod p$

Finding Big Primes

Theorem
Fermat's theorem: if p is prime and $0<a<p, a^{p-1}=1 \bmod p$

- It is a specialization of Euler's theorem: a relatively prime to $n \rightsquigarrow a^{\phi(n)}=1 \bmod n$

Finding Big Primes

Theorem
Fermat's theorem: if p is prime and $0<a<p, a^{p-1}=1 \bmod p$

- It is a specialization of Euler's theorem: a relatively prime to $n \rightsquigarrow a^{\phi(n)}=1 \bmod n$
- Probability of p is not prime but $a^{p-1}=1 \bmod p$ is $\frac{1}{10^{13}}$
nut test multiple a to increase confidence
|n+ Carmichael numbers are special cases

Finding Big Primes

Theorem
Fermat's theorem: if p is prime and $0<a<p, a^{p-1}=1 \bmod p$

- It is a specialization of Euler's theorem: a relatively prime to $n \rightsquigarrow a^{\phi(n)}=1 \bmod n$
- Probability of p is not prime but $a^{p-1}=1 \bmod p$ is $\frac{1}{10^{13}}$

In test multiple a to increase confidence
|n+ Carmichael numbers are special cases

Miller and Rabin test

If n is a prime, the only $\bmod n$ square roots of 1 are 1 and -1 , but many square roots if n is not a power of a prime (exercise: why??)

Finding d and e

- Choose a number that is relatively-prime to $\phi(n)$ as e nut e is public and can be a small number such as 3 or 65537

Finding d and e

- Choose a number that is relatively-prime to $\phi(n)$ as e Nm e is public and can be a small number such as 3 or 65537
- Compute d using Euclid's algorithm

In* d must be big to avoid being searchable

Issues with $e=3$

- Messages less than $n^{\frac{1}{3}}$ will be encrypted as m^{3} nul take cube root of the ciphertext to decrypt

Issues with $e=3$

- Messages less than $n^{\frac{1}{3}}$ will be encrypted as m^{3} nll take cube root of the ciphertext to decrypt
- Same message enctyped and sent to ≥ 3 recipients with $e=3$ nim plaintext can be revealed by using Chinese Remainder Theorem

Issues with $e=3$

- Messages less than $n^{\frac{1}{3}}$ will be encrypted as m^{3} nll take cube root of the ciphertext to decrypt
- Same message enctyped and sent to ≥ 3 recipients with $e=3$ nut plaintext can be revealed by using Chinese Remainder Theorem nus to address it, use random/individualized padding

RSA Threats with $e=3$

- Cube root problem: forge signature on any messages
nut assume message are padded on the right with random numbers

RSA Threats with $e=3$

- Cube root problem: forge signature on any messages
num assume message are padded on the right with random numbers
nol to forge signature, digest the message to h, pad it on the right with zeros, then set the signature to $r=h^{\frac{1}{3}}$

RSA Threats with $e=3$

- Cube root problem: forge signature on any messages
nut assume message are padded on the right with random numbers
now to forge signature, digest the message to h, pad it on the right with zeros, then set the signature to $r=h^{\frac{1}{3}}$
nilt signature is forged because $r^{3}=h$ (padded with random numbers)

RSA Threats: Smooth Numbers

- Smooth number is the product of reasonably small primes
- Smooth number threat
nn RSA signs a message by $m^{d} \bmod n$

RSA Threats: Smooth Numbers

- Smooth number is the product of reasonably small primes
- Smooth number threat

RUA RSA sns a message by $m^{d} \bmod n$
with signature on m_{1} and m_{2}, the attacker can forge signature on:
$m_{1} \times m_{2}, \frac{m_{1}}{m_{2}}, m_{1}^{j}, m_{1}^{j} \times m_{2}^{k}, \ldots$

RSA Threats: Smooth Numbers

- Smooth number is the product of reasonably small primes
- Smooth number threat

RUA RSA sns a message by $m^{d} \bmod n$
with signature on m_{1} and m_{2}, the attacker can forge signature on:
$m_{1} \times m_{2}, \frac{m_{1}}{m_{2}}, m_{1}^{j}, m_{1}^{j} \times m_{2}^{k}, \ldots$
num "small" primes provide flexible building blocks attackers can forge signatures on any product from his collection

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls nnt encrypting guessable message

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls

Intr encrypting guessable message
nut signing smooth number

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls

Intr encrypting guessable message
num signing smooth number
multiple recipients of a message when $e=3$

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls
nult encrypting guessable message
nut signing smooth number
multiple recipients of a message when $e=3$
nt encrypting messages $\leq n^{\frac{1}{3}}$ when $e=3$

Public Key Cryptography Standards (PKCS)

- Correct use of RSA could be tricky
- PKCS is the operational standards to avoid pitfalls
nult encrypting guessable message
nut signing smooth number
multiple recipients of a message when $e=3$
n
ming sing messages with random padding on the right when $e=3$

PKCS \#1 Encryption

- How does PKCS \#1 address the following pitfalls?

InIm encrypting guessable message
multiple recipients of a message when $e=3$
|ll* encrypting messages $\leq n^{\frac{1}{3}}$ when $e=3$

0	2	at least 8 random non-zero octets	0	data

PKCS \#1 Signature

- How does PKCS \#1 address the following pitfalls?

InIt signing smooth number
${ }^{N}+$ signing messages with random padding on the right when $e=3$

0	1	at least 8 octets of ff_{16}	0	ASN.1-encoded digest type/value

PKCS \#1 Signature

- How does PKCS \#1 address the following pitfalls?
nut signing smooth number
${ }^{n}+*$ signing messages with random padding on the right when $e=3$
- Why 8 octets of $f f_{16}$ instead of random bytes?

0	1	at least 8 octets of ff_{16}	0	ASN.1-encoded digest type/value

Diffie-Hellman

- Diffie-Hellman is designed to negotiate a shared secret key using only public communication
Int i.e. not suitable for public key encryption

Diffie-Hellman

- Diffie-Hellman is designed to negotiate a shared secret key using only public communication
Inter i.e. not suitable for public key encryption
- Diffie-Hellman does not provide authentication of the principles num you could negotiate a key with a complete stranger

Diffie-Hellman Protocol

- Publicly publish two numbers, p and g N

Alice	Bob
pick random number S_{a}	pick random number S_{b}
compute $T_{a}=g^{S a} \bmod p$	compute $T_{b}=g^{S b} \bmod p$
$\mathrm{~T}_{\mathrm{a}}$	
	T_{b}
compute $\left(T_{b}\right)^{S a} \bmod p$	compute $\left(T_{a}\right)^{S b} \bmod p$

Diffie-Hellman Protocol

- Publicly publish two numbers, p and g p is a large prime (about 512 bits), and $g<p$
- Alice and Bob exchange two numbers T_{a} and T_{b}
- They agree upon $g^{S_{a} S_{b}} \bmod p$ after DH exchange

Alice Bob

Example

- Let $p=353, g=3, S_{a}=97, S_{b}=233$

Example

- Let $p=353, g=3, S_{a}=97, S_{b}=233$
- Alice computes $T_{a}=g^{S_{a}} \bmod p=3^{97} \bmod 353=40$ Bob computes $T_{b}=g^{S_{b}} \bmod p=3^{233} \bmod 353=248$

Example

- Let $p=353, g=3, S_{a}=97, S_{b}=233$
- Alice computes $T_{a}=g^{S_{a}} \bmod p=3^{97} \bmod 353=40$ Bob computes $T_{b}=g^{S_{b}} \bmod p=3^{233} \bmod 353=248$
- Alice and Bob exchanges T_{a} and T_{b}

Example

- Let $p=353, g=3, S_{a}=97, S_{b}=233$
- Alice computes $T_{a}=g^{S_{a}} \bmod p=3^{97} \bmod 353=40$ Bob computes $T_{b}=g^{S_{b}} \bmod p=3^{233} \bmod 353=248$
- Alice and Bob exchanges T_{a} and T_{b}
- Alice computes $K=T_{b}^{S_{a}} \bmod p=248^{97} \bmod 353=160$ Bob computes $K=T_{a}^{S_{b}} \bmod p=40^{233} \bmod 353=160$

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his S_{b} and publishes T_{b}

- Bob publishes $<p_{b}, g_{b}, T_{b}>$

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his S_{b} and publishes T_{b}

- Bob publishes $<p_{b}, g_{b}, T_{b}>$
- Alice picks a random S_{a}, and computes $K_{a b}=T_{b}^{S_{a}} \bmod p_{b}$
- Alice encrypts the message with $K_{a b}$
- Alice sends ciphertext and $T_{a}=g_{b}^{S_{a}} \bmod p_{b}$ to Bob

Diffie-Hellman Offline Mode

The same as Diffie-Hellman, but Bob pre-selects his S_{b} and publishes T_{b}

- Bob publishes $<p_{b}, g_{b}, T_{b}>$
- Alice picks a random S_{a}, and computes $K_{a b}=T_{b}^{S_{a}} \bmod p_{b}$
- Alice encrypts the message with $K_{a b}$
- Alice sends ciphertext and $T_{a}=g_{b}^{S_{a}} \bmod p_{b}$ to Bob
- Bob computes $K_{a b}=T_{a}^{S_{b}}$, and decrypt the message with it

Why DH is Secure

- Discrete logarithms problem is difficult nive given $g^{S} \bmod p, g$, and p, it is computationally difficult to get S
no guarantee, but remember Fundamental Tenet of Cryptograph?

Why DH is Secure

- Discrete logarithms problem is difficult
${ }^{\prime \prime \prime *}$ given $g^{S} \bmod p, g$, and p, it is computationally difficult to get S
no guarantee, but remember Fundamental Tenet of Cryptograph?
- For "obscure mathematical reasons:"
nlw p and $\frac{p-1}{2}$ should be prime
"Int $g^{\frac{p-1}{2}}=-1 \bmod p$

Man-in-the-Middle Attack

- Alice and Bob both negotiated a key with Trudy

Man-in-the-Middle Attack

- Alice and Bob both negotiated a key with Trudy
- Trudy forwards messages between Alice and Bob ${ }^{\text {nnt }}$ Alice \rightarrow Bob: $E\left(K_{b t}, D\left(K_{a t}, c_{a b}\right)\right)$
Bob \rightarrow Alice: $E\left(K_{a t}, D\left(K_{b t}, c_{b a}\right)\right)$

Defense Against MITM Attacks

- Published DH numbers
nut everybody agrees upon a p and g, and publishes his g^{S}
NII* grab the other's g^{S} then compute the secret
nll eliminate the need for the first two messages in DH protocol

Defense Against MITM Attacks

- Published DH numbers

Nut everybody agrees upon a p and g, and publishes his g^{S}
III* grab the other's g^{S} then compute the secret
nlw eliminate the need for the first two messages in DH protocol

- Authenticated Diffie-Hellman

IIII* share a secret or publish one's public key in advance
nne there are various ways to mix Diffie-Hellman and authentication

DSS (Digital Signature Standard)

- An algorithm designed by NIST for digital signature ${ }^{\prime \prime \prime *}$ the algorithm is known as DSA (digital signature algorithm)
n messages are digested first, the digest is then signed
num the sister function, SHS, is a message digesting function

DSS (Digital Signature Standard)

- An algorithm designed by NIST for digital signature
${ }^{n}+1 /$ the algorithm is known as DSA (digital signature algorithm)
n messages are digested first, the digest is then signed
nut the sister function, SHS, is a message digesting function
- Signing is faster than verification
num e.g., for use in the smart cards

Digital Signature Algorithm

To generate DSA signature
(1) Generate p and q (public)
q :160-bit prime, $p: 512$-bit prime, and $p=k q+1$

Digital Signature Algorithm

To generate DSA signature
(1) Generate p and q (public)
q : 160-bit prime, $p: 512$-bit prime, and $p=k q+1$
(2) Generate g such that $g^{q}=1 \bmod p($ public)
nitr pick random number h, let $g=h^{\frac{p-1}{q}}=h^{k}$ (Fermat's theorem)

Digital Signature Algorithm

To generate DSA signature
(1) Generate p and q (public)
q : 160-bit prime, $p: 512$-bit prime, and $p=k q+1$
(2) Generate g such that $g^{q}=1 \bmod p($ public)
nilt pick random number h, let $g=h^{\frac{p-1}{q}}=h^{k}$ (Fermat's theorem)
(3) Choose a long-term public/private key pair $\langle T, S\rangle$ nut pick a random number $S<q$, let $T=g^{S} \bmod p$

Digital Signature Algorithm

To generate DSA signature
(1) Generate p and q (public)
q : 160-bit prime, $p: 512$-bit prime, and $p=k q+1$
(2) Generate g such that $g^{q}=1 \bmod p($ public)
nilt pick random number h, let $g=h^{\frac{p-1}{q}}=h^{k}$ (Fermat's theorem)
(3) Choose a long-term public/private key pair $\langle T, S\rangle$ nut pick a random number $S<q$, let $T=g^{S} \bmod p$
(9) Choose a per message public/private key pair $\left.<T_{m}, S_{m}\right\rangle$ nick a random S_{m}, let $T_{m}=\left(\left(g^{S_{m}} \bmod p\right) \bmod q\right)$

Digital Signature Algorithm...

To generate DSA signature
(5) Calculate message digest d_{m}

Digital Signature Algorithm...

To generate DSA signature
(5) Calculate message digest d_{m}
(0) Compute the signature $X=S_{m}^{-1}\left(d_{m}+S T_{m}\right) \bmod q$

Digital Signature Algorithm...

To generate DSA signature
(6) Calculate message digest d_{m}
(0) Compute the signature $X=S_{m}^{-1}\left(d_{m}+S T_{m}\right) \bmod q$
(3) The signed message include

Int m : the message, T_{m} : per-message publish key, X : signature
the public key is $\langle p, q, g, T\rangle$

Digital Signature Algorithm...

To generate DSA signature
(6) Calculate message digest d_{m}
(0) Compute the signature $X=S_{m}^{-1}\left(d_{m}+S T_{m}\right) \bmod q$
(3) The signed message include

Int m : the message, T_{m} : per-message publish key, X : signature
the public key is $\langle p, q, g, T\rangle$

Digital Signature Algorithm...

To verify DSA signature public information: $<p, q, g, T, T_{m}, m, X>$
(1) calculate $X^{-1} \bmod q$ and d_{m}

Digital Signature Algorithm...

To verify DSA signature public information: $<p, q, g, T, T_{m}, m, X>$
(1) calculate $X^{-1} \bmod q$ and d_{m}
(2) $x=d_{m} X^{-1} \bmod q$
$y=T_{m} X^{-1} \bmod q$
$z=\left(g^{x} T^{y} \bmod p\right) \bmod q$

Digital Signature Algorithm...

To verify DSA signature public information: $<p, q, g, T, T_{m}, m, X>$
(1) calculate $X^{-1} \bmod q$ and d_{m}
(2) $x=d_{m} X^{-1} \bmod q$
$y=T_{m} X^{-1} \bmod q$
$z=\left(g^{x} T^{y} \bmod p\right) \bmod q$
(3) if $z=T_{m}$, the signature is verified

Why DSA Works

Let $v=\left(d_{m}+S T_{m}\right)^{-1} \bmod q$:

Why DSA Works

Let $v=\left(d_{m}+S T_{m}\right)^{-1} \bmod q$:
$X^{-1}=\left(S_{m}^{-1}\left(d_{m}+S T_{m}\right)\right)^{-1}=S_{m}\left(d_{m}+S T_{m}\right)^{-1}=S_{m} v \bmod q$

Why DSA Works

Let $v=\left(d_{m}+S T_{m}\right)^{-1} \bmod q$:
$X^{-1}=\left(S_{m}^{-1}\left(d_{m}+S T_{m}\right)\right)^{-1}=S_{m}\left(d_{m}+S T_{m}\right)^{-1}=S_{m} v \bmod q$
$x=d_{m} X^{-1}=d_{m} S_{m} \vee \bmod q$

Why DSA Works

Let $v=\left(d_{m}+S T_{m}\right)^{-1} \bmod q$:
$X^{-1}=\left(S_{m}^{-1}\left(d_{m}+S T_{m}\right)\right)^{-1}=S_{m}\left(d_{m}+S T_{m}\right)^{-1}=S_{m} v \bmod q$
$x=d_{m} X^{-1}=d_{m} S_{m} v \bmod q$
N! $y=T_{m} X^{-1}=T_{m} S_{m} \vee \bmod q$

Why DSA Works

Let $v=\left(d_{m}+S T_{m}\right)^{-1} \bmod q$:
$X^{-1}=\left(S_{m}^{-1}\left(d_{m}+S T_{m}\right)\right)^{-1}=S_{m}\left(d_{m}+S T_{m}\right)^{-1}=S_{m} v \bmod q$
$x=d_{m} X^{-1}=d_{m} S_{m} v \bmod q$
"|l| $y=T_{m} X^{-1}=T_{m} S_{m} \vee \bmod q$
$z=g^{x} T^{y}=g^{d_{m} S_{m} v} g^{S T_{m} S_{m} v}=g^{\left(d_{m}+S T_{m}\right) S_{m} v}$
$=g^{S_{m}}=T_{m} \bmod p \bmod q$

DSA Pitfalls

Private key (S) can be revealed if

- per-message private key S_{m} is leaked
$X_{m}=S_{m}^{-1}\left(d_{m}+S T_{m}\right) \rightsquigarrow\left(X_{m} S_{m}-d_{m}\right) T_{m}^{-1} \bmod q=S \bmod q$

DSA Pitfalls

Private key (S) can be revealed if

- per-message private key S_{m} is leaked
$X_{m}=S_{m}^{-1}\left(d_{m}+S T_{m}\right) \rightsquigarrow\left(X_{m} S_{m}-d_{m}\right) T_{m}^{-1} \bmod q=S \bmod q$
- two messages are signed with the same per-message private key NII $\left(X_{m}-X_{m}^{\prime}\right)^{-1}\left(d_{m}-d_{m}^{\prime}\right) \bmod q=S_{m} \bmod q$

Summary

- Modular arithmetic
- RSA
- Diffie-Hellman
- DSA
- Next lecture: authentication

