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Basic Number Theory Modular Arithmetic

Remainder

Definition

Remainder (m mod n = r): smallest non-negative number r that differs
from m by a multiple of n, that is m = gn+ r(Or < n). q is the quotient;
r is the reminder.

e E.g., 13 mod 10 = 77, -3 mod 10 = 77
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Remainder

Definition

Remainder (m mod n = r): smallest non-negative number r that differs
from m by a multiple of n, that is m = gn+ r(Or < n). q is the quotient;
r is the reminder.

@ Eg.,13mod 10 =3,-3mod 10 =7

e If r=0, g (or n) is called a factor (or divisor) of m
m e g  the factors of 24 =1, 3, 4, 6, 8, 24
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Basic Number Theory Modular Arithmetic

Remainder

Definition

Remainder (m mod n = r): smallest non-negative number r that differs
from m by a multiple of n, that is m = gn+ r(Or < n). q is the quotient;
r is the reminder.

@ Eg.,13mod 10 =3,-3mod 10 =7

e If r=0, g (or n) is called a factor (or divisor) of m
m e g  the factors of 24 =1, 3, 4, 6, 8, 24

e Two integers a and b are equivalent for mod n if (a — b) = gn
m e g 3, 13, -7 are equivalent when mod 10
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SO A=
Addition and Multiplication

Modular Addition
@ (a+b) mod n=a mod n+b mod n
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SO A=
Addition and Multiplication

Modular Addition
@ (a+b) mod n=a mod n+b mod n

@ ais b 's additive inverse if a4+ b=0 mod n
m —3 is g 's additive inverse
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SO A=
Addition and Multiplication

Modular Addition
@ (a+b) mod n=a mod n+b mod n

@ ais b 's additive inverse if a4+ b=0 mod n
m —3 is g 's additive inverse

Modular Multiplication

@axb modn=a modnxb modn
m g x b= (a +kn)(b'+In)=ab +(a'l+bk+kinyn=2a'b' mod n
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SO A=
Addition and Multiplication

Modular Addition
@ (a+b) mod n=a mod n+b mod n

@ ais b 's additive inverse if a4+ b=0 mod n
m —3 is g 's additive inverse

Modular Multiplication
@ axb modn=a modnxb modn
w ax b= (a +kn)(b' +In)=ab +(a'l+bk+kin)n=23b" mod n
@ ais b 's multiplicative inverse if ab=1 mod n
mweg 171=1,31=79"1=9for mod 10
w Euclid's algorithm can be used to compute multiplicative inverse
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Basic Number Theory Modular Arithmetic

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be
evenly divided by 1 and itself
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Basic Number Theory Modular Arithmetic

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be
evenly divided by 1 and itself

@ There are infinite primes, but they thin out as numbers get bigger
m 1 in 4 of numbers < 100 are prime
w1 in 23 for ten-digit numbers
w1 in 230 for hundred-digit numbers
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Euclid’s Algoithm
Greatest Common Divisor (GCD)

Definition
GCD of two integers is the largest integer that evenly divides both of them

w e.g., gcd(12,14) = 77, ged(12,25) = 77, ged(0,x) = 77
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Euclid’s Algoithm
Greatest Common Divisor (GCD)

Definition
GCD of two integers is the largest integer that evenly divides both of them

w e.g., ged(12,14) = 2, ged(12,25) = 1, ged(0, x) = x

° ged(x,y) = ged(y, x)
@ a and b are relatively prime iff gcd(a, b) =1
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)

@ Observation: gecd(x,y) = ged(x —y,y)
x=kd,y=1Ild,x—y=(k—1)d

@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until
one number becomes 0, the other number is the ged(x,y) (why?7)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
gecd (595, 408)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
gcd(595, 408)
gcd (408,595 mod 408) = gcd(408,187)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
gcd (595, 408)
gcd (408,595 mod 408) = gcd(408,187)
gcd (187,408 mod 187) = gcd(187,34)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
gcd (595, 408)
gcd (408,595 mod 408) = gcd(408,187)
gcd (187,408 mod 187) = gcd(187,34)
gcd(34,187 mod 34) = gcd(34,17)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
gcd (595, 408)
gcd (408,595 mod 408) = gcd(408,187)
gcd (187,408 mod 187) = gcd(187,34)
gcd(34,187 mod 34) = gcd(34,17)
gcd(17,34 mod 17) = ged(17,0)
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Euclid’s Algorithm
Euclid’s Algorithm

Euclid's algorithm is a method to compute gcd(x, y)
@ Observation: gcd(x,y) = gecd(x — y,y)
x=kd,y=1Ild,x—y=(k—1)d
@ Method: repeatedly replace ged(x,y) with ged(y,x mod y) until one
number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =7)

Example
ged (595, 408)
gcd(408,595 mod 408) = gcd(408,187)  What is the first step for
gcd (187,408 mod 187) — ged(187,34)  £€9(408,595)7
gcd (34,187 mod 34) = gcd(34,17)
gcd(17,34 mod 17) = ged(17,0)
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Euclid’s Algorithm
Euclid’s Algorithm

@ Pseudo-code for Euclid’s algorithm:
ro=x,r-1=y,n=20
loop until r,_; ==0:
fn="rtn_o mod r, 1
n=n+1

output rp_»
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e
Euclid’'s Algorithm

@ Pseudo-code for Euclid’s algorithm:

ro=x,r-1=y,n=20 uo,=1v ,=0u_1=0v_1=1
loop until r,_; ==0:

fn=rp—2 mod r,_; Up = Up—2 — Gplp_1,

n=n+1 Vn = Vp—2 = QnVn-1
output r,_» ged(x,y) = Up_2X + Vp_2y

@ We can extend it to keep track of u,, v,, so r, = upx + vy
- Exercise: show why r, = upx 4+ vpy
w gcd(x,y) = ux + vy
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Euclid’s Algorithm
Euclid’s Algorithm

@ In each step: r, =rp,_» mod r,_1, Uy, = Up_» — gnip_1, and
Vn = Vn—2 — Q4nVn—-1
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FESING T ECIAl  Euclid’s Algorithm

Euclid’s Algorithm

@ In each step: r, =rp,_» mod r,_1, Uy, = Up_» — gnip_1, and
Vn = Vn—2 — Q4nVn—-1

m Note: how step 0 swaps x and y when x < y

n qn I'n u

n Vn
-2 408 1 0
-1 505 0 1
0O 0 408 1 0
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Euclid’s Algorithm
Euclid’s Algorithm

@ In each step: r, =rp,_» mod r,_1, Uy, = Up_» — gnip_1, and
Vn = Vn—2 — Q4nVn—-1
m Note: how step 0 swaps x and y when x < y
w ged(x,y) = r3 = u3x + uzy = —16 x 408 4+ 11 x 595

n  Qn I'n Un Vn

-2 408 1 0
-1 505 0 1
0 0 408 1 0
1 1 187 -1 1
2 2 34 3 -2
3 5 17 -16 11
4 2 0 35 -24
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Basic Number Theory Euclid’s Algorithm

Multiplicative Inverse

o Multiplicative inverse: um =1 mod n, or um+vn=1

*This is not a mod operation!
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Basic Number Theory Euclid’s Algorithm

Multiplicative Inverse

o Multiplicative inverse: um =1 mod n, or um+vn=1
e m's multiplicative inverse exists iff gcd(m,n) =1
m ged(m, n) =1 ~» um+ vn =1 (Eulcid’s algorithm)
~ uis m's multiplicative inverse.

*This is not a mod operation!
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Basic Number Theory Euclid’s Algorithm

Multiplicative Inverse

o Multiplicative inverse: um =1 mod n, or um+vn=1
e m's multiplicative inverse exists iff gcd(m,n) =1
w gcd(m, n) =1 ~» um+ vn =1 (Eulcid’s algorithm)
~ uis m's multiplicative inverse.
w assume gcd(m,n) = a(a > 1) ~ m = ka,n= la
~ um+ vn = a(ku + Iv) # 1*
~ gecd(m,n) =1

*This is not a mod operation!
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem

If z1, zo, ..., zx are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem
If z1, 2o, .

.., Z) are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 10 / 16



Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem
If z1, 2o, .
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z
wm decomposed —standard : (by construction)
Let N=z12...2,, and N_; = N

Zj
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem

If z1, zo, ..., zx are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z
wm decomposed —standard : (by construction)
Let N=z12...2,, and N_; = N

Zj

z; and N_; are relatively-prime ~ ged(z;, N_;) =1 ~ ujzi + viN_; =1
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem

If z1, zo, ..., zx are pair-wise relatively-prime, the following representations

are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z
wm decomposed —standard : (by construction)
Let N=z12...2,, and N_; = N

Zj

z; and N_; are relatively-prime ~ ged(z;, N_;) =1 ~ ujzi + viN_; =1
~ V,'N_,' =1- u; zj

~» viN_;j mod z; =1 and v;N_; mod z; = 0(j # i)

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 10 / 16



Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem
If z1, 2o, ..

., Zx are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z
wm decomposed —standard : (by construction)

Let N=z12...2,, and N_; = Iz\,l
z; and N_; are relatively-prime ~ ged(z;, N_;) =1 ~ ujzi + viN_; =1
~ V,'N_,' =1- u; zj

~» viN_;j mod z; =1 and v;N_; mod z; = 0(j # i)
then x = (3 x;viN_;) mod N.
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem
If z1, 2o, ..

., Zx are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z;2>...z

decomposed representation: x; mod zi, ..., x, mod z

w standard —decomposed: x; = x mod z,...,xx = x mod z
wm decomposed —standard : (by construction)

Let N=z12...2,, and N_; = Iz\,l
z; and N_; are relatively-prime ~ ged(z;, N_;) =1 ~ ujzi + viN_; =1
~ V,'N_,' =1- u; zj

~» viN_;j mod z; =1 and v;N_; mod z; = 0(j # i)
then x = (3° x;viN_;) mod N. (x mod z =77)
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Example

@ x=2 mod3, x=3 mod4,and x=1 mod5
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Example
@ x=2 mod3, x=3 mod4,and x=1 mod5
o x=>YxViN_;=2x vy x20+3 X v x 1541 x vz x 12
w ysing Euclid’s algorithm, vi =2, v, =3,v3 = 3,
m x =251 mod (3 x4 x5)=11
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Basic Number Theory Euler's Theorem

@ Z,: set of integers mod n
Zy: x e Zy iff x € Z, and ged(x,n) =1
we.g., Zio={0,1,2,...,9}, Z{, = {1,3,7,9}
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Basic Number Theory Euler's Theorem

@ Z,: set of integers mod n
Zy: x e Zy iff x € Z, and ged(x,n) =1
we.g., Zio={0,1,2,...,9}, Z{, = {1,3,7,9}
@ Z is closed under multiplication mod n
w proof: if a,b € ZF ~» uza+van=1upb+vpn=1
~ (uaup)ab + (uavpa + vaupb + vavpn)n =1~ ab € Z}
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Basic Number Theory Euler's Theorem

@ Z,: set of integers mod n
Zy: x e Zy iff x € Z, and ged(x,n) =1
we.g., Zio={0,1,2,...,9}, Z{, = {1,3,7,9}
@ Z is closed under multiplication mod n
w proof: if a,b € ZF ~» uza+van=1upb+vpn=1
~ (uaup)ab + (uavpa + vaupb + vavpn)n =1~ ab € Z}
meog 3xXx7=21=1 mod10,7x7=9 mod 10
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Basic Number Theory Euler's Theorem
Z

n

Each row (or column) of the multiplication table forZ} is a rearrange of
the elements of Z;

O© N W~

© N W |-
~N = O WwWlw
W o = N~
= W N OO
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Basic Number Theory Euler's Theorem
Z

n

Each row (or column) of the multiplication table forZ} is a rearrange of
the elements of Z;

- assume ab = ac mod n~-» a(b—c)=0 mod n
~atab—c)=0 modn~b—c=0 modn

O© N W~

© N W |-
~N = O WwWlw
W o = N~
= W N OO
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Basic Number Theory Euler's Theorem

Euler's Totient Function

@ ¢(n): number of elements in Z;!
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Basic Number Theory Euler's Theorem

Euler's Totient Function

@ ¢(n): number of elements in Z;!

e For two primes p and q: ¢(pq) = (p — 1)(q — 1) = ¢(p)#(q)
- exercise: why

meg, $(2)=1,¢05)=4 and ¢p(10)=1x4=4
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Basic Number Theory Euler's Theorem

Euler's Theorem

Theorem

Forallac Z*,a?" =1 mod n
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Basic Number Theory Euler's Theorem

Euler's Theorem

Theorem

Forallac Z*,a?" =1 mod n

w proof: Let x = ajap...ag(n) ~ a®(Mx = (aa1)...(aag(n)) = x (why?7?)
~ a®M =1 mod n
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Basic Number Theory Euler's Theorem

Euler's Theorem

Theorem

Forallac Z,a*" =1 mod n

w proof: Let x = ajap...ag(n) ~ a®(Mx = (aa1)...(aag(n)) = x
s a?(M =1 mod n
each row of the multiplication table for Z is a rearrange of elements

multiplication is closed for Z
~~ a1, ady, ..., ady(p) consist of just the elements of Z;
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Basic Number Theory Euler's Theorem

Euler's Theorem

Theorem

Forallac Z*,a?" =1 mod n

w proof: Let x = ajap...ag(n) ~ a®(Mx = (aa1)...(aag(n)) = x
~ a®M =1 mod n

each row of the multiplication table for Z is a rearrange of elements
multiplication is closed for Z
~~ a1, ady, ..., ady(p) consist of just the elements of Z;

Theorem

Euler’s theorem variant: for all a € Z3, ak*("+! = 3 mod n(k > 0)
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,

s proof:

o if a is relatively prime to n, Euler's theorem
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,

s proof:

o if a is relatively prime to n, Euler's theorem

e if a is not relatively prime to n ~~ a is a multiple of g (or p, why?)
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,

m proof:

o if a is relatively prime to n, Euler's theorem

e if a is not relatively prime to n ~~ a is a multiple of g (or p, why?)
~a mod q =0~ ak¥(Pa)+l =0 mod g=a mod q
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,

s proof:
o if a is relatively prime to n, Euler's theorem

e if a is not relatively prime to n ~~ a is a multiple of g (or p, why?)
~a mod g =0~ ak?(P)+1 — (0 mod g =a mod g
~~ a and p are relatively prime ~» ak¢(P) =1
akeP)(@)+1 — 3 (gk®(P))?(9) = 3 mod p (Euler's)
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Basic Number Theory Euler's Theorem

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, ak?(W*1 = 3 mod n for all
ae’zZ,

s proof:
o if a is relatively prime to n, Euler's theorem
e if a is not relatively prime to n ~~ a is a multiple of g (or p, why?)
~a mod g =0~ ak?(P)+1 — (0 mod g =a mod g
~~ a and p are relatively prime ~» ak¢(P) =1
akeP)(@)+1 — 3 (gk®(P))?(9) = 3 mod p (Euler's)

v gk(POHL — aup 4+ avg = a(up 4+ vg) = a mod n
(Chinese remainder theorem and up 4+ vg = 1)
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