CNT4406/5412 Network Security Basic Number Theory

Zhi Wang

Florida State University

Fall 2014

Remainder

Definition

Remainder $(m \bmod n=r)$: smallest non-negative number r that differs from m by a multiple of n, that is $m=q n+r(0 r<n)$. q is the quotient; r is the reminder.

- E.g., $13 \bmod 10=$??, $-3 \bmod 10=$??

Remainder

Definition

Remainder $(m \bmod n=r)$: smallest non-negative number r that differs from m by a multiple of n, that is $m=q n+r(0 r<n)$. q is the quotient; r is the reminder.

- E.g., $13 \bmod 10=3,-3 \bmod 10=7$
- If $r=0, q$ (or n) is called a factor (or divisor) of m
null e.g., the factors of $24=1,3,4,6,8,24$

Remainder

Definition

Remainder $(m \bmod n=r)$: smallest non-negative number r that differs from m by a multiple of n, that is $m=q n+r(0 r<n)$. q is the quotient; r is the reminder.

- E.g., $13 \bmod 10=3,-3 \bmod 10=7$
- If $r=0, q$ (or n) is called a factor (or divisor) of m

Ime e.g., the factors of $24=1,3,4,6,8,24$

- Two integers a and b are equivalent for $\bmod n$ if $(a-b)=q n$ In* e.g., 3, 13, -7 are equivalent when $\bmod 10$

Addition and Multiplication

Modular Addition

- $(a+b) \bmod n=a \bmod n+b \bmod n$

Addition and Multiplication

Modular Addition

- $(a+b) \bmod n=a \bmod n+b \bmod n$
- a is b 's additive inverse if $a+b=0 \bmod n$ $-a$ is a 's additive inverse

Addition and Multiplication

Modular Addition

- $(a+b) \bmod n=a \bmod n+b \bmod n$
- a is b 's additive inverse if $a+b=0 \bmod n$ $-a$ is a 's additive inverse

Modular Multiplication

- $a \times b \bmod n=a \bmod n \times b \bmod n$

Intar $a \times b=\left(a^{\prime}+k n\right)\left(b^{\prime}+\ln \right)=a^{\prime} b^{\prime}+\left(a^{\prime} l+b^{\prime} k+k l n\right) n=a^{\prime} b^{\prime} \bmod n$

Addition and Multiplication

Modular Addition

- $(a+b) \bmod n=a \bmod n+b \bmod n$
- a is b 's additive inverse if $a+b=0 \bmod n$
$-a$ is a 's additive inverse

Modular Multiplication

- $a \times b \bmod n=a \bmod n \times b \bmod n$

Int $a \times b=\left(a^{\prime}+k n\right)\left(b^{\prime}+I n\right)=a^{\prime} b^{\prime}+\left(a^{\prime} l+b^{\prime} k+k l n\right) n=a^{\prime} b^{\prime} \bmod n$

- a is b 's multiplicative inverse if $a b=1 \bmod n$
${ }^{1} \mid+$ e.g., $1^{-1}=1,3^{-1}=7,9^{-1}=9$ for $\bmod 10$
Nut Euclid's algorithm can be used to compute multiplicative inverse

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be evenly divided by 1 and itself

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be evenly divided by 1 and itself

- There are infinite primes, but they thin out as numbers get bigger Int 1 in 4 of numbers <100 are prime
num 1 in 23 for ten-digit numbers
n+ 1 in 230 for hundred-digit numbers

Greatest Common Divisor (GCD)

Definition

GCD of two integers is the largest integer that evenly divides both of them
(1I* e.g., $\operatorname{gcd}(12,14)=? ?, \operatorname{gcd}(12,25)=? ?, \operatorname{gcd}(0, x)=? ?$

Greatest Common Divisor (GCD)

Definition

GCD of two integers is the largest integer that evenly divides both of them
|n* e.g., $\operatorname{gcd}(12,14)=2, \operatorname{gcd}(12,25)=1, \operatorname{gcd}(0, x)=x$

- $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x)$
- a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)$ (why??)

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

$$
\operatorname{gcd}(595,408)
$$

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

```
gcd(595, 408)
    gcd}(408,595 mod 408)=\operatorname{gcd}(408,187
```


Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

$$
\begin{aligned}
& \operatorname{gcd}(595,408) \\
& \operatorname{gcd}(408,595 \bmod 408)=\operatorname{gcd}(408,187) \\
& \operatorname{gcd}(187,408 \bmod 187)=\operatorname{gcd}(187,34)
\end{aligned}
$$

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

$$
\begin{aligned}
& \operatorname{gcd}(595,408) \\
& \operatorname{gcd}(408,595 \bmod 408)=\operatorname{gcd}(408,187) \\
& \operatorname{gcd}(187,408 \bmod 187)=\operatorname{gcd}(187,34) \\
& \operatorname{gcd}(34,187 \bmod 34)=\operatorname{gcd}(34,17)
\end{aligned}
$$

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

$$
\begin{aligned}
& \operatorname{gcd}(595,408) \\
& \operatorname{gcd}(408,595 \bmod 408)=\operatorname{gcd}(408,187) \\
& \operatorname{gcd}(187,408 \bmod 187)=\operatorname{gcd}(187,34) \\
& \operatorname{gcd}(34,187 \bmod 34)=\operatorname{gcd}(34,17) \\
& \operatorname{gcd}(17,34 \bmod 17)=\operatorname{gcd}(17,0)
\end{aligned}
$$

Euclid's Algorithm

Euclid's algorithm is a method to compute $\operatorname{gcd}(x, y)$

- Observation: $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
x=k d, y=l d, x-y=(k-l) d
$$

- Method: repeatedly replace $\operatorname{gcd}(x, y)$ with $\operatorname{gcd}(y, x \bmod y)$ until one number becomes 0 , the other number is the $\operatorname{gcd}(x, y)(\operatorname{gcd}(0, x)=$?)

Example

$$
\begin{aligned}
& \operatorname{gcd}(595,408) \\
& \operatorname{gcd}(408,595 \bmod 408)=\operatorname{gcd}(408,187) \\
& \operatorname{gcd}(187,408 \bmod 187)=\operatorname{gcd}(187,34) \\
& \operatorname{gcd}(34,187 \bmod 34)=\operatorname{gcd}(34,17) \\
& \operatorname{gcd}(17,34 \bmod 17)=\operatorname{gcd}(17,0)
\end{aligned}
$$

$$
\operatorname{gcd}(408,595 \bmod 408)=\operatorname{gcd}(408,187) \quad \text { What is the first step for }
$$

What is the first step for $\operatorname{gcd}(408,595)$?

Euclid's Algorithm

- Pseudo-code for Euclid's algorithm:

$$
r_{-2}=x, r_{-1}=y, n=0
$$

loop until $r_{n-1}==0$:

$$
\begin{aligned}
& r_{n}=r_{n-2} \bmod r_{n-1} \\
& n=n+1
\end{aligned}
$$

output r_{n-2}

Euclid's Algorithm

- Pseudo-code for Euclid's algorithm:

$$
r_{-2}=x, r_{-1}=y, n=0
$$

$$
u_{-2}=1, v_{-2}=0, u_{-1}=0, v_{-1}=1
$$

loop until $r_{n-1}==0$:

$$
\begin{array}{cl}
\quad r_{n}=r_{n-2} \bmod r_{n-1} & u_{n}=u_{n-2}-q_{n} u_{n-1} \\
\quad n=n+1 & v_{n}=v_{n-2}-q_{n} v_{n-1} \\
\text { output } r_{n-2} & \operatorname{gcd}(x, y)=u_{n-2} x+v_{n-2} y
\end{array}
$$

- We can extend it to keep track of u_{n}, v_{n}, so $r_{n}=u_{n} x+v_{n} y$

Int Exercise: show why $r_{n}=u_{n} x+v_{n} y$
n! $\operatorname{gcd}(x, y)=u x+v y$

Euclid's Algorithm

- In each step: $r_{n}=r_{n-2} \bmod r_{n-1}, u_{n}=u_{n-2}-q_{n} u_{n-1}$, and

$$
v_{n}=v_{n-2}-q_{n} v_{n-1}
$$

n	q_{n}	r_{n}	u_{n}	v_{n}
-2		408	1	0
-1		595	0	1

Euclid's Algorithm

- In each step: $r_{n}=r_{n-2} \bmod r_{n-1}, u_{n}=u_{n-2}-q_{n} u_{n-1}$, and
$v_{n}=v_{n-2}-q_{n} v_{n-1}$
Note: how step 0 swaps x and y when $x<y$

n	q_{n}	r_{n}	u_{n}	v_{n}
-2		408	1	0
-1		595	0	1
0	0	408	1	0

Euclid's Algorithm

- In each step: $r_{n}=r_{n-2} \bmod r_{n-1}, u_{n}=u_{n-2}-q_{n} u_{n-1}$, and $v_{n}=v_{n-2}-q_{n} v_{n-1}$
Note: how step 0 swaps x and y when $x<y$
(11) $\operatorname{gcd}(x, y)=r_{3}=u_{3} x+u_{3} y=-16 \times 408+11 \times 595$

n	q_{n}	r_{n}	u_{n}	v_{n}
-2		408	1	0
-1		595	0	1
0	0	408	1	0
1	1	187	-1	1
2	2	34	3	-2
3	5	17	-16	11
4	2	0	35	-24

Multiplicative Inverse

- Multiplicative inverse: $u m=1 \bmod n$, or $u m+v n=1$
*This is not a mod operation!

Multiplicative Inverse

- Multiplicative inverse: $u m=1 \bmod n$, or $u m+v n=1$
- m 's multiplicative inverse exists iff $\operatorname{gcd}(m, n)=1$ nut $\operatorname{gcd}(m, n)=1 \rightsquigarrow u m+v n=1$ (Eulcid's algorithm) $\rightsquigarrow u$ is m 's multiplicative inverse.
*This is not a mod operation!

Multiplicative Inverse

- Multiplicative inverse: $u m=1 \bmod n$, or $u m+v n=1$
- m 's multiplicative inverse exists iff $\operatorname{gcd}(m, n)=1$ nut $\operatorname{gcd}(m, n)=1 \rightsquigarrow u m+v n=1$ (Eulcid's algorithm) $\rightsquigarrow u$ is m 's multiplicative inverse.
nu* assume $\operatorname{gcd}(m, n)=a(a>1) \rightsquigarrow m=k a, n=l a$
$\rightsquigarrow u m+v n=a(k u+l v) \neq 1^{*}$
$\rightsquigarrow \operatorname{gcd}(m, n)=1$
*This is not a mod operation!

Chinese Remainder Theorem

Theorem
If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$
decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$ decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$

Int standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$ decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$

IUI* standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$
${ }^{\text {InI* }}$ decomposed \rightarrow standard : (by construction)
Let $N=z_{1} z_{2} \ldots z_{k}$, and $N_{-i}=\frac{N}{z_{i}}$

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$
decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$
Int standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$
${ }^{n+1+}$ decomposed \rightarrow standard : (by construction)
Let $N=z_{1} z_{2} \ldots z_{k}$, and $N_{-i}=\frac{N}{z_{i}}$
z_{i} and N_{-i} are relatively-prime $\rightsquigarrow \operatorname{gcd}\left(z_{i}, N_{-i}\right)=1 \rightsquigarrow u_{i} z_{i}+v_{i} N_{-i}=1$

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$
decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$
Int standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$
${ }^{n+1+}$ decomposed \rightarrow standard : (by construction)
Let $N=z_{1} z_{2} \ldots z_{k}$, and $N_{-i}=\frac{N}{z_{i}}$
z_{i} and N_{-i} are relatively-prime $\rightsquigarrow \operatorname{gcd}\left(z_{i}, N_{-i}\right)=1 \rightsquigarrow u_{i} z_{i}+v_{i} N_{-i}=1$
$\rightsquigarrow v_{i} N_{-i}=1-u_{i} z_{i}$
$\rightsquigarrow v_{i} N_{-i} \bmod z_{i}=1$ and $v_{i} N_{-i} \bmod z_{j}=0(j \neq i)$

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$
decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$
Int standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$
${ }^{n+1+}$ decomposed \rightarrow standard : (by construction)
Let $N=z_{1} z_{2} \ldots z_{k}$, and $N_{-i}=\frac{N}{z_{i}}$
z_{i} and N_{-i} are relatively-prime $\rightsquigarrow \operatorname{gcd}\left(z_{i}, N_{-i}\right)=1 \rightsquigarrow u_{i} z_{i}+v_{i} N_{-i}=1$
$\rightsquigarrow v_{i} N_{-i}=1-u_{i} z_{i}$
$\rightsquigarrow v_{i} N_{-i} \bmod z_{i}=1$ and $v_{i} N_{-i} \bmod z_{j}=0(j \neq i)$
then $x=\left(\sum x_{i} v_{i} N_{-i}\right) \bmod N$.

Chinese Remainder Theorem

Theorem

If $z_{1}, z_{2}, \ldots, z_{k}$ are pair-wise relatively-prime, the following representations are equivalent:
standard representation: $x \bmod z_{1} z_{2} \ldots z_{k}$
decomposed representation: $x_{1} \bmod z_{1}, \ldots, x_{k} \bmod z_{k}$
Int standard \rightarrow decomposed: $x_{1}=x \bmod z_{1}, \ldots, x_{k}=x \bmod z_{k}$
${ }^{n+1+}$ decomposed \rightarrow standard : (by construction)
Let $N=z_{1} z_{2} \ldots z_{k}$, and $N_{-i}=\frac{N}{z_{i}}$
z_{i} and N_{-i} are relatively-prime $\rightsquigarrow \operatorname{gcd}\left(z_{i}, N_{-i}\right)=1 \rightsquigarrow u_{i} z_{i}+v_{i} N_{-i}=1$
$\rightsquigarrow v_{i} N_{-i}=1-u_{i} z_{i}$
$\rightsquigarrow v_{i} N_{-i} \bmod z_{i}=1$ and $v_{i} N_{-i} \bmod z_{j}=0(j \neq i)$
then $x=\left(\sum x_{i} v_{i} N_{-i}\right) \bmod N .\left(x \bmod z_{i}=? ?\right)$

Chinese Remainder Theorem

Example

- $x=2 \bmod 3, x=3 \bmod 4$, and $x=1 \bmod 5$

Chinese Remainder Theorem

Example

- $x=2 \bmod 3, x=3 \bmod 4$, and $x=1 \bmod 5$
- $x=\sum x_{i} v_{i} N_{-i}=2 \times v_{1} \times 20+3 \times v_{2} \times 15+1 \times v_{3} \times 12$

Int using Euclid's algorithm, $v_{1}=2, v_{2}=3, v_{3}=3$,
$x=251 \bmod (3 \times 4 \times 5)=11$

- Z_{n} : set of integers mod n $Z_{n}^{*}: x \in Z_{n}^{*}$ iff $x \in Z_{n}$ and $\operatorname{gcd}(x, n)=1$ Int e.g., $Z_{10}=\{0,1,2, \ldots, 9\}, Z_{10}^{*}=\{1,3,7,9\}$
- Z_{n} : set of integers mod n $Z_{n}^{*}: x \in Z_{n}^{*}$ iff $x \in Z_{n}$ and $\operatorname{gcd}(x, n)=1$
(nll e.g., $Z_{10}=\{0,1,2, \ldots, 9\}, Z_{10}^{*}=\{1,3,7,9\}$
- Z_{n}^{*} is closed under multiplication $\bmod n$
nut proof: if $a, b \in Z_{n}^{*} \rightsquigarrow u_{a} a+v_{a} n=1, u_{b} b+v_{b} n=1$
$\rightsquigarrow\left(u_{a} u_{b}\right) a b+\left(u_{a} v_{b} a+v_{a} u_{b} b+v_{a} v_{b} n\right) n=1 \rightsquigarrow a b \in Z_{n}^{*}$
- Z_{n} : set of integers mod n $Z_{n}^{*}: x \in Z_{n}^{*}$ iff $x \in Z_{n}$ and $\operatorname{gcd}(x, n)=1$ nut e.g., $Z_{10}=\{0,1,2, \ldots, 9\}, Z_{10}^{*}=\{1,3,7,9\}$
- Z_{n}^{*} is closed under multiplication $\bmod n$ nut proof: if $a, b \in Z_{n}^{*} \rightsquigarrow u_{a} a+v_{a} n=1, u_{b} b+v_{b} n=1$ $\rightsquigarrow\left(u_{a} u_{b}\right) a b+\left(u_{a} v_{b} a+v_{a} u_{b} b+v_{a} v_{b} n\right) n=1 \rightsquigarrow a b \in Z_{n}^{*}$ ㄴIㄴ e.g., $3 \times 7=21=1 \bmod 10,7 \times 7=9 \bmod 10$
Z_{n}^{*}

Each row (or column) of the multiplication table for Z_{n}^{*} is a rearrange of the elements of Z_{n}^{*}

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Z_{n}^{*}

Each row (or column) of the multiplication table for Z_{n}^{*} is a rearrange of the elements of Z_{n}^{*}

Nut assume $a b=a c \bmod n \rightsquigarrow a(b-c)=0 \bmod n$ $\rightsquigarrow a^{-1} a(b-c)=0 \bmod n \rightsquigarrow b-c=0 \bmod n$

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Euler's Totient Function

- $\phi(n)$: number of elements in Z_{n}^{*}

Euler's Totient Function

- $\phi(n)$: number of elements in Z_{n}^{*}
- For two primes p and $q: \phi(p q)=(p-1)(q-1)=\phi(p) \phi(q)$ IIIt exercise: why
e.g., $\phi(2)=1, \phi(5)=4$, and $\phi(10)=1 \times 4=4$

Euler's Theorem

Theorem

For all $a \in Z_{n}^{*}, a^{\phi(n)}=1 \bmod n$

Euler's Theorem

Theorem

For all $a \in Z_{n}^{*}, a^{\phi(n)}=1 \bmod n$
(NII proof: Let $x=a_{1} a_{2} \ldots a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x=\left(a a_{1}\right) \ldots\left(a a_{\phi(n)}\right)=x$ (why??)
$\rightsquigarrow a^{\phi(n)}=1 \bmod n$

Euler's Theorem

Theorem

For all $a \in Z_{n}^{*}, a^{\phi(n)}=1 \bmod n$
nIIt proof: Let $x=a_{1} a_{2} \ldots a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x=\left(a a_{1}\right) \ldots\left(a a_{\phi(n)}\right)=x$
$\rightsquigarrow a^{\phi(n)}=1 \bmod n$
each row of the multiplication table for Z_{n}^{*} is a rearrange of elements multiplication is closed for Z_{n}^{*}
$\rightsquigarrow a a_{1}, a a_{2}, \ldots, a a_{\phi(n)}$ consist of just the elements of Z_{n}^{*}

Euler's Theorem

Theorem

For all $a \in Z_{n}^{*}, a^{\phi(n)}=1 \bmod n$
nut proof: Let $x=a_{1} a_{2} \ldots a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x=\left(a a_{1}\right) \ldots\left(a a_{\phi(n)}\right)=x$
$\rightsquigarrow a^{\phi(n)}=1 \bmod n$
each row of the multiplication table for Z_{n}^{*} is a rearrange of elements multiplication is closed for Z_{n}^{*}
$\rightsquigarrow a a_{1}, a a_{2}, \ldots, a a_{\phi(n)}$ consist of just the elements of Z_{n}^{*}
Theorem
Euler's theorem variant: for all $a \in Z_{n}^{*}, a^{k \phi(n)+1}=a \bmod n(k \geq 0)$

Generic Euler's Theorem

Theorem
If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$

Generic Euler's Theorem

Theorem
If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$

IUI proof:

- if a is relatively prime to n, Euler's theorem

Generic Euler's Theorem

Theorem
If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$
nut proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to $n \rightsquigarrow a$ is a multiple of q (or p, why?)

Generic Euler's Theorem

Theorem
If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$
nut proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to $n \rightsquigarrow a$ is a multiple of q (or p, why?) $\rightsquigarrow a \bmod q=0 \rightsquigarrow a^{k \phi(p q)+1}=0 \bmod q=a \bmod q$

Generic Euler's Theorem

Theorem
If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$
nut proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to $n \rightsquigarrow a$ is a multiple of q (or p, why?) $\rightsquigarrow a \bmod q=0 \rightsquigarrow a^{k \phi(p q)+1}=0 \bmod q=a \bmod q$
$\rightsquigarrow a$ and p are relatively prime $\rightsquigarrow a^{k \phi(p)}=1$

$$
a^{k \phi(p) \phi(q)+1}=a \times\left(a^{k \phi(p)}\right)^{\phi(q)}=a \bmod p(\text { Euler's) }
$$

Generic Euler's Theorem

Theorem

If p and q are distinct primes and $n=p q, a^{k \phi(n)+1}=a \bmod n$ for all $a \in Z_{n}$
nut proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to $n \rightsquigarrow a$ is a multiple of q (or p, why?) $\rightsquigarrow a \bmod q=0 \rightsquigarrow a^{k \phi(p q)+1}=0 \bmod q=a \bmod q$
$\rightsquigarrow a$ and p are relatively prime $\rightsquigarrow a^{k \phi(p)}=1$
$a^{k \phi(p) \phi(q)+1}=a \times\left(a^{k \phi(p)}\right)^{\phi(q)}=a \bmod p$ (Euler's) $\rightsquigarrow a^{k \phi(p q)+1}=a u p+a v q=a(u p+v q)=a \bmod n$
(Chinese remainder theorem and $u p+v q=1$)

