CNT4406/5412 Network Security Basic Number Theory

Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU)

CNT4406/5412 Network Security

(ヨ) ヨ つへで Fall 2014 1 / 16

< □ > < 同 > < 回 > < 回 > < 回 >

Remainder

Definition

Remainder $(m \mod n = r)$: smallest non-negative number r that differs from m by a multiple of n, that is m = qn + r(0r < n). q is the quotient; r is the reminder.

• E.g., 13 mod 10 = ??, -3 mod 10 = ??

イロト イポト イヨト イヨト

Remainder

Definition

Remainder $(m \mod n = r)$: smallest non-negative number r that differs from m by a multiple of n, that is m = qn + r(0r < n). q is the quotient; r is the reminder.

- E.g., 13 mod 10 = 3, -3 mod 10 = 7
- If r = 0, q (or n) is called a factor (or divisor) of m
 m e.g., the factors of 24 =1, 3, 4, 6, 8, 24

< □ > < □ > < □ > < □ > < □ > < □ >

Remainder

Definition

Remainder $(m \mod n = r)$: smallest non-negative number r that differs from m by a multiple of n, that is m = qn + r(0r < n). q is the quotient; r is the reminder.

- E.g., 13 mod 10 = 3, -3 mod 10 = 7
- If r = 0, q (or n) is called a factor (or divisor) of m
 m e.g., the factors of 24 =1, 3, 4, 6, 8, 24
- Two integers a and b are equivalent for mod n if (a − b) = qn
 meters, 3, 13, -7 are equivalent when mod 10

イロト 不得 トイヨト イヨト 二日

Modular Addition

• $(a+b) \mod n = a \mod n + b \mod n$

A D N A B N A B N A B N

Modular Addition

- $(a+b) \mod n = a \mod n+b \mod n$
- a is b 's additive inverse if a + b = 0 mod n
 → -a is a 's additive inverse

< □ > < 同 > < 回 > < 回 > < 回 >

Modular Addition

- $(a+b) \mod n = a \mod n+b \mod n$
- a is b 's additive inverse if a + b = 0 mod n
 → -a is a 's additive inverse

Modular Multiplication

•
$$a \times b \mod n = a \mod n \times b \mod n$$

• $a \times b = (a' + kn)(b' + ln) = a'b' + (a'l + b'k + kln)n = a'b' \mod n$

Modular Addition

- $(a+b) \mod n = a \mod n+b \mod n$
- a is b 's additive inverse if a + b = 0 mod n
 → -a is a 's additive inverse

Modular Multiplication

- $a \times b \mod n = a \mod n \times b \mod n$ • $a \times b = (a' + kn)(b' + ln) = a'b' + (a'l + b'k + kln)n = a'b' \mod n$
- *a* is *b* 's multiplicative inverse if $ab = 1 \mod n$
 - ••• e.g., $1^{-1} = 1, 3^{-1} = 7, 9^{-1} = 9$ for mod 10
 - Euclid's algorithm can be used to compute multiplicative inverse

(人間) トイヨト イヨト ニヨ

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be evenly divided by 1 and itself

< □ > < 同 > < 回 > < 回 > < 回 >

Prime

Definition

Prime: a number that has no non-trivial factors, that is, it can only be evenly divided by 1 and itself

- There are infinite primes, but they thin out as numbers get bigger
 - \blacksquare 1 in 4 of numbers < 100 are prime
 - ➡ 1 in 23 for ten-digit numbers
 - 1 in 230 for hundred-digit numbers

Greatest Common Divisor (GCD)

Definition

GCD of two integers is the largest integer that evenly divides both of them

 \blacksquare e.g., gcd(12, 14) = ??, gcd(12, 25) = ??, gcd(0, x) = ??

< □ > < 同 > < 回 > < 回 > < 回 >

Greatest Common Divisor (GCD)

Definition

GCD of two integers is the largest integer that evenly divides both of them

- ••• e.g., gcd(12, 14) = 2, gcd(12, 25) = 1, gcd(0, x) = x
 - gcd(x, y) = gcd(y, x)
 - a and b are relatively prime iff gcd(a, b) = 1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

 Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (why??)

(4) (日本)

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

gcd(595,408)

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

```
gcd(595, 408)
gcd(408, 595 \mod 408) = gcd(408, 187)
```

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

```
gcd(595,408)
gcd(408,595 \mod 408) = gcd(408,187)
gcd(187,408 \mod 187) = gcd(187,34)
```

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

```
gcd(595, 408)

gcd(408, 595 \mod 408) = gcd(408, 187)

gcd(187, 408 \mod 187) = gcd(187, 34)

gcd(34, 187 \mod 34) = gcd(34, 17)
```

くぼう くほう くほう しゅ

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

```
gcd(595, 408)

gcd(408, 595 \mod 408) = gcd(408, 187)

gcd(187, 408 \mod 187) = gcd(187, 34)

gcd(34, 187 \mod 34) = gcd(34, 17)

gcd(17, 34 \mod 17) = gcd(17, 0)
```

(人間) トイヨト イヨト ニヨ

Euclid's algorithm is a method to compute gcd(x, y)

• Observation:
$$gcd(x, y) = gcd(x - y, y)$$

 $x = kd, y = ld, x - y = (k - l)d$

Method: repeatedly replace gcd(x, y) with gcd(y, x mod y) until one number becomes 0, the other number is the gcd(x, y) (gcd(0, x) =?)

Example

```
gcd(595, 408)

gcd(408, 595 \mod 408) = gcd(408, 187)

gcd(187, 408 \mod 187) = gcd(187, 34)

gcd(34, 187 \mod 34) = gcd(34, 17)

gcd(17, 34 \mod 17) = gcd(17, 0)
```

What is the first step for *gcd*(408, 595)?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Pseudo-code for Euclid's algorithm:

$$r_{-2} = x, r_{-1} = y, n = 0$$

loop until $r_{n-1} == 0$:
$$r_n = r_{n-2} \mod r_{n-1}$$

$$n = n + 1$$

output r_{n-2}

A D N A B N A B N A B N

• Pseudo-code for Euclid's algorithm:

 $\begin{aligned} r_{-2} &= x, r_{-1} &= y, n = 0 \\ \text{loop until } r_{n-1} &= 0: \\ r_n &= r_{n-2} \mod r_{n-1} \\ n &= n+1 \\ \text{output } r_{n-2} \end{aligned} \qquad \begin{aligned} u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-2} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-2} &= 0, u_{-1} &= 0, v_{-1} &= 1 \\ u_{-1} &= 1, v_{-1} &= 0, v_{$

We can extend it to keep track of u_n, v_n, so r_n = u_nx + v_ny
 ■ Exercise: show why r_n = u_nx + v_ny
 ■ gcd(x, y) = ux + vy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• In each step: $r_n = r_{n-2} \mod r_{n-1}$, $u_n = u_{n-2} - q_n u_{n-1}$, and $v_n = v_{n-2} - q_n v_{n-1}$

n	1	q_n	r _n	un	Vn
-2	2		408	1	0
-]	1		595	0	1

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

• In each step: $r_n = r_{n-2} \mod r_{n-1}$, $u_n = u_{n-2} - q_n u_{n-1}$, and $v_n = v_{n-2} - q_n v_{n-1}$ • Note: how step 0 swaps x and y when x < y

-

n	q_n	r _n	un	Vn
-2		408	1	0
-1		595	0	1
0	0	408	1	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- In each step: $r_n = r_{n-2} \mod r_{n-1}$, $u_n = u_{n-2} q_n u_{n-1}$, and $v_n = v_{n-2} q_n v_{n-1}$
 - **W** Note: how step 0 swaps x and y when x < y
 - $\implies gcd(x, y) = r_3 = u_3 x + u_3 y = -16 \times 408 + 11 \times 595$

п	q_n	r _n	un	Vn
-2		408	1	0
-1		595	0	1
0	0	408	1	0
1	1	187	-1	1
2	2	34	3	-2
3	5	17	-16	11
4	2	0	35	-24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Multiplicative Inverse

• Multiplicative inverse: $um = 1 \mod n$, or um + vn = 1

*This is not a mod operation!

Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 9 / 16

A D N A B N A B N A B N

Multiplicative Inverse

- Multiplicative inverse: $um = 1 \mod n$, or um + vn = 1
- *m* 's multiplicative inverse exists iff gcd(m, n) = 1
 gcd(m, n) = 1 → um + vn = 1 (Eulcid's algorithm) → u is m 's multiplicative inverse.

*This is not a mod operation!

→ Ξ →

Multiplicative Inverse

- Multiplicative inverse: $um = 1 \mod n$, or um + vn = 1
- *m* 's multiplicative inverse exists iff gcd(m, n) = 1
 gcd(m, n) = 1 → um + vn = 1 (Eulcid's algorithm) → u is m 's multiplicative inverse.

■ assume
$$gcd(m, n) = a(a > 1) \rightsquigarrow m = ka, n = la$$

 $\rightsquigarrow um + vn = a(ku + lv) \neq 1^*$
 $\rightsquigarrow gcd(m, n) = 1$

*This is not a mod operation!

→ Ξ →

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$

decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

standard \rightarrow decomposed: $x_1 = x \mod z_1, ..., x_k = x \mod z_k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

standard \rightarrow decomposed: $x_1 = x \mod z_1, ..., x_k = x \mod z_k$

→ decomposed →standard : (by construction) Let $N = z_1 z_2 ... z_k$, and $N_{-i} = \frac{N}{z_i}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

- \Rightarrow standard \rightarrow decomposed: $x_1 = x \mod z_1, ..., x_k = x \mod z_k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

■ standard →decomposed: $x_1 = x \mod z_1, ..., x_k = x \mod z_k$ ■ decomposed →standard : (by construction) Let $N = z_1 z_2 ... z_k$, and $N_{-i} = \frac{N}{z_i}$ z_i and N_{-i} are relatively-prime $\rightsquigarrow gcd(z_i, N_{-i}) = 1 \rightsquigarrow u_i z_i + v_i N_{-i} = 1$ $\rightsquigarrow v_i N_{-i} = 1 - u_i z_i$ $\rightsquigarrow v_i N_{-i} \mod z_i = 1$ and $v_i N_{-i} \mod z_j = 0 (j \neq i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

standard →decomposed: x₁ = x mod z₁, ..., x_k = x mod z_k
 decomposed →standard : (by construction)
 Let N = z₁z₂...z_k, and N_{-i} =
$$\frac{N}{z_i}$$
 z_i and N_{-i} are relatively-prime $\rightsquigarrow gcd(z_i, N_{-i}) = 1 \rightsquigarrow u_i z_i + v_i N_{-i} = 1$
 $\rightsquigarrow v_i N_{-i} = 1 - u_i z_i$
 $\rightsquigarrow v_i N_{-i} \mod z_i = 1$ and $v_i N_{-i} \mod z_j = 0 (j \neq i)$
 then x = ($\sum x_i v_i N_{-i}$) mod N.

イロト イポト イヨト イヨト 二日

Theorem

If z_1 , z_2 , ..., z_k are pair-wise relatively-prime, the following representations are equivalent:

standard representation: $x \mod z_1 z_2 \dots z_k$ decomposed representation: $x_1 \mod z_1, \dots, x_k \mod z_k$

⇒ standard →decomposed:
$$x_1 = x \mod z_1, ..., x_k = x \mod z_k$$

⇒ decomposed →standard : (by construction)
Let $N = z_1 z_2 ... z_k$, and $N_{-i} = \frac{N}{z_i}$
 z_i and N_{-i} are relatively-prime $\rightsquigarrow gcd(z_i, N_{-i}) = 1 \rightsquigarrow u_i z_i + v_i N_{-i} = 1$
 $\rightsquigarrow v_i N_{-i} = 1 - u_i z_i$
 $\rightsquigarrow v_i N_{-i} \mod z_i = 1$ and $v_i N_{-i} \mod z_j = 0 (j \neq i)$
then $x = (\sum x_i v_i N_{-i}) \mod N$. ($x \mod z_i = ??$)

イロト イポト イヨト イヨト 二日

Example

• $x = 2 \mod 3$, $x = 3 \mod 4$, and $x = 1 \mod 5$

Zhi Wang (FSU)

CNT4406/5412 Network Security

 Image: Image: Fall 2014
 Image: Image:

< □ > < 同 > < 回 > < 回 > < 回 >

Example

• $x = 2 \mod 3$, $x = 3 \mod 4$, and $x = 1 \mod 5$

•
$$x = \sum x_i v_i N_{-i} = 2 \times v_1 \times 20 + 3 \times v_2 \times 15 + 1 \times v_3 \times 12$$

• using Euclid's algorithm, $v_1 = 2, v_2 = 3, v_3 = 3$,
• $x = 251 \mod (3 \times 4 \times 5) = 11$

< □ > < 同 > < 回 > < 回 > < 回 >

• Z_n : set of integers mod n Z_n^* : $x \in Z_n^*$ iff $x \in Z_n$ and gcd(x, n) = 1• e.g., $Z_{10} = \{0, 1, 2, ..., 9\}$, $Z_{10}^* = \{1, 3, 7, 9\}$

A D N A B N A B N A B N

Z_n: set of integers mod n Z_n^{*}: x ∈ Z_n^{*} iff x ∈ Z_n and gcd(x, n) = 1 w e.g., Z₁₀ = {0, 1, 2, ..., 9}, Z₁₀^{*} = {1, 3, 7, 9}
Z_n^{*} is closed under multiplication mod n w proof: if a, b ∈ Z_n^{*} → u_aa + v_an = 1, u_bb + v_bn = 1 → (u_au_b)ab + (u_av_ba + v_au_bb + v_av_bn)n = 1 → ab ∈ Z_n^{*}

イロト 不得下 イヨト イヨト 二日

Z_n: set of integers mod n
Z_n^{*}: x ∈ Z_n^{*} iff x ∈ Z_n and gcd(x, n) = 1
e.g., Z₁₀ = {0, 1, 2, ..., 9}, Z₁₀^{*} = {1, 3, 7, 9}
Z_n^{*} is closed under multiplication mod n
proof: if a, b ∈ Z_n^{*} → u_aa + v_an = 1, u_bb + v_bn = 1 → (u_au_b)ab + (u_av_ba + v_au_bb + v_av_bn)n = 1 → ab ∈ Z_n^{*}
e.g., 3 × 7 = 21 = 1 mod 10, 7 × 7 = 9 mod 10

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Each row (or column) of the multiplication table for Z_n^\ast is a rearrange of the elements of Z_n^\ast

	1	3	7	9	
1	1	3	7	9	-
1 3	3	9	1	7	
7	7	1	9	3	
9	9	7	3	1	

イロト イポト イヨト イヨト

Each row (or column) of the multiplication table for Z_n^* is a rearrange of the elements of Z_n^*

■ assume $ab = ac \mod n \rightsquigarrow a(b-c) = 0 \mod n$ $\rightsquigarrow a^{-1}a(b-c) = 0 \mod n \rightsquigarrow b-c = 0 \mod n$

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

イロト 不得下 イヨト イヨト 二日

Euler's Totient Function

• $\phi(n)$: number of elements in Z_n^*

Zhi Wang (FSU)

CNT4406/5412 Network Security

▲ 重 → 重 → へへ
 Fall 2014 14 / 16

イロト イヨト イヨト イヨト

Euler's Totient Function

- $\phi(n)$: number of elements in Z_n^*
- For two primes p and q: φ(pq) = (p − 1)(q − 1) = φ(p)φ(q)
 w exercise: why
 - \blacksquare e.g., $\phi(2)=1, \phi(5)=$ 4, and $\phi(10)=1\times 4=4$

イロト イポト イヨト イヨト 二日

Theorem

For all $a \in Z_n^*$, $a^{\phi(n)} = 1 \mod n$

Theorem

For all $a \in Z_n^*$, $a^{\phi(n)} = 1 \mod n$

⇒ proof: Let $x = a_1 a_2 ... a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x = (aa_1)...(aa_{\phi(n)}) = x$ (why??) $\rightsquigarrow a^{\phi(n)} = 1 \mod n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

For all $a \in Z_n^*$, $a^{\phi(n)} = 1 \mod n$

⇒ proof: Let
$$x = a_1 a_2 ... a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x = (aa_1)...(aa_{\phi(n)}) = x$$

 $\rightsquigarrow a^{\phi(n)} = 1 \mod n$

each row of the multiplication table for Z_n^* is a rearrange of elements multiplication is closed for Z_n^*

 $\rightsquigarrow aa_1, aa_2, ..., aa_{\phi(n)}$ consist of just the elements of Z_n^*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For all $a \in Z_n^*$, $a^{\phi(n)} = 1 \mod n$

➡ proof: Let
$$x = a_1 a_2 ... a_{\phi(n)} \rightsquigarrow a^{\phi(n)} x = (aa_1)...(aa_{\phi(n)}) = x$$

 $\therefore a^{\phi(n)} = 1 \mod n$

each row of the multiplication table for Z_n^* is a rearrange of elements multiplication is closed for Z_n^* $\rightsquigarrow aa_1, aa_2, ..., aa_{\phi(n)}$ consist of just the elements of Z_n^*

Theorem

Euler's theorem variant: for all $a \in Z_n^*$, $a^{k\phi(n)+1} = a \mod n(k \ge 0)$

Fall 2014 15 / 16

イロト 不得下 イヨト イヨト 二日

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in \mathbb{Z}_n$

(日) (四) (日) (日) (日)

Generic Euler's Theorem

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in \mathbb{Z}_n$

proof:

• if a is relatively prime to n, Euler's theorem

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in Z_n$

- ➡ proof:
 - if a is relatively prime to n, Euler's theorem
 - if a is not relatively prime to $n \rightsquigarrow a$ is a multiple of q (or p, why?)

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in Z_n$

➡ proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to n → a is a multiple of q (or p, why?)
 → a mod q = 0 → a^{kφ(pq)+1} = 0 mod q = a mod q

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in Z_n$

➡ proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to n → a is a multiple of q (or p, why?)
 → a mod q = 0 → a^{kφ(pq)+1} = 0 mod q = a mod q
 → a and p are relatively prime → a^{kφ(p)} = 1 a^{kφ(p)φ(q)+1} = a × (a^{kφ(p)})^{φ(q)} = a mod p (Euler's)

Theorem

If p and q are distinct primes and n = pq, $a^{k\phi(n)+1} = a \mod n$ for all $a \in Z_n$

➡ proof:

- if a is relatively prime to n, Euler's theorem
- if a is not relatively prime to n → a is a multiple of q (or p, why?)
 → a mod q = 0 → a^{kφ(pq)+1} = 0 mod q = a mod q
 → a and p are relatively prime → a^{kφ(p)} = 1 a^{kφ(p)φ(q)+1} = a × (a^{kφ(p)})^{φ(q)} = a mod p (Euler's)
 → a^{kφ(pq)+1} = aup + avq = a(up + vq) = a mod n (Chinese remainder theorem and up + vq = 1)

<日

<</p>