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Basic Number Theory Modular Arithmetic

Remainder

Definition
Remainder (m mod n = r): smallest non-negative number r that differs
from m by a multiple of n, that is m = qn + r(0r < n). q is the quotient;
r is the reminder.

E.g., 13 mod 10 = ??, -3 mod 10 = ??

If r = 0, q (or n) is called a factor (or divisor) of m
à e.g., the factors of 24 =1, 3, 4, 6, 8, 24
Two integers a and b are equivalent for mod n if (a − b) = qn
à e.g., 3, 13, -7 are equivalent when mod 10
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Basic Number Theory Modular Arithmetic

Addition and Multiplication

Modular Addition
(a + b) mod n = a mod n + b mod n

a is b ’s additive inverse if a + b = 0 mod n
à −a is a ’s additive inverse

Modular Multiplication
a × b mod n = a mod n × b mod n
à a×b = (a′+ kn)(b′+ ln) = a′b′+(a′l +b′k + kln)n = a′b′ mod n
a is b ’s multiplicative inverse if ab = 1 mod n
à e.g., 1−1 = 1, 3−1 = 7, 9−1 = 9 for mod 10
à Euclid’s algorithm can be used to compute multiplicative inverse
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Basic Number Theory Modular Arithmetic

Prime

Definition
Prime: a number that has no non-trivial factors, that is, it can only be
evenly divided by 1 and itself

There are infinite primes, but they thin out as numbers get bigger
à 1 in 4 of numbers < 100 are prime
à 1 in 23 for ten-digit numbers
à 1 in 230 for hundred-digit numbers
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Basic Number Theory Euclid’s Algorithm

Greatest Common Divisor (GCD)

Definition
GCD of two integers is the largest integer that evenly divides both of them

à e.g., gcd(12, 14) = ??, gcd(12, 25) = ??, gcd(0, x) = ??

gcd(x , y) = gcd(y , x)
a and b are relatively prime iff gcd(a, b) = 1
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Basic Number Theory Euclid’s Algorithm

Euclid’s Algorithm

Euclid’s algorithm is a method to compute gcd(x , y)
Observation: gcd(x , y) = gcd(x − y , y)
x = kd , y = ld , x − y = (k − l)d
Method: repeatedly replace gcd(x , y) with gcd(y , x mod y) until
one number becomes 0, the other number is the gcd(x , y) (why??)

Example
gcd(595, 408)
gcd(408, 595 mod 408) = gcd(408, 187)
gcd(187, 408 mod 187) = gcd(187, 34)
gcd(34, 187 mod 34) = gcd(34, 17)
gcd(17, 34 mod 17) = gcd(17, 0)

What is the first step for
gcd(408, 595)?
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Basic Number Theory Euclid’s Algorithm

Euclid’s Algorithm

Pseudo-code for Euclid’s algorithm:

r−2 = x , r−1 = y , n = 0
loop until rn−1 == 0:

rn = rn−2 mod rn−1

n = n + 1
output rn−2

u−2 = 1, v−2 = 0, u−1 = 0, v−1 = 1

un = un−2 − qnun−1,

vn = vn−2 − qnvn−1

gcd(x , y) = un−2x + vn−2y

We can extend it to keep track of un, vn, so rn = unx + vny
à Exercise: show why rn = unx + vny
à gcd(x , y) = ux + vy
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Basic Number Theory Euclid’s Algorithm

Euclid’s Algorithm

In each step: rn = rn−2 mod rn−1, un = un−2 − qnun−1, and
vn = vn−2 − qnvn−1

à Note: how step 0 swaps x and y when x < y
à gcd(x , y) = r3 = u3x + u3y = −16× 408 + 11× 595

n qn rn un vn
-2 408 1 0
-1 595 0 1

0 0 408 1 0
1 1 187 -1 1
2 2 34 3 -2
3 5 17 -16 11
4 2 0 35 -24
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Basic Number Theory Euclid’s Algorithm

Multiplicative Inverse

Multiplicative inverse: um = 1 mod n, or um + vn = 1

m ’s multiplicative inverse exists iff gcd(m, n) = 1
à gcd(m, n) = 1 um + vn = 1 (Eulcid’s algorithm)
 u is m ’s multiplicative inverse.

à assume gcd(m, n) = a(a > 1) m = ka, n = la
 um + vn = a(ku + lv) 6= 1∗
 gcd(m, n) = 1

∗This is not a mod operation!
Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 9 / 16
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Theorem
If z1, z2, ..., zk are pair-wise relatively-prime, the following representations
are equivalent:

standard representation: x mod z1z2...zk

decomposed representation: x1 mod z1, ..., xk mod zk

à standard →decomposed: x1 = x mod z1, ..., xk = x mod zk
à decomposed →standard : (by construction)

Let N = z1z2...zk , and N−i =
N
zi

zi and N−i are relatively-prime  gcd(zi ,N−i) = 1  uizi + viN−i = 1
 viN−i = 1− uizi
 viN−i mod zi = 1 and viN−i mod zj = 0(j 6= i)
then x = (

∑
xiviN−i) mod N.
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xiviN−i) mod N. (x mod zi =??)
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Basic Number Theory Chinese Remainder Theorem

Chinese Remainder Theorem

Example
x = 2 mod 3, x = 3 mod 4, and x = 1 mod 5

x =
∑

xiviN−i = 2× v1 × 20 + 3× v2 × 15 + 1× v3 × 12
à using Euclid’s algorithm, v1 = 2, v2 = 3, v3 = 3,
à x = 251 mod (3× 4× 5) = 11
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Basic Number Theory Euler’s Theorem

Z ∗n

Zn: set of integers mod n
Z ∗n : x ∈ Z ∗n iff x ∈ Zn and gcd(x , n) = 1
à e.g., Z10 = {0, 1, 2, ..., 9}, Z ∗10 = {1, 3, 7, 9}

Z ∗n is closed under multiplication mod n
à proof: if a, b ∈ Z ∗n  uaa + van = 1, ubb + vbn = 1
 (uaub)ab + (uavba + vaubb + vavbn)n = 1 ab ∈ Z ∗n

à e.g., 3× 7 = 21 = 1 mod 10, 7× 7 = 9 mod 10
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Basic Number Theory Euler’s Theorem

Z ∗n

Each row (or column) of the multiplication table forZ ∗n is a rearrange of
the elements of Z ∗n

à assume ab = ac mod n a(b − c) = 0 mod n
 a−1a(b − c) = 0 mod n b − c = 0 mod n

1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Zhi Wang (FSU) CNT4406/5412 Network Security Fall 2014 13 / 16
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1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1
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Basic Number Theory Euler’s Theorem

Euler’s Totient Function

φ(n): number of elements in Z ∗n

For two primes p and q: φ(pq) = (p − 1)(q − 1) = φ(p)φ(q)
à exercise: why
à e.g., φ(2) = 1, φ(5) = 4, and φ(10) = 1× 4 = 4
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Basic Number Theory Euler’s Theorem

Euler’s Theorem

Theorem
For all a ∈ Z ∗n , aφ(n) = 1 mod n

à proof: Let x = a1a2...aφ(n)  aφ(n)x = (aa1)...(aaφ(n)) = x
 aφ(n) = 1 mod n

each row of the multiplication table for Z ∗n is a rearrange of elements
multiplication is closed for Z ∗n
 aa1, aa2, ..., aaφ(n) consist of just the elements of Z ∗n

Theorem
Euler’s theorem variant: for all a ∈ Z ∗n , akφ(n)+1 = a mod n(k ≥ 0)
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Basic Number Theory Euler’s Theorem

Generic Euler’s Theorem

Theorem
If p and q are distinct primes and n = pq, akφ(n)+1 = a mod n for all
a ∈ Zn

à proof:
if a is relatively prime to n, Euler’s theorem
if a is not relatively prime to n a is a multiple of q (or p, why?)
 a mod q = 0 akφ(pq)+1 = 0 mod q = a mod q
 a and p are relatively prime  akφ(p) = 1

akφ(p)φ(q)+1 = a × (akφ(p))φ(q) = a mod p (Euler’s)
 akφ(pq)+1 = aup + avq = a(up + vq) = a mod n

(Chinese remainder theorem and up + vq = 1)
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