CNT4406/5412 Network Security Cryptographic Hash Functions

Zhi Wang

Florida State University

Fall 2014

Introduction

- A cryptographic hash (a.k.a. message digest) is a one-way function

Introduction

- A cryptographic hash (a.k.a. message digest) is a one-way function Int One-way: no reverse function for a hash (unlike encryption) It takes arbitrary-length input and generate fixed-length output Int It requires at least 128-bit output

Introduction

- A cryptographic hash (a.k.a. message digest) is a one-way function Int One-way: no reverse function for a hash (unlike encryption) It It takes arbitrary-length input and generate fixed-length output In It requires at least 128-bit output (birthday problem)

Introduction

- A cryptographic hash (a.k.a. message digest) is a one-way function nult One-way: no reverse function for a hash (unlike encryption) It takes arbitrary-length input and generate fixed-length output n m It requires at least 128-bit output (birthday problem)
- It should be fast to compute and have strong cryptographic strengths

Hash Function Properties

One-way property (pre-image resistance):
Given h, it's computationally infeasible to find m with $h=H(m)$

Hash Function Properties

One-way property (pre-image resistance):
Given h, it's computationally infeasible to find m with $h=H(m)$
Weak collision resistance (second-preimage resistance):
Given m_{1}, it's computationally infeasible to find m_{2} with $H\left(m_{1}\right)=H\left(m_{2}\right)$

Hash Function Properties

One-way property (pre-image resistance):
Given h, it's computationally infeasible to find m with $h=H(m)$
Weak collision resistance (second-preimage resistance):
Given m_{1}, it's computationally infeasible to find m_{2} with $H\left(m_{1}\right)=H\left(m_{2}\right)$
Strong collision resistance:
It's computationally infeasible to find m_{1} and m_{2} with $H\left(m_{1}\right)=H\left(m_{2}\right)$

Length of Hash Output

- What is the "right" size?

Int unnecessary overhead if too long
N loss of strong collision resistance if too short (birthday problem)

Length of Hash Output

- What is the "right" size?
n+ unnecessary overhead if too long
Int loss of strong collision resistance if too short (birthday problem)
- A hash normally has 128 or 160 bits of output

Birthday Problem

Birthday Problem:

what's the smallest number of people (n) in a room such that the probability of at least two of them having the same birthday is greater than 50% ?
N"I assuming 365 days/year (k), and equal distribution of birthdays

Birthday Problem

Birthday Problem:

what's the smallest number of people (n) in a room such that the probability of at least two of them having the same birthday is greater than 50\%?
nu* assuming 365 days/year (k), and equal distribution of birthdays

- The answer is 23 , or, more generally, about $k^{\frac{1}{2}}$

Birthday Problem

Birthday Problem:

what's the smallest number of people (n) in a room such that the probability of at least two of them having the same birthday is greater than 50\%?
Num assuming 365 days/year (k), and equal distribution of birthdays

- The answer is 23 , or, more generally, about $k^{\frac{1}{2}}$
- A brute-force attack needs to try $2^{\frac{\operatorname{len}(h)}{2}}$ messages before finding two messages with the same hash at 50% chance $\left(k=2^{\operatorname{len}(h)}\right)$

Birthday Problem

Birthday Problem:

what's the smallest number of people (n) in a room such that the probability of at least two of them having the same birthday is greater than 50\%?
Num assuming 365 days/year (k), and equal distribution of birthdays

- The answer is 23 , or, more generally, about $k^{\frac{1}{2}}$
- A brute-force attack needs to try $2^{\frac{\operatorname{len}(h)}{2}}$ messages before finding two messages with the same hash at 50% chance ($k=2^{\operatorname{len}(h)}$) num-bit hash only has 32 bits of strong collision resistance

Birthday Problem (by Wrong Math)

- Birthday problem
nIIt n people can form $\frac{n(n-1)}{2}$ different groups
each group has a chance of $\frac{1}{k}$ to have the same birthday
n- adding them together: $\frac{n(n-1)}{2 k}$

Birthday Problem (by Wrong Math)

- Birthday problem
n n people can form $\frac{n(n-1)}{2}$ different groups
each group has a chance of $\frac{1}{k}$ to have the same birthday
n"m adding them together: $\frac{n(n-1)}{2 k}$
- But, groups are not independent of each other.

In! cannot simply add them!
In* e.g., if 30 people $\rightarrow 435$ groups \rightarrow a probability of 119

Birthday Problem

- Probability of n people have different birthdays is:

$$
P=\frac{(365)_{n}}{365^{n}}=\frac{365 \times 364 \times \ldots \times(365-n+1)}{365^{n}}
$$

Birthday Problem

- Probability of n people have different birthdays is:

$$
P=\frac{(365)_{n}}{365^{n}}=\frac{365 \times 364 \times \ldots \times(365-n+1)}{365^{n}}
$$

- Probability of at least two people have the same birthday is: $1-P$

$$
1-P \geq 0.5 \rightarrow P<0.5 \rightarrow \frac{(365)_{n}}{365^{n}}<0.5 \rightarrow n=23
$$

Authentication

- Alice and Bob shares a secret key $K_{A B}$ in advance
- Alice challenges Bob by sending a random number r_{A}
- Bob returns the hash of $K_{A B} \mid r_{A}$ nme in authentication with SKC, Bob returns $K_{A B}\left\{r_{A}\right\}$
- Alice also computes its hash, and compares it to Bob's
nm in authentication with SKC, Alice decrypts Bob's message

MAC (Message Integrity)

- Sending hash with plaintext does not work

In* hash can detect benign errors (e.g., storage or network failure)
nuls attackers can modify the message and regenerate the hash

MAC (Message Integrity)

- Sending hash with plaintext does not work
n"ll hash can detect benign errors (e.g., storage or network failure)
num attackers can modify the message and regenerate the hash
- MAC requires keyed hash: Alice and Bob shares a secret $K_{A B}$

MAC (Message Integrity)

- Sending hash with plaintext does not work
n"ll hash can detect benign errors (e.g., storage or network failure)
num attackers can modify the message and regenerate the hash
- MAC requires keyed hash: Alice and Bob shares a secret $K_{A B}$ nult extension attack: given m_{1} and $m d\left(K_{A B} \mid m_{1}\right)$, we can compute $m d\left(K_{A B}\left|m_{1}\right| m_{2}\right)$ by using $m d\left(K_{A B} \mid m_{1}\right)$ as the $I V$, how?

MAC (Message Integrity)

- Sending hash with plaintext does not work
n"ll hash can detect benign errors (e.g., storage or network failure)
num attackers can modify the message and regenerate the hash
- MAC requires keyed hash: Alice and Bob shares a secret $K_{A B}$ n! extension attack: given m_{1} and $m d\left(K_{A B} \mid m_{1}\right)$, we can compute $m d\left(K_{A B}\left|m_{1}\right| m_{2}\right)$ by using $m d\left(K_{A B} \mid m_{1}\right)$ as the $I V$, how?
nnt solutions: $m d\left(m \mid K_{A B}\right), m d\left(K_{A B}|m| K_{A B}\right)$, and sending-half-of-the-hash

MAC (Message Integrity)

- Sending hash with plaintext does not work

In* hash can detect benign errors (e.g., storage or network failure)
Int attackers can modify the message and regenerate the hash

- MAC requires keyed hash: Alice and Bob shares a secret $K_{A B}$ nut extension attack: given m_{1} and $m d\left(K_{A B} \mid m_{1}\right)$, we can compute $m d\left(K_{A B}\left|m_{1}\right| m_{2}\right)$ by using $m d\left(K_{A B} \mid m_{1}\right)$ as the $I V$, how?
n!it solutions: $m d\left(m \mid K_{A B}\right), m d\left(K_{A B}|m| K_{A B}\right)$, and
sending-half-of-the-hash
HMAC is the de facto standard

HMAC (Hash-based MAC)

- $\operatorname{HMAC}(K, m)=M D\left(\left(K \oplus c_{2}\right) \mid M D\left(\left(K \oplus c_{1}\right) \mid m\right)\right)$

HMAC (Hash-based MAC)

- $\operatorname{HMAC}(K, m)=M D\left(\left(K \oplus c_{2}\right) \mid M D\left(\left(K \oplus c_{1}\right) \mid m\right)\right)$
- Nested digest with secrets prevents the extension attack num the inner digest is not revealed to the attacker

HMAC (Hash-based MAC)

- $\operatorname{HMAC}(K, m)=M D\left(\left(K \oplus c_{2}\right) \mid M D\left(\left(K \oplus c_{1}\right) \mid m\right)\right)$
- Nested digest with secrets prevents the extension attack
nne the inner digest is not revealed to the attacker
- HMAC is proved to be secure if underlying message digest is secure

Encryption with Message Digest

- Generate a one-time pad to be \oplus 'ed to the plaintext from $I V$ and a key (like OFB):

$$
b_{1}=M D\left(K_{A B} \mid I V\right), b_{2}=M D\left(K_{A B} \mid b_{1}\right), \ldots
$$

Encryption with Message Digest

- Generate a one-time pad to be \oplus 'ed to the plaintext from $I V$ and a key (like OFB):

$$
b_{1}=M D\left(K_{A B} \mid I V\right), b_{2}=M D\left(K_{A B} \mid b_{1}\right), \ldots
$$

or
nut mixing in the ciphertext (like CFB):

$$
\begin{array}{ll}
b_{1}=M D\left(K_{A B} \mid V\right) & c_{1}=p_{1} \oplus b_{1} \\
b_{2}=M D\left(K_{A B} \mid c_{1}\right) & c_{2}=p_{2} \oplus b_{2}
\end{array}
$$

Digital Signature

- Public key cryptography is too slow to sign large messages nuls generate and sign the cryptographic hash of the message Inl* rely on the security of the hash function

Commitment Protocol

- Commitment protocol: making a verifiable commitment without revealing it
"nte Alice and Bob play the game of "odd or even" online:

Commitment Protocol

- Commitment protocol: making a verifiable commitment without revealing it
Nut Alice and Bob play the game of "odd or even" online:
n

Commitment Protocol

- Commitment protocol: making a verifiable commitment without revealing it
Nut Alice and Bob play the game of "odd or even" online:
n
nIn they exchange the number at the "exactly" same time

Commitment Protocol

- Commitment protocol: making a verifiable commitment without revealing it
"nt Alice and Bob play the game of "odd or even" online:
n
"ney they exchange the number at the "exactly" same time
Int Alice wins if the sum of the numbers are odd, otherwise Bob wins

Commitment Protocol

- Commitment protocol: making a verifiable commitment without revealing it
Nu* Alice and Bob play the game of "odd or even" online:
n
"n they exchange the number at the "exactly" same time
null Alice wins if the sum of the numbers are odd, otherwise Bob wins
N" but, it is difficult to get the "exactly" same time, one who delays until having received the other's number can easily cheat!

Commitment Protocol

- Solution: Alice makes a verifiable commitment before Bob sends his number, explain in details?

Commitment Protocol

- Solution: Alice makes a verifiable commitment before Bob sends his number, explain in details?
- Will this protocol work for the paper-scissors-rock game? why?

Popular Hash Functions

- MD5
nm designed by Ron Rivest in 1992 after MD2 and MD4
nill operate on 512-bit blocks and produce 128-bit message digest

Popular Hash Functions

- MD5
nut designed by Ron Rivest in 1992 after MD2 and MD4
nnt operate on 512-bit blocks and produce 128-bit message digest
In found to be broken wrt. collision resistance (2004-2007)
nnt MD5 "should be considered cryptographically broken and unsuitable for further use."
http://www.win.tue.nl/hashclash/SoftIntCodeSign/

Popular Hash Functions

- MD5
designed by Ron Rivest in 1992 after MD2 and MD4
nill operate on 512-bit blocks and produce 128-bit message digest
In found to be broken wrt. collision resistance (2004-2007)
n"I MD5 "should be considered cryptographically broken and unsuitable for further use."
http://www.win.tue.nl/hashclash/SoftIntCodeSign/
In+ SHA-2 is recommended as SHA-1 is also flawed

Popular Hash Functions

- SHA-1 (Secure Hash Algorithm)
nm designed by NSA and published by NIST
InI operate on 512-bit blocks and produce 160-bit output

Popular Hash Functions

- SHA-1 (Secure Hash Algorithm)

Nu* designed by NSA and published by NIST
InI operate on 512-bit blocks and produce 160-bit output
null collision can be found in 2^{69} calculations, 2000 times faster than brute-force $\left(2^{80}\right)$ (2005)
"nes "that is just on the far edge of feasibility with current technology." (http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html)

Common Structure

- Initialize message digest to a fixed constant
- Update the current digest with the next block of message nut also called the compression function (512 bits \rightarrow digest length)
nut block by block (extension attack)
- Output the final result as the digest for the entire message

MD5: Overview

- Pad message to a multiple of 512 bits
- Digest message block by block (also called stages)

MD5: Message Padding

- Start padding with a 1 , followed by just enough 0 bits to make the message of $512 \times n-64$ bits

MD5: Message Padding

- Start padding with a 1 , followed by just enough 0 bits to make the message of $512 \times n-64$ bits
nut what if the original message has $512 \times n$ bits?

MD5: Message Padding

- Start padding with a 1 , followed by just enough 0 bits to make the message of $512 \times n-64$ bits
nut what if the original message has $512 \times n$ bits?
n'm $512 \times n-63$? $512 \times n-64$? $512 \times n-65$?

MD5: Message Padding

- Start padding with a 1 , followed by just enough 0 bits to make the message of $512 \times n-64$ bits
nnt what if the original message has $512 \times n$ bits?
n'm $512 \times n-63$? $512 \times n-64$? $512 \times n-65$?
- Append 64 bit of message length

MD5: A Stage

- Each stage takes a block of message and intermediate digest Int 512-bit message block: 1632 -bit words named $m_{0}, m_{1}, \ldots, m_{15}$
N| 128-bit intermediate digest: 432 -bit words named $d_{0}, d_{1}, d_{2}, d_{3}$

MD5: A Stage

- Each stage takes a block of message and intermediate digest IIIT 512-bit message block: 16 32-bit words named $m_{0}, m_{1}, \ldots, m_{15}$
128-bit intermediate digest: 432 -bit words named $d_{0}, d_{1}, d_{2}, d_{3}$
- Each stage makes 4 passes over the block to update the digest

MD5: A Stage

- Each stage takes a block of message and intermediate digest Int 512-bit message block: 16 32-bit words named $m_{0}, m_{1}, \ldots, m_{15}$
128-bit intermediate digest: 432 -bit words named $d_{0}, d_{1}, d_{2}, d_{3}$
- Each stage makes 4 passes over the block to update the digest
- The output is the final modified digest + pre-stage digest

MD5: Notation

- $\sim x$: bit-wise complement of x
- $x \vee y, x \wedge y, x \oplus y$: bit-wise OR, AND, XOR of x and y
- $x \rightarrow n$: left-rotate x by n bits
- T : a table of 64 constants

MD5: Pass 1

- Select function: $F(x, y, z)=(x \wedge y) \vee(\sim x \wedge z)$
nelect n-th bit of y if n-th bit of x is 1 , otherwise n-th bit of z
- For $i=0$ to 15 :
$d_{-i \wedge 3}=d_{(1-i) \wedge 3}+\left(d_{-i \wedge 3}+F\left(d_{(1-i) \wedge 3}, d_{(2-i) \wedge 3}, d_{(3-i) \wedge 3}\right)+m_{i}+T_{i+1}\right) \uparrow S_{1}(i \wedge 3)$
- $d_{0}=d_{1}+\left(d_{0}+F\left(d_{1}, d_{2}, d_{3}\right)+m_{0}+T_{1}\right)$ ฤ 7
$d_{3}=d_{0}+\left(d_{3}+F\left(d_{0}, d_{1}, d_{2}\right)+m_{1}+T_{2}\right) \uparrow 12$
$d_{2}=d_{3}+\left(d_{2}+F\left(d_{3}, d_{0}, d_{1}\right)+m_{2}+T_{3}\right) \upharpoonleft 17$
$d_{1}=d_{2}+\left(d_{1}+F\left(d_{2}, d_{3}, d_{0}\right)+m_{3}+T_{4}\right) \uparrow 22$

MD5: Pass 2

- Select function: $G(x, y, z)=(x \wedge z) \vee(y \wedge \sim z)$
- For $i=0$ to 15 :
$d_{-i \wedge 3}=d_{(1-i) \wedge 3}+\left(d_{-i \wedge 3}+G\left(d_{(1-i) \wedge 3}, d_{(2-i) \wedge 3}, d_{(3-i) \wedge 3}\right)+m_{(5 i+1) \wedge 15}+T_{i+17}\right)$ ヶ $S_{2}(i \wedge 3)$
- $d_{0}=d_{1}+\left(d_{0}+G\left(d_{1}, d_{2}, d_{3}\right)+m_{1}+T_{17}\right)$ † 5
$d_{3}=d_{0}+\left(d_{3}+G\left(d_{0}, d_{1}, d_{2}\right)+m_{6}+T_{18}\right) \upharpoonleft 9$
$d_{2}=d_{3}+\left(d_{2}+G\left(d_{3}, d_{0}, d_{1}\right)+m_{11}+T_{19}\right)$ † 14
$d_{1}=d_{2}+\left(d_{1}+G\left(d_{2}, d_{3}, d_{0}\right)+m_{0}+T_{20}\right) \nmid 20$

MD5: Pass 3

- Select function: $H(x, y, z)=x \oplus y \oplus z$
- For $i=0$ to 15 :
$d_{-i \wedge 3}=d_{(1-i) \wedge 3}+\left(d_{-i \wedge 3}+H\left(d_{(1-i) \wedge 3}, d_{(2-i) \wedge 3}, d_{(3-i) \wedge 3}\right)+m_{(3 i+5) \wedge 15}+T_{i+33}\right)$ ヶS $S_{3}(i \wedge 3)$
- $\left.d_{0}=d_{1}+\left(d_{0}+H\left(d_{1}, d_{2}, d_{3}\right)+m_{5}+T_{33}\right)\right\urcorner 4$
$d_{3}=d_{0}+\left(d_{3}+H\left(d_{0}, d_{1}, d_{2}\right)+m_{8}+T_{34}\right) \uparrow 11$
$d_{2}=d_{3}+\left(d_{2}+H\left(d_{3}, d_{0}, d_{1}\right)+m_{11}+T_{35}\right)$ † 16
$d_{1}=d_{2}+\left(d_{1}+H\left(d_{2}, d_{3}, d_{0}\right)+m_{14}+T_{36}\right) \uparrow 23$

MD5: Pass 4

- Select function: $I(x, y, z)=y \oplus(x \vee \sim z)$
- For $i=0$ to 15 :

$$
d_{-i \wedge 3}=d_{(1-i) \wedge 3}+\left(d_{-i \wedge 3}+I\left(d_{(1-i) \wedge 3}, d_{(2-i) \wedge 3}, d_{(3-i) \wedge 3}\right)+m_{(7 i) \wedge 15}+T_{i+49}\right) \text { 勺 } S_{4}(i \wedge 3)
$$

- $d_{0}=d_{1}+\left(d_{0}+I\left(d_{1}, d_{2}, d_{3}\right)+m_{0}+T_{49}\right) \uparrow 6$
$d_{3}=d_{0}+\left(d_{3}+I\left(d_{0}, d_{1}, d_{2}\right)+m_{7}+T_{50}\right) \uparrow 10$
$d_{2}=d_{3}+\left(d_{2}+I\left(d_{3}, d_{0}, d_{1}\right)+m_{14}+T_{51}\right) \uparrow 15$
$d_{1}=d_{2}+\left(d_{1}+I\left(d_{2}, d_{3}, d_{0}\right)+m_{5}+T_{52}\right) \uparrow 21$

SHA-1

- Structurally similar to MD4 and MD5
${ }^{\mathrm{Im}+\mathrm{L}}$ work in stages and use the same message padding

SHA-1

- Structurally similar to MD4 and MD5
${ }^{\mathrm{Im}+\mathrm{L}}$ work in stages and use the same message padding
- Process messages in 512-bit blocks, produce 160 -bit digest message block: 1632 -bit words named as $w_{0}, w_{1}, \ldots, w_{15}$ digest: 5 words named as A, B, C, D, E

SHA-1

- Structurally similar to MD4 and MD5

Im* work in stages and use the same message padding

- Process messages in 512-bit blocks, produce 160 -bit digest message block: 16 32-bit words named as $w_{0}, w_{1}, \ldots, w_{15}$
digest: 5 words named as A, B, C, D, E
- Each SHA-1 stage has 5 passes

Int a pre-process pass to extend the block to 80 words (32 bits), grouped into 4 sets of 20 words
nul four digest passes each updates the digest with its set of words

SHA1: Preprocess Pass

- Extend the message block into 80 words
nill words 0 to 15 are just copied over
fill for $i=16$ to 79: $w_{i}=\left(w_{i-16} \oplus w_{i-14} \oplus w_{i-8} \oplus w_{i-3}\right)$ け 1

SHA1: Preprocess Pass

- Extend the message block into 80 words
will words 0 to 15 are just copied over
NII for $i=16$ to 79: $w_{i}=\left(w_{i-16} \oplus w_{i-14} \oplus w_{i-8} \oplus w_{i-3}\right)$ ฤ 1
- Group these 80 words into 4 sets, each containing 20 words $w_{0}-w_{19}, w_{20}-w_{39}, w_{40}-w_{59}, w_{60}-w_{79}$

SHA1: Digest Pass

- Each pass updates the digest using 20 words, w_{0} to w_{19}
- Assume p is the pass number $(0,1,2,3)$, then for $i=0$ to 19:
$A^{\prime}=E+(A \dashv 5)+w_{i}+K_{p}+f_{p}(B, C, D)$
$B^{\prime}=A$
$C^{\prime}=B \pitchfork 30$
$D^{\prime}=C$
$E^{\prime}=D$
K_{p} is a constant, f_{p} is a function (both vary wrt. p)

SHA1: Digest Pass

- Why MD5 and SHA1 is much faster than DES?

Digest Pass	SHA-1	MD5
1	$(B \wedge C) \vee(\sim B \wedge D)$	$(x \wedge y) \vee(\sim x \wedge z)$
2	$B \oplus C \oplus D$	$(x \wedge z) \vee(y \wedge \sim z)$
3	$(B \wedge C) \vee(B \wedge D) \vee(C \wedge D)$	$x \oplus y \oplus z$
4	$B \oplus C \oplus D$	$y \oplus(x \vee \sim z)$

Conclusion

Bruce Schneier:

"Hash functions are the least-well-understood cryptographic primitive, and hashing techniques are much less developed than encryption techniques."

