CNT4406/5412 Network Security SSL/TLS

Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU)

CNT4406/5412 Network Security

◆ 注 ▶ 注 · ク < ペ</p>
Fall 2014 1 / 23

(日) (四) (日) (日) (日)

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

(日) (四) (日) (日) (日)

 $\ensuremath{\mathsf{SSL/TLS}}$ runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

• SSL was developed by Netscape, and runs on top of TCP

・ 何 ト ・ ヨ ト ・ ヨ ト

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

SSL was developed by Netscape, and runs on top of TCP
 SSLv2 was deployed in Netscape Navigator 1.1 in 1995

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

SSL was developed by Netscape, and runs on top of TCP
 SSLv2 was deployed in Netscape Navigator 1.1 in 1995
 SSLv3 was released in 1996 to address security flaws in SSLv2

▲□ ▶ ▲ □ ▶ ▲ □ ▶

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

- SSL was developed by Netscape, and runs on top of TCP
 SSLv2 was deployed in Netscape Navigator 1.1 in 1995
 SSLv3 was released in 1996 to address security flaws in SSLv2
- IETF proposes TLS (Transport Layer Security) to standardize it

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

- SSL was developed by Netscape, and runs on top of TCP
 SSLv2 was deployed in Netscape Navigator 1.1 in 1995
 SSLv3 was released in 1996 to address security flaws in SSLv2
- IETF proposes TLS (Transport Layer Security) to standardize it

 w1.0: RFC2246, 1999; v1.1: RFC4346, 2006; v1.2: RFC5246, 2008

< 同 > < 三 > < 三 >

SSL/TLS runs on top of TCP and allows two parties to authenticate and securely communicate with each otherf

- SSL was developed by Netscape, and runs on top of TCP
 SSLv2 was deployed in Netscape Navigator 1.1 in 1995
 SSLv3 was released in 1996 to address security flaws in SSLv2
- IETF proposes TLS (Transport Layer Security) to standardize it

 w v1.0: RFC2246, 1999; v1.1: RFC4346, 2006; v1.2: RFC5246, 2008

 TLS for UDP (aka. DTLS) is defined in RFC 6347, 2012

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• SSL relies on TCP for reliable communication (e.g., retransmission...)

< □ > < 同 > < 回 > < 回 > < 回 >

 SSL relies on TCP for reliable communication (e.g., retransmission...)
 rogue packet problem: TCP accepts well-formated rogue packets, SSL discards them, but TCP won't accept data in the same range

- SSL relies on TCP for reliable communication (e.g., retransmission...)
 rogue packet problem: TCP accepts well-formated rogue packets, SSL discards them, but TCP won't accept data in the same range
- SSL/TLS is the de facto standard for web security

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- SSL relies on TCP for reliable communication (e.g., retransmission...)
 rogue packet problem: TCP accepts well-formated rogue packets, SSL discards them, but TCP won't accept data in the same range
- SSL/TLS is the de facto standard for web security
 HTTPS uses TCP port 443

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction: SSL Service

• Peer authentication

Zhi Wang (FSU)

CNT4406/5412 Network Security

◆ ■ ▶ ■ つへで Fall 2014 4 / 23

A D N A B N A B N A B N

Introduction: SSL Service

- Peer authentication
- Negotiation of security parameters

< □ > < 同 > < 回 > < 回 > < 回 >

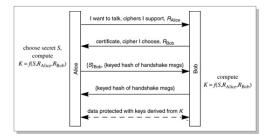
Introduction: SSL Service

- Peer authentication
- Negotiation of security parameters
- Establishment of session keys

Zhi Wang (FSU)

CNT4406/5412 Network Security

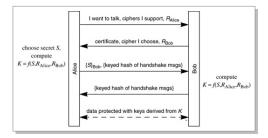
Fall 2014 4 / 23


(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

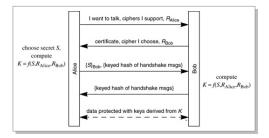
Introduction: SSL Service

- Peer authentication
- Negotiation of security parameters
- Establishment of session keys
- Data confidentiality and integrity

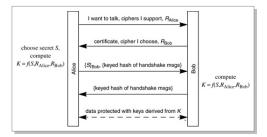
< ⊒ >


• Message 1, 2 negotiate a cipher and exchange two random numbers

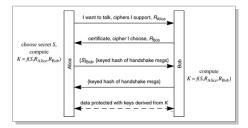
Zhi Wang (FSU)


CNT4406/5412 Network Security

Message 1, 2 negotiate a cipher and exchange two random numbers
 R_{Alice} and *R_{Bob}* are combined with *S* to form keys

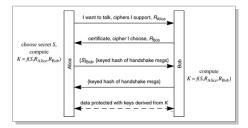

・ 同 ト ・ ヨ ト ・ ヨ ト

- Message 1, 2 negotiate a cipher and exchange two random numbers
 R_{Alice} and *R_{Bob}* are combined with *S* to form keys
 - TAlice and R_{Bob} are combined with 5 to form key
 - me normally, only the server provides a certificate

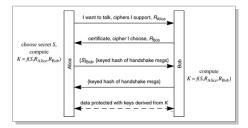

<日

<</p>

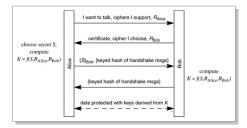
Message 1, 2 negotiate a cipher and exchange two random numbers
 R_{Alice} and *R_{Bob}* are combined with *S* to form keys
 normally, only the server provides a certificate
 to prevent MITM attack, user need to verify the certificate
 matches the web site (browers may give warning about it)


• • = • • = •

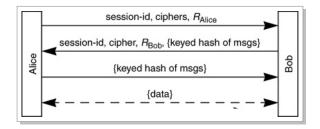
• Message 3, 4 establish keys and authenticate the handshake messages


(4) (日本)

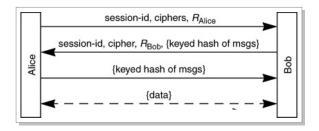
Message 3, 4 establish keys and authenticate the handshake messages
 three pairs of keys are established for encryption, integrity, and IV


一回 ト イヨト イヨト

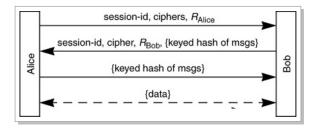
- Message 3, 4 establish keys and authenticate the handshake messages
 three pairs of keys are established for encryption, integrity, and IV
- Common practice for authentication:


一回 ト イヨト イヨト

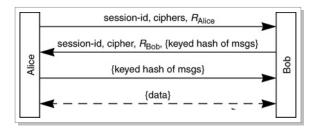
- Message 3, 4 establish keys and authenticate the handshake messages
 three pairs of keys are established for encryption, integrity, and IV
- Common practice for authentication:
 - establish a secure channel through plaintext messages
 - authenticate the previous messages to prevent MITM attacks


一回 ト イヨト イヨト

• SSL session is a (long-lasting) association between the parties


< ⊒ >

SSL session is a (long-lasting) association between the parties
 per-session master secret is established by public key cryptography


< 3 >

- SSL session is a (long-lasting) association between the parties
 per-session master secret is established by public key cryptography
- SSL connections can be cheaply derived from the master secret

< 3 >

- SSL session is a (long-lasting) association between the parties
 per-session master secret is established by public key cryptography
- SSL connections can be cheaply derived from the master secret
 by doing a handshake that involves sending nonces

< ⊒ >

Session Parameters

- Session ID
- X.509 public-key certificates
- Compression algorithm to use
- Cipher specifications
 - encryption and message digest algorithms...
- Per-session master secret (48 bytes)

< ⊒ >

Connection Parameters

- Server and client nonces
- Three pairs of sever and client keys
 - encryption key and authentication key
 - initialization vectors
- Current message sequence number

< ∃ ►

SSL messages are encoded into records, there are four record types

• Handshake \rightarrow establish a session key

▲ □ ▶ ▲ □ ▶ ▲ □

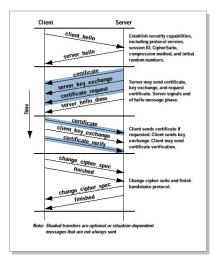
SSL messages are encoded into records, there are four record types

- Handshake \rightarrow establish a session key
- Change cipher spec \rightarrow start using the previously established keys

.

SSL messages are encoded into records, there are four record types

- Handshake \rightarrow establish a session key
- $\bullet\,$ Change cipher spec $\rightarrow \! \mathsf{start}$ using the previously established keys
- Application data \rightarrow encrypted application data after the handshake

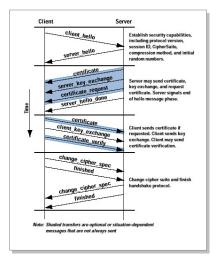

SSL messages are encoded into records, there are four record types

- Handshake \rightarrow establish a session key
- $\bullet\,$ Change cipher spec $\rightarrow \! \mathsf{start}$ using the previously established keys
- Application data \rightarrow encrypted application data after the handshake

通 ト イ ヨ ト イ ヨ ト

Handshake Messages

Mandatory records:
 client: client_hello,
 client_key_exchange,
 change_cipher_spec, finished

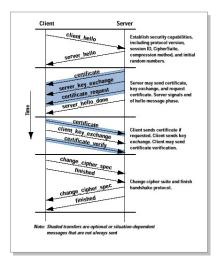

(日)

CNT4406/5412 Network Security

Handshake Messages

Handshake Messages

Mandatory records: client: client_hello, client_key_exchange, change_cipher_spec, finished server: server_hello, server_hello_done, change_cipher_spec, finished

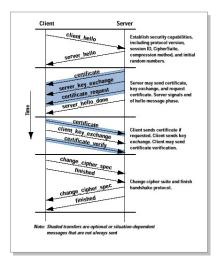


(日)

Handshake Messages

Handshake Messages

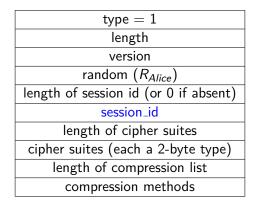
- Mandatory records:
 client: client_hello, client_key_exchange, change_cipher_spec, finished
 server: server_hello, server_hello_done, change_cipher_spec, finished
- Server almost always send a certificate record!



イロト イボト イヨト イヨト

Handshake Messages

Handshake Messages


- Mandatory records:
 client: client_hello, client_key_exchange, change_cipher_spec, finished
 server: server_hello, server_hello_done, change_cipher_spec, finished
- Server almost always send a certificate record!

イロト イボト イヨト イヨト

Handshake Messages: Client_Hello*

• The optional session_id allows session resumption

Zhi Wang (FSU)

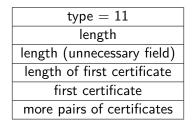
CNT4406/5412 Network Security

Fall 2014 12 / 23

Handshake Messages: Server_Hello

- The optional session_id allows session resumption
- Bob's chosen cipher and compression method

type = 2
length
version
random (<i>R_{Bob}</i>)
length of session id (or 0 if absent)
session_id
chosen cipher
chosen compression method


Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 13 / 23

Handshake Messages: Certificate

- The server sends its certificate to the client
- The client may also send a certificate to the server if requested

4 3 > 4 3

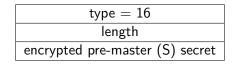
Handshake Messages: Server_Hello_Done

• Server has finished sending its handshake messages

$$\begin{array}{l} \text{type} = 14 \\ \text{length} = 0 \end{array}$$

Zhi Wang (FSU)

CNT4406/5412 Network Security


< □ > < 同 >

→ ∃ ▶

Fall 2014 15 / 23

Handshake Messages: Client_Key_Exchange

• Client sends the pre-master secret encrypted the server's public key

< ∃ ►

Handshake Messages: Change_Cipher_Spec

• All records following this will be protected with the negotiated ciphers

type = 20
version
length
ChangeCipherSpecType (set to 1)

Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 17 / 23

Handshake Messages: Handshake Finished

• The message ensures the integrity of the exchange

type = 20 length (36 or 12) digest of handshake messages

Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 18 / 23

(4) (5) (4) (5)

Handshake Messages: Certificate_Request

Server requests client to send its certificate signed by selected CAs
 it only list CA names, a CA can have more than one keys

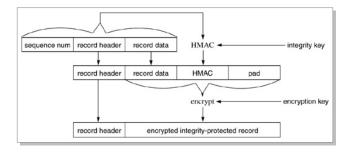
type = 13
length
length of key type list
list of types of keys (e.g., RSA)
number of CA names
length of 1st CA names
1st CA name
more pairs of CA name length and name

Handshake Messages: Certificate_Verify

• Client send it to prove it knows its private key

type = 15
length
length of signature
signature of the handshake message

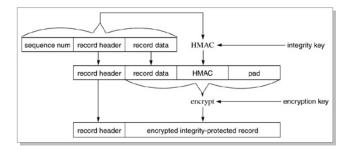
Zhi Wang (FSU)


CNT4406/5412 Network Security

Fall 2014 20 / 23

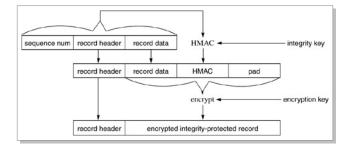
Image: A matched and A matc

Application Data


Application data are first fragmented into records
 merecords are limited to 2¹⁴ bytes

イロト イボト イヨト イヨト

Application Data


- Application data are first fragmented into records
 merecords are limited to 2¹⁴ bytes
- Each record data is first compressed, then hashed with keyed HMAC

< 同 ト < 三 ト < 三 ト

Application Data

- Application data are first fragmented into records
 merecords are limited to 2¹⁴ bytes
- Each record data is first compressed, then hashed with keyed HMAC
- It is then encrypted and prepended with a record header

通 ト イ ヨ ト イ ヨ ト

Demo: A Captured SSL Session

ie Ei	Edit			Go 9 (04)	-			ß			e.,	2	5	9	4		>	-	-		Ð	0			1	€,	Θ,	0	
ker:	tep	port	eq 9	195												τ E	xpre	ssion.	s	Jear	Appl	y							
		. 94	80			2.1		$1.10 \\ 1.10$	07	Dest	233	16	3.11	1 T	otocol CP CP	1	nfo .02 .02	8 :	99	95	[SYN] :	Seq.	0 L4	en=	0 M: 0 M:	55 -1	460 460	
	2 1 3 1 4 5 6 7 8 9 0 1 2	.96 .96 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	330 331 16 17 88 02 33 34 58 63 163 164 164	29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	64 19 19 19 64 19 64 19 64 19 64 19	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	68. 68. 68. 3.1 68. 68. 68. 3.1 3.1 68. 3.1 68. 3.1 68. 3.1	03.1 1.10 1.10 1.10 63.1 63.1 1.10 1.10 63.1	111 07 07 07 07 07 111 111 07 07 111 111	64. 64. 64. 192 64. 192 64. 192 192 192 64.	233 233 233 233 .16 .16 233 233 .16 .16 233 .16 233	16 16 16 16 16 16 16 16 16 16 16 16 16	107 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.1	1 TT	P CP SLV2 SLV2 CP LSV1 LSV1 LSV1 LSV1 LSV1		02 TCF 110 TCF 995 erv 110 TCF har 02	sent out out out out out out out out out ou	02 10 10 10 10 10 10 10 10 10 10	35 ACK 110 0f-0 38 110, / E: 0f-0 0f-0 0f-0 0f-0 0 0f-0 0 0 0 0 10 0 1	ACK 12# ACK Ce cha orde Sp Data ACK] : 1]] : r] ng: r] ec,	cli infi cli cli cli Er	ent 1 Ac 38 : 1 Ac ate, hang ent icryp 288 38 :	He ck= ck= ck= se ke ote	1 w 95 110 106 егу, Сірі у Е: d н. k=9	Win ACK Win ands S8 W	wine 451:] Si =57: e11: Spe- nge hak	20 20 53
																													>
Et Ir	her	net	t II	50 b I, S Poto Dn C	rc: col,	c1s Sr	c:	L1_ 64.	6c:7 233.	163	7 (00:	18:f	8:6	163	.111	э,	Dst	: 1	.92 .	168	.1.	107	(19	92.3	168.	1.1	07)	
000	0 0	02	c a b C	1 17 7 5c 3 e3 9 1k	27	00 fe	eb 06	06 87	81 <5		40 a9	e9 ad	08 a3 16	6f	45 2 c0 a 60 1	8	:k	A		::	u 6 1.	۰.,							

< □ > < □ > < □ > < □ > < □ >

Summary

- SSL/TLS History
- SSL/TLS Overview
- SSL/TLS Details
- Next lecture: Web Security

A D N A B N A B N A B N