CNT4406/5412 Network Security Introduction

Zhi Wang

Florida State University

Fall 2014

Zhi Wang (FSU)

CNT4406/5412 Network Security

(ヨ) ヨ つへで Fall 2014 1 / 35

A D N A B N A B N A B N

What is Security?

Protecting information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide integrity, confidentiality, and availability

< □ > < □ > < □ > < □ > < □ > < □ >

Integrity

 Guarding against improper information modification or destruction, and includes ensuring information nonrepudiation and authenticity
 e.g., data integrity, code integrity

< □ > < 同 > < 回 > < 回 > < 回 >

Confidentiality

 Preserving authorized restrictions on access and disclosure, including means for protecting personal privacy and proprietary information
 e.g., secrecy, privacy

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

Availability

• Ensuring timely and reliable access to and use of information

Zhi Wang (FSU)

CNT4406/5412 Network Security

< ■ ► ■ つへで Fall 2014 5 / 35

A D N A B N A B N A B N

Security and CIA

Fall 2014 6 / 35

イロト イ部ト イヨト イヨト 一日

The HBGary Hacking Saga

The HBGary Hacking Saga

Fall 2014 7 / 35

▲ □ ▶ ▲ □ ▶ ▲ □

Who is Anonymous

- Anonymous is a loosely associated hacktivist group
 - originated on the imageboard 4chan in 2003
 - associated with collaborative hacktivism since 2008
 - responsible for many high-profile attacks: DDOS attacks against IFPI, MPAA for file sharing site closure, VISA, MasterCard and PayPal to support WikiLeaks
 - maned by Time as one of the most influential people in 2012

.

Who is HBGary

- HBGary is a security company
 - founded by Greg Hoglund (rootkit.com) in 2003
 - it had two firms, HBGary and HBGary Federal
 - HBF was led by Aaron Barr focusing on the U.S federal government

Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 9 / 35

< 🗇 🕨 < 🖻 🕨 < 🖻

Who is HBGary

- HBGary is a security company
 - founded by Greg Hoglund (rootkit.com) in 2003
 - it had two firms, HBGary and HBGary Federal
 - HBF was led by Aaron Barr focusing on the U.S federal government
- HBGary was sold to ManTech after being hacked

< 回 > < 三 > < 三

What Happened

• Anonymous poses serious security threats

A D N A B N A B N A B N

What Happened

- Anonymous poses serious security threats
- Aaron claimed to have unmasked Anonymous "members" by correlating social media in early 2011
 proposed a talk titled "who needs NSA when we have social media?" at the B-Sides conference to sell his idea
 intended to sell his list to FBI

< ∃ > < ∃

What Happened

- Anonymous poses serious security threats
- Aaron claimed to have unmasked Anonymous "members" by correlating social media in early 2011
 proposed a talk titled "who needs NSA when we have social media?" at the B-Sides conference to sell his idea
 intended to sell his list to FBI
- Anonymous compromised the HBGary in Feb 2011
 - compromised the websites
 - posted lots of documents and emails online
 - usurped Aaron's Twitter

(4) (5) (4) (5)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• Reconnoiter to identify vulnerabilities

A D N A B N A B N A B N

• Reconnoiter to identify vulnerabilities

software configuration, network topologic, servers...

< ⊒ >

- Reconnoiter to identify vulnerabilities
 - software configuration, network topologic, servers...
- Exploit vulnerabilities to take over (own) systems

< ∃ ►

- Reconnoiter to identify vulnerabilities
 - software configuration, network topologic, servers...
- Exploit vulnerabilities to take over (own) systems
 SQL injection, buffer overflow, format string vulnerability...

< ∃ ►

- Reconnoiter to identify vulnerabilities
 - software configuration, network topologic, servers...
- Exploit vulnerabilities to take over (own) systems
 SQL injection, buffer overflow, format string vulnerability...
- Harvest information, install malware/backdoors
 document, design, email...

- < ∃ ►

- Reconnoiter to identify vulnerabilities
 - software configuration, network topologic, servers...
- Exploit vulnerabilities to take over (own) systems
 SQL injection, buffer overflow, format string vulnerability...
- Harvest information, install malware/backdoors
 document, design, email...
- Cover it up: files, logs...

(4) (3) (4) (4) (4)

The HBGary Hacking: Reconnaissance

- Hbgaryfederal.com was powered by a third-party CMS with SQL injection vulnerabilities
 - an example of the SQL inject vulnerability:

```
statement = "SELECT * FROM users WHERE name = '" + userName + "';" userName = "' or '1'='1' - - '"
```

 \rightarrow SELECT * FROM users WHERE name = '' OR '1'='1' - - ';

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The HBGary Hacking: Reconnaissance

- Hbgaryfederal.com was powered by a third-party CMS with SQL injection vulnerabilities
 - an example of the SQL inject vulnerability:

```
statement = "SELECT * FROM users WHERE name = '" + userName + "';"
userName = "' or '1'='1' - - '"
```

 \rightarrow SELECT * FROM users WHERE name = '' OR '1'='1' - - ';

The vulnerable URL is:

http://www.hbgaryfederal.com/pages.php?pageNav=2&page=27

The HBGary Hacking: Reconnaissance

- Hbgaryfederal.com was powered by a third-party CMS with SQL injection vulnerabilities
 - an example of the SQL inject vulnerability:

```
statement = "SELECT * FROM users WHERE name = '" + userName + "';"
userName = "' or '1'='1' - - '"
```

 \rightarrow SELECT * FROM users WHERE name = '' OR '1'='1' - - ';

The vulnerable URL is:

http://www.hbgaryfederal.com/pages.php?pageNav=2&page=27

- User database was retrieved from CMS:
 - CMS admins' usernames, email addresses, and password hashes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Three properties of an ideal cryptographic hash function:
 mone-way property:
 given h, it's infeasible to find m with h = H(m)

・ 何 ト ・ ヨ ト ・ ヨ ト

- Three properties of an ideal cryptographic hash function:
 mone-way property:
 river h it's infeasible to find monith h = U(m)
 - given h, it's infeasible to find m with h = H(m)
 - weak collision resistance:

given m_1 , it's infeasible to find m_2 with $H(m_1) = H(m_2)$

・ 何 ト ・ ヨ ト ・ ヨ ト

Three properties of an ideal cryptographic hash function:
 me one-way property:

given h, it's infeasible to find m with h = H(m)

weak collision resistance:
 given m₁, it's infeasible to find m₂ with H(m₁) = H(m₂)
 strong collision resistance:

it's infeasible to find m_1 and m_2 with $H(m_1) = H(m_2)$

- 4 回 ト 4 三 ト 4 三 ト

Three properties of an ideal cryptographic hash function:
 me one-way property:

given h, it's infeasible to find m with h = H(m)

weak collision resistance:
 given m₁, it's infeasible to find m₂ with H(m₁) = H(m₂)
 strong collision resistance:

it's infeasible to find m_1 and m_2 with $H(m_1) = H(m_2)$

• Brutal force is the main method to guess passwords

<日

<</p>

- Brute-forcing passwords has never been easier
 - more than 100 million real-world passwords are leaked
 - real-world passwords instead of words in a dictionary
 - patterns in password construction
 - Rainbow tables, pre-computed hashes, are widely available
 - super computing power is cheap and available: cloud, GPGPU

The HBGary Hacking: Password Insecurity

Weak passwords

■ CEO and COO of HBF uses weak passwords in a rainbow table

< 3 >

The HBGary Hacking: Password Insecurity

Weak passwords

CEO and COO of HBF uses weak passwords in a rainbow table

Password reuse

- average web user has 25 accounts, but uses just 6.5 passwords
- both CEO and COO reuse the passwords across their accounts
- Aaron (CEO) is the Google Apps (email) administrator

 \rightarrow access to anyone's email, including Greg Hoglund

• • = • • = •

The HBGary Hacking: Password Insecurity

Weak passwords

CEO and COO of HBF uses weak passwords in a rainbow table

Password reuse

- average web user has 25 accounts, but uses just 6.5 passwords
- both CEO and COO reuse the passwords across their accounts
- ➡ Aaron (CEO) is the Google Apps (email) administrator → access to anyone's email, including Greg Hoglund
- Public key authentication is not used for SSH by Aaron

通 ト イ ヨ ト イ ヨ ト

The HBGary Hacking: Host Insecurity

- Privilege-escalation vulnerabilities
 - the attacker owned an unprivileged account by a reused password
 - he then owned the system by exploiting such a vulnerability: GNU dynamic linker expands \$ORIGIN in library search path for setuid applications

A B b A B b

The HBGary Hacking: Social Engineering

- Authentic information was used to bypass authentication
 Grey Hoglund is the creator of rootkit.com
 - Grey's email is compromised, which allows to impersonate him
 - His compromised email leaked two pieces of information: the hashes of the root password in rootkit.com Jussi at Nokia has root access to rootkit.com

The HBGary Hacking: Social Engineering

- Authentic information was used to bypass authentication
 Grey Hoglund is the creator of rootkit.com
 - Grey's email is compromised, which allows to impersonate him
 - His compromised email leaked two pieces of information: the hashes of the root password in rootkit.com Jussi at Nokia has root access to rootkit.com
- Jussi was convinced and handed over Grey's account
 whe authenticated "Grey" by shared secret

A B A A B A

The HBGary Hacking: Social Engineering

- Authentic information was used to bypass authentication
 Grey Hoglund is the creator of rootkit.com
 - Grey's email is compromised, which allows to impersonate him
 - His compromised email leaked two pieces of information: the hashes of the root password in rootkit.com Jussi at Nokia has root access to rootkit.com
- Jussi was convinced and handed over Grey's account
 me he authenticated "Grey" by shared secret
 - the attack was claimed to be executed by a teenage girl

通 ト イ ヨ ト イ ヨ ト

The HBGary Hacking Saga

More Security Incidents

Stuxnet

< 回 > < 三 > < 三 >

Fall 2014 18 / 35

Surveillance State

Fall 2014 19 / 35

In This Course

• Explore fundamental issues that cause this insecurity from both network and systems POV

< □ > < 同 > < 回 > < 回 > < 回 >

In This Course

- Explore fundamental issues that cause this insecurity from both network and systems POV
- Explain defense mechanisms that mitigate these issues

・ 何 ト ・ ヨ ト ・ ヨ ト

In This Course

- Explore fundamental issues that cause this insecurity from both network and systems POV
- Explain defense mechanisms that mitigate these issues
- Cover the topics of: cryptography, hashes and message digests, public key cryptography, important standards such as PKI, SSL, SSH, and IPSec, operating system security

A B b A B b

Course Mechanisms

You Should Know

- TCP/IP networking
- Operating systems architecture and design
 e.g., virtual memory, file systems, networking,...
- Discrete mathematics

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Course Materials

- Course website: http://www.cs.fsu.edu/~zwang/cnt5412.html
 course schedules, assignments, slides,
- Course textbook

Kaufman, C., Perlman, R., and Speciner, M., Network Security: Private Communication in a Public World, 2nd Edition, Prentice Hall 2002

Office hour: Monday 2:30-4:30pm, or by appointment
 im come to the office hour for help!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Course Mechanisms

Grading

item	percentage	
homework	30%	
project	30%	
midterm	30%	
quizzes	10%	

Zhi Wang (FSU)

CNT4406/5412 Network Security

Fall 2014 23 / 35

Course Policy

- Academic honor policy: zero-tolerance for cheating http://academichonor.fsu.edu
- Ethics: act responsibly in security practices
- Disabilities: contact the instructor for accommodation

A B A A B A

OSI Reference Model

Layer	Name	Who	Example	PDU
7	application	E-E	HTTP	message
6	presentation	E-E	UTF8	
5	session	E-E	Web Conference	
4	transport	E-E	TCP/UDP	segment/datagram
3	network	router	IP	packet
2	data link	bridge, switch	Ethernet	frame
1	physical	repeater	Ethernet	bit stream

Zhi Wang (FSU)

メロト メポト メヨト メヨト

Network Security Layers

Layer	Security	
Physical	Blacklisting	
Data link	Wireless Ethernet, PPP Authentication	
Network	IPSec	
Transport	SSL (TLS)	
Application	PGP (email)	

Zhi Wang (FSU)

CNT4406/5412 Network Security

3 Fall 2014 26 / 35

< □ > < □ > < □ > < □ > < □ >

Data Encapsulation/Fragmentation

▲ ■ ● ■ ● への
 Fall 2014 27 / 35

A D N A B N A B N A B N

IP Header

Zni vvang (FSU)	Zhi V	Vang	(FSU)
-----------------	-------	------	-------

イロト イヨト イヨト イヨト

TCP Header

Zhi Wang (FSU)

<ロト <問ト < 目と < 目と

A Primer on Networking

TCP State Machine

Zhi Wang (FSU)

CNT4406/5412 Network Security

Active and Passive Attack

Passive attack: intruder eavesdrops, but does not modify the message
 unencrypted messages, side channel attacks (tax, health)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Active and Passive Attack

- Passive attack: intruder eavesdrops, but does not modify the message
 unencrypted messages, side channel attacks (tax, health)
- Active attack: intruder may transmit, replay, modify, delete messages
 man-in-the-middle, Denial-of-service

A B A A B A

Denial-of-Service (DOS) Attack

Exploit legitimate behavior or vulnerabilities with crafted packets
 E-Mail bomb: sending auto-generated emails to victim
 smurf: sending ICMP echo (ping) traffic to IP broadcast address with a spoofed source address of a victim
 tear drop: overlapping (fragmented) packets
 SYN flood: sending lots of TCP SYN packets

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Denial-of-Service (DOS) Attack

- Exploit legitimate behavior or vulnerabilities with crafted packets
 E-Mail bomb: sending auto-generated emails to victim
 smurf: sending ICMP echo (ping) traffic to IP broadcast address with a spoofed source address of a victim
 tear drop: overlapping (fragmented) packets
 SYN flood: sending lots of TCP SYN packets
- Launch Distributed DOS (DDOS) with botnets

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Personae

Alice:first participantBob, Carol, Dave:second, third, fourth participantEve:eavesdropperTrudy:malicious active attacker

→ ∃ →

< A IN

Secure Communication

- Secrecy: Alice can send a message to Bob only he can read
- Authentication: Bob knows for sure that Alice sent it
- Nonrepudiation : Alice can't deny she sent the message

Summary

- What is security
- Real-world attacks
- Course mechanisms
- A primer of networking
- Next lecture: Introduction to cryptography