
LECTURE 9 Pipeline Hazards

PIPELINED DATAPATH AND CONTROL

In the previous lecture, we finalized the pipelined datapath for instruction sequences
which do not include hazards of any kind.

Remember that we have two kinds of hazards to worry about:

• Data hazards: an instruction is unable to execute in the planned cycle because it is
dependent on some data that has not yet been committed.

lw $s0, $s1, $s2 # $s0 written in cycle 5
add $s3, $s0, $s4 # $s0 read in cycle 3

• Control hazards: we do not know which instruction needs to be executed next.

beq $t0, $t1, L1 # target in cycle 3
add $t0, $t0, 1 # loaded in cycle 2

L1: sub $t0, $t0, 1

DATA HAZARDS

Let us now turn our attention to data hazards. As we’ve already seen, we have two
solutions for data hazards:

• Forwarding (or bypassing): the needed data is forwarded as soon as possible to the
instruction which depends on it.

• Stalling: the dependent instruction is “pushed back” for one or more clock cycles.
Alternatively, you can think of stalling as the execution of a noop for one or more
cycles.

DATA HAZARDS

Let’s take a look at the following instruction sequence.

We have a number of dependencies here. The last four instructions, which read
register $2, are all dependent on the first instruction, which writes a value to
register $2. Let’s naively pipeline these instructions and see what happens.

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

DATA HAZARDS

The blue lines indicate the
data dependencies.

We can notice immediately
that we have a problem.

The last four instructions
require the register value to
be -20 (the value during the
WB stage of the first instruction).
However, the middle three
instructions will read the value
to be 10 if we do not intervene.

DATA HAZARDS

We can resolve the last potential
hazard in our design of the
register file unit.

Instruction 1 is writing the value
of $2 to the register file in the
same cycle that instruction 4 is
reading the value of $2.

We assume that the write
operation takes place in the first
half of the clock cycle, while the
read operation takes place in the
second half. Therefore, the
updated $2 value is available.

DATA HAZARDS

So the only data hazards occur
for instructions 2 and 3.

In this style of representation,
we can easily identify true data
hazards as they are the only ones
whose dependency lines go
back in time.

Note that instruction 2 reads $2
in cycle 3 and instruction 3 reads
$2 in cycle 4.

DATA HAZARDS

Luckily instruction 1 calculates the
new values in cycle 3.

If we simply forward the data as
soon as it is calculated, then we
will have it in time for the
subsequent instructions to execute.

DATA HAZARDS

Let’s now take a look at how forwarding actually works.

First, we’ll introduce some new notation. To specify the name of a particular field in a
particular pipeline register, we will use the following:

PipelineRegister.FieldName

So, for example, the number of the register corresponding to Read Data 2 from the
register file in the ID/EX register is identifiable as ID/EX.RegisterRt.

DATA HAZARDS

We’re only going to worry about the challenge of forwarding data to be used in the
EX stage.

The only writeable values that
may be used in the EX stage are
the contents of the $rs and $rt
registers.

It’s ok if we read the wrong values
from the register file, but we need
to make sure the right values are
used as input to the ALU!

DATA HAZARDS
We only have a hazard if either the source registers, ID/EX.RegisterRs and
ID/EX.RegisterRt, are dependent on EX/MEM.WriteReg or
MEM/WB.WriteReg.

For example, consider the following instructions.

In cycle 4, when and is in its EX stage and sub is in its MEM stage,
ID/EX.RegisterRs will be $2. In this same cycle, EX/MEM.WriteReg will be
$2. The fact that they refer to the same register means we have a potential data
hazard.

EX/MEM.WriteReg == ID/EX.RegisterRs == $2

sub $2, $1, $3
and $12, $2, $5

DATA HAZARDS

We can break the possibilities down into 2 pairs of hazard conditions.

The data hazard from the previous slide can be classified as a 1a hazard.

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt

2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

Classify the hazards in this sequence of instructions.

sub $2, $1, $3
and $12, $5, $2
or $13, $2, $6
add $14, $2, $2
sw $15, 100($2)

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

Classify the hazards in this sequence of instructions.

sub $2, $1, $3
and $12, $5, $2 # 1b
or $13, $2, $6 # 2a
add $14, $2, $2 # No hazard
sw $15, 100($2) # No hazard

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

The naïve solution would be to suggest that if any of the following hazards are
detected, we should perform forwarding.

However, not all instructions perform register writes. So, we add the following
requirement to our policy: the RegWrite signal must be asserted in the WB control
field during the EX stage for type 1 hazards and the MEM stage for type 2
hazards.

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

Also, we do not allow results to be written to the $0 register so, in the event that an
instruction uses $0 as its destination (which is legal), we should not forward the result
(because it won’t even be written back to the register file anyway).

This gives us two additional conditions:

• EX/MEM.WriteReg != 0

• MEM/WB.WriteReg != 0

DATA HAZARDS

To summarize, we have an EX hazard if either of the following are true:

1a. EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRs

1b. EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

To summarize, we have an MEM hazard if either of the following are true:

2a. MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRs

2b. MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRt

DATA HAZARDS

So far, we have only defined
the conditions for detecting
data hazards. We have not yet
implemented forwarding so
let’s do that now.

Note the change in our
dependency diagram. Now, we
can see that the inputs to the
ALU are dependent on pipeline
registers rather than the results
of the WB stage.

DATA HAZARDS

Forwarding works by allowing
us to grab the inputs of the ALU
not only from the ID/EX pipeline
register, but from any other
pipeline register.

DATA HAZARDS

Here is a close-up of our
naïve pipelined datapath
which has no support for
forwarding.

DATA HAZARDS

And now with forwarding!

Instead of directly piping
the ID/EX pipeline register
values into the ALU, we
now have multiplexors
that allow us to choose
where the input should
come from. EX/MEM.WriteReg

MEM/WB.WriteReg

DATA HAZARDS

Note that we now forward
not only the data of the
the Read Data 1 and Read
Data 2 fields from the
previous cycle but also
the indexes of those
registers.

DATA HAZARDS

Given this pipeline, we can now formulate a policy for the forwarding unit.

In the following slides, we will define the control signals produced by the forwarding
unit given the conditions we worked out earlier.

DATA HAZARDS

We can resolve EX hazards in the following way:

1a. if(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRs) ForwardA = 10

1b. if(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRt) ForwardB = 10

DATA HAZARDS

We can resolve MEM hazards in the following way:

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRs) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRt) ForwardB = 01

DATA HAZARDS

We have one last issue to resolve. Consider the following sequence of instructions.
Assume we have resolved the first data hazard using forwarding.

The second data hazard is both a 1a and 2a data hazard. The
EX/MEM.WriteReg and MEM/WB.WriteReg registers will be the same as the
ID/EX.RegisterRS register in cycle 4. Also, all instructions are writing to the
register file and none have a $0 destination. How should this be resolved?

add $1, $1, $2
add $1, $1, $3
add $1, $1, $4

DATA HAZARDS

We have one last issue to resolve. Consider the following sequence of instructions.
Assume we have resolved the first data hazard using forwarding.

The second data hazard is both a 1a and 2a data hazard.

We want to forward the value from the second instruction, not the first! This is the
only way to simulate synchronous execution. Generally, we should never resolve as if
it’s a type 2 hazard if there is also a type 1 hazard for that source register.

add $1, $1, $2
add $1, $1, $3
add $1, $1, $4

DATA HAZARDS

We can resolve MEM hazards in the following updated way:

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRs
&& !(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRs)) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRt
&& !(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&
EX/MEM.WriteReg == ID/EX.RegisterRt)) ForwardB = 01

DATA HAZARDS

Or simply put,

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRs
&& !1aHazard) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&
MEM/WB.WriteReg == ID/EX.RegisterRt
&& !1bHazard) ForwardB = 01

DATAPATH/CONTROL WITH FORWARDING

FORWARDING UNIT CONTROL VALUES

Mux Control Source Explanation

ForwardA = 00 ID/EX First ALU input comes from register file.

ForwardA = 10 EX/MEM First ALU input is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB First ALU input is forwarded from the data memory or a
prior ALU result.

ForwardB = 00 ID/EX Second ALU input comes from register file.

ForwardB = 10 EX/MEM Second ALU input is forwarded from the prior ALU
result.

ForwardB = 01 MEM/WB Second ALU input is forwarded from the data memory
or a prior ALU result.

DATAPATH/CONTROL WITH FORWARDING

As a correction to slide 30,
note that we do need an
additional multiplexor in
front of the second ALU
operand in order to decide
between the rt register
contents and the sign-ext
immediate value.

This may be omitted for
now while we discuss data
hazards.

DATA HAZARDS AND STALLING

Consider the following
sequence of instructions.

Even with forwarding, our
dependency from a load word
instruction goes backward in
time.

lw $2, 20($1)
and $4, $2, $5
or $8, $2, $6
add $9, $4, $2
slt $1, $6, $7

DATA HAZARDS AND STALLING

In the event that we have a load word instruction immediately followed by an
instruction that reads its result, we must perform a stall.

We can do this by adding a hazard detection unit in the ID stage with the following
condition:

if (ID/EX.MemRead &&
((ID/EX.RegisterRt == IF/ID.RegisterRs) ||
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline

DATA HAZARDS AND STALLING

Is the instruction in the EX stage a load?

if (ID/EX.MemRead &&
((ID/EX.RegisterRt == IF/ID.RegisterRs) ||
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline

DATA HAZARDS AND STALLING

Is the destination register of the load in the EX stage identical to either source
register of the instruction in the ID stage?

if (ID/EX.MemRead &&
((ID/EX.RegisterRt == IF/ID.RegisterRs) ||
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline

DATA HAZARDS AND STALLS

We implement stalls by basically inserting an instruction which does nothing. When, in
the ID stage, we identify a need to perform a stall, we have the control unit output all
nine control lines as 0’s.

These 0’s are forwarded through the datapath during subsequent clock cycles with
the desired effect – they do nothing.

We also need the PC and IF/ID registers to remain unchanged so that we can ensure
that the instruction scheduled for the current cycle will actually execute in the next
cycle.

DATA HAZARDS AND STALLS

PIPELINED DATAPATH AND CONTROL

Note: sign-ext immediate
and branch logic are omitted
for simplification.

CONTROL HAZARDS

Now, we’ll turn our attention to control hazards. Let’s consider the following sequence
of instructions:

When we execute these instructions on our pipelined datapath, we’ll see that the
branch target is not written back to the PC until the 4th cycle.

beq $1, $3, 28
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
slt $15, $6, $7
…
lw $4, 50($7) # branch target

CONTROL HAZARDS

Only in cycle 4 do
we write back the
branch target if the
branch is taken.

By this point, the
subsequent three
instructions have
already started
executing.

Cycle 4
beq $1, $3, 28
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

CONTROL HAZARDS

The simplest approach is to
always assume the branch isn’t taken.
Then the correct instructions will
already be executing anyway.

However, if we’re proven wrong in the
4th stage of the branch instruction, then
the other three instructions need to be
flushed from the datapath.

This is done by setting their control lines
to 0 when the reach the EX stage.
The next significant instruction will be
the branch target .

CONTROL HAZARDS

Another solution is to attempt to reduce the potential delay of a branch instruction.

Right now, because we only know the decision in the 4th stage, we have to gamble on
three instructions which might have to be flushed if the branch is taken.

If we can move the decision to an earlier stage, then we can decrease the number of
instructions we potentially need to flush.

To make the decision as early as possible, we need to move two actions:

• Calculation of the branch target address.

• Calculation of the branch decision.

CONTROL HAZARDS

Currently, we have
these two actions
taking place in the EX
stage.

We can clearly move
the branch target
calculation up to the ID
stage as all the
required data is
available at that time.

Cycle 4

CONTROL HAZARDS

The branch decision,
however, relies on the
Read Data 1 and Read
Data 2 values read
from the register file in
the previous cycle.

Moving this step into
the ID stage means that
we also need to make
sure the forwarded
values of the operands
are available. Cycle 4

CONTROL HAZARDS

Furthermore, because
our branching
instruction needs its
forwarded values from
previous instructions in
the ID stage (as
opposed to the EX
stage), we may need
to stall one or two
cycles to wait for the
forwarded data.

Cycle 4

CONTROL HAZARDS

Even with these difficulties, moving the branch prediction into the ID stage is desirable
because it reduces the penalty of a branch to one instruction instead of three
instructions.

Consider the following instructions:

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Imagine the numbers on the left represent the
addresses of the instructions.

What does beq do?

CONTROL HAZARDS

Even with these difficulties, moving the branch prediction into the ID stage is desirable
because it reduces the penalty of a branch to one instruction instead of three
instructions.

Consider the following instructions:

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Imagine the numbers on the left represent the
addresses of the instructions.

What does beq do?
If the contents of $1 is equal to the contents of $3,
then we next execute the instruction given by:
(PC+4)+(7*4) = (40+4)+(28) = 44+28 = 72

So, if the branch is taken, we should execute the lw
instruction next.

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Imagine we’re in cycle 3. In this
cycle, beq is in its ID stage.

We calculate the branch target
as well as the branch decision.

At the end of this cycle, if the
branch is taken, the address
72 is written to the PC to be
fetched in the next cycle.

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Note that the details of
forwarding and hazard
detection have been largely
omitted here.

The idea is that we’ve added
two units – a dedicated adder
and dedicated equality tester –
to the ID stage to perform
branching earlier.

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Now, the branch target will
start executing in cycle 4, but
we have already started
executing the and instruction.

We need to remove this from
the datapath. We’ll do this
by adding a new control to the
IF/ID register which is
responsible for zeroing out
its contents – creating a stall.

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
…
72 lw $4, 50($7)

Here, we can see the state of
the datapath during cycle 4.

CONTROL HAZARDS

So, we’ve looked at two possible solutions:

• Assuming branch not taken.
• Easy to implement.
• High cost – three stalls if wrong.

• Performing branching in the ID stage.
• Harder to implement – must add forwarding and hazard control earlier.
• Lower cost – one stall if branch is taken.

We have another solution we can try: branch prediction.

CONTROL HAZARDS

In branch prediction, we attempt to predict the branching decisions and act
accordingly.

When we assumed the branch wasn’t taken, we were making a simple static
prediction. Luckily, the performance cost on a 5-stage pipeline is low but on a deeper
pipeline with many more stages, that could be a huge performance cost!

In dynamic branch prediction, we look up the address of the instruction to see if the
branch was taken last time. If so, we will predict that the branch will be taken again
and optimistically fetch the instructions from the branch target rather than the
subsequent instructions.

CONTROL HAZARDS

A branch prediction buffer is a small memory indexed by the lower portion of the
address of the branch instruction. The memory simply contains one bit indicating
whether the branch was taken last time or not.

This isn’t a perfect scheme by any means. It’s just a simple mechanism that might give
us a hint as to what the right decision might be. Note:

• The buffer is shared between branches with the same lower addresses. A buffer
value may reflect another branch instruction.

• The branch instruction may simply make a different decision than it did before.

CONTROL HAZARDS

Here’s how the 1-bit branch prediction buffer works:

• Each element in the buffer contains a single bit indicating whether the branch prediction
was taken last time.

• We make our prediction based on the bit found in the buffer.

• If the prediction turns out to be incorrect, then we flip the bit in the buffer and correct
the pipeline.

CONTROL HAZARDS

Consider a loop that branches nine times in a row, then is not taken once. What is the
prediction accuracy for this branch, assuming the prediction bit for this branch
remains in the prediction buffer?

int i = 0;
do{

/* loop body */
i = i + 1

}while(i < 10);

add $t0, $0, $0
L1: /* loop body*/

addi $t0, $t0, 1
slti $t1, $t0, 10
bne $t1, $0, L1

CONTROL HAZARDS

Consider a loop that branches nine times in a row, then is not taken once. What is the
prediction accuracy for this branch, assuming the prediction bit for this branch
remains in the prediction buffer?

int i = 0;
do{

/* loop body */
i = i + 1

}while(i < 10);

add $t0, $0, $0
L1: /* loop body*/

addi $t0, $t0, 1
slti $t1, $t0, 10
bne $t1, $0, L1

The prediction behavior will mispredict on both the first and last loop iterations. The last loop iteration
prediction happens because we’ve already taken the branch nine-times so far. The first loop iteration
happens because the bit was flipped on the last iteration of the previous execution. So, the prediction
accuracy is 80%.

CONTROL HAZARDS

To increase this prediction accuracy, we can use a 2-bit prediction buffer. In the 2-bit
scheme, a prediction must be wrong twice before the bit is flipped.

This way, a branch that strongly favors
a particular decision (such as in the
previous slide) will be wrong only once.

We can access the buffer during the IF
stage to determine whether the next
instruction needs to be calculated or we
can continue with sequential execution.

CONTROL HAZARDS

As you’ve probably realized by now, even if we can predict a branch will be taken,
we cannot write the branch target to PC until the ID stage. Therefore, we have a 1-
cycle stall on predict-taken branches.

To avoid this, we use a branch target buffer. A branch target buffer contains a tag
(the higher bits of the instruction) and the target address of the branch.

If the BPB predicts the branch
is taken, and the higher
order bits of the instruction
match the BTB tag, then we
write the target to PC.

FINAL DATAPATH AND CONTROL

Some details are omitted.
Notably the ALUSrc multiplexor
and multiplexor control lines are
omitted for simplicity.

