
LECTURE 9 Pipeline Hazards



PIPELINED DATAPATH AND CONTROL

In the previous lecture, we finalized the pipelined datapath for instruction sequences 
which do not include hazards of any kind. 

Remember that we have two kinds of hazards to worry about:

• Data hazards: an instruction is unable to execute in the planned cycle because it is 
dependent on some data that has not yet been committed. 

lw $s0, $s1, $s2  # $s0 written in cycle 5
add $s3, $s0, $s4  # $s0 read in cycle 3

• Control hazards: we do not know which instruction needs to be executed next. 

beq $t0, $t1, L1   # target in cycle 3 
add $t0, $t0, 1    # loaded in cycle 2

L1: sub  $t0, $t0, 1



DATA HAZARDS

Let us now turn our attention to data hazards. As we’ve already seen, we have two 
solutions for data hazards: 

• Forwarding (or bypassing): the needed data is forwarded as soon as possible to the 
instruction which depends on it. 

• Stalling: the dependent instruction is “pushed back” for one or more clock cycles. 
Alternatively, you can think of stalling as the execution of a noop for one or more 
cycles. 



DATA HAZARDS

Let’s take a look at the following instruction sequence. 

We have a number of dependencies here. The last four instructions, which read 
register $2, are all dependent on the first instruction, which writes a value to 
register $2. Let’s naively pipeline these instructions and see what happens. 

sub $2,  $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)



DATA HAZARDS

The blue lines indicate the 
data dependencies. 

We can notice immediately 
that we have a problem. 

The last four instructions 
require the register value to 
be -20 (the value during the 
WB stage of the first instruction).
However, the middle three 
instructions will read the value 
to be 10 if we do not intervene. 



DATA HAZARDS

We can resolve the last potential
hazard in our design of the 
register file unit. 

Instruction 1 is writing the value
of $2 to the register file in the 
same cycle that instruction 4 is 
reading the value of $2. 

We assume that the write
operation takes place in the first
half of the clock cycle, while the 
read operation takes place in the 
second half. Therefore, the 
updated $2 value is available. 



DATA HAZARDS

So the only data hazards occur
for instructions 2 and 3. 

In this style of representation, 
we can easily identify true data
hazards as they are the only ones
whose dependency lines go 
back in time. 

Note that instruction 2 reads $2
in cycle 3 and instruction 3 reads
$2 in cycle 4. 



DATA HAZARDS

Luckily instruction 1 calculates the
new values in cycle 3. 

If we simply forward the data as
soon as it is calculated, then we
will have it in time for the 
subsequent instructions to execute.



DATA HAZARDS

Let’s now take a look at how forwarding actually works. 

First, we’ll introduce some new notation. To specify the name of a particular field in a 
particular pipeline register, we will use the following: 

PipelineRegister.FieldName

So, for example, the number of the register corresponding to Read Data 2 from the 
register file in the ID/EX register is identifiable as ID/EX.RegisterRt. 



DATA HAZARDS 

We’re only going to worry about the challenge of forwarding data to be used in the 
EX stage. 

The only writeable values that 
may be used in the EX stage are
the contents of the $rs and $rt
registers. 

It’s ok if we read the wrong values
from the register file, but we need
to make sure the right values are 
used as input to the ALU!



DATA HAZARDS
We only have a hazard if either the source registers, ID/EX.RegisterRs and 
ID/EX.RegisterRt, are dependent on EX/MEM.WriteReg or 
MEM/WB.WriteReg. 

For example, consider the following instructions.

In cycle 4, when and is in its EX stage and sub is in its MEM stage, 
ID/EX.RegisterRs will be $2. In this same cycle, EX/MEM.WriteReg will be 
$2. The fact that they refer to the same register means we have a potential data 
hazard. 

EX/MEM.WriteReg == ID/EX.RegisterRs == $2

sub $2, $1, $3
and $12, $2, $5



DATA HAZARDS

We can break the possibilities down into 2 pairs of hazard conditions. 

The data hazard from the previous slide can be classified as a 1a hazard. 

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt

2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

Classify the hazards in this sequence of instructions. 

sub $2,  $1, $3
and $12, $5, $2
or $13, $2, $6 
add $14, $2, $2
sw $15, 100($2)

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

Classify the hazards in this sequence of instructions. 

sub $2,  $1, $3   
and $12, $5, $2 # 1b
or $13, $2, $6 # 2a
add $14, $2, $2 # No hazard
sw $15, 100($2)  # No hazard

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

The naïve solution would be to suggest that if any of the following hazards are 
detected, we should perform forwarding. 

However, not all instructions perform register writes. So, we add the following 
requirement to our policy: the RegWrite signal must be asserted in the WB control 
field during the EX stage for type 1 hazards and the MEM stage for type 2 
hazards. 

1a. EX/MEM.WriteReg == ID/EX.RegisterRs
1b. EX/MEM.WriteReg == ID/EX.RegisterRt
2a. MEM/WB.WriteReg == ID/EX.RegisterRs
2b. MEM/WB.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

Also, we do not allow results to be written to the $0 register so, in the event that an 
instruction uses $0 as its destination (which is legal), we should not forward the result 
(because it won’t even be written back to the register file anyway). 

This gives us two additional conditions: 

• EX/MEM.WriteReg != 0

• MEM/WB.WriteReg != 0



DATA HAZARDS

To summarize, we have an EX hazard if either of the following are true: 

1a. EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRs

1b. EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

To summarize, we have an MEM hazard if either of the following are true: 

2a. MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRs

2b. MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRt



DATA HAZARDS

So far, we have only defined 
the conditions for detecting 
data hazards. We have not yet 
implemented forwarding so 
let’s do that now. 

Note the change in our 
dependency diagram. Now, we 
can see that the inputs to the 
ALU are dependent on pipeline 
registers rather than the results 
of the WB stage.



DATA HAZARDS

Forwarding works by allowing 
us to grab the inputs of the ALU 
not only from the ID/EX pipeline 
register, but from any other 
pipeline register. 



DATA HAZARDS

Here is a close-up of our 
naïve pipelined datapath
which has no support for 
forwarding.



DATA HAZARDS

And now with forwarding!

Instead of directly piping
the ID/EX pipeline register
values into the ALU, we 
now have multiplexors
that allow us to choose 
where the input should 
come from. EX/MEM.WriteReg

MEM/WB.WriteReg



DATA HAZARDS

Note that we now forward
not only the data of the 
the Read Data 1 and Read
Data 2 fields from the 
previous cycle but also
the indexes of those 
registers.



DATA HAZARDS

Given this pipeline, we can now formulate a policy for the forwarding unit.

In the following slides,  we will define the control signals produced by the forwarding 
unit given the conditions we worked out earlier. 



DATA HAZARDS

We can resolve EX hazards in the following way: 

1a. if(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRs) ForwardA = 10

1b. if(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRt) ForwardB = 10



DATA HAZARDS

We can resolve MEM hazards in the following way: 

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRs) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRt) ForwardB = 01



DATA HAZARDS

We have one last issue to resolve. Consider the following sequence of instructions. 
Assume we have resolved the first data hazard using forwarding. 

The second data hazard is both a 1a and 2a data hazard. The 
EX/MEM.WriteReg and MEM/WB.WriteReg registers will be the same as the 
ID/EX.RegisterRS register in cycle 4. Also, all instructions are writing to the 
register file and none have a $0 destination. How should this be resolved?

add $1, $1, $2
add $1, $1, $3
add $1, $1, $4



DATA HAZARDS

We have one last issue to resolve. Consider the following sequence of instructions. 
Assume we have resolved the first data hazard using forwarding. 

The second data hazard is both a 1a and 2a data hazard. 

We want to forward the value from the second instruction, not the first! This is the 
only way to simulate synchronous execution. Generally, we should never resolve as if 
it’s a type 2 hazard if there is also a type 1 hazard for that source register. 

add $1, $1, $2
add $1, $1, $3
add $1, $1, $4



DATA HAZARDS

We can resolve MEM hazards in the following updated way: 

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRs
&& !(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRs)) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRt
&& !(EX/MEM.RegWrite && EX/MEM.WriteReg != 0 &&   
EX/MEM.WriteReg == ID/EX.RegisterRt)) ForwardB = 01



DATA HAZARDS

Or simply put, 

2a. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRs
&& !1aHazard) ForwardA = 01

2b. if(MEM/WB.RegWrite && MEM/WB.WriteReg != 0 &&   
MEM/WB.WriteReg == ID/EX.RegisterRt
&& !1bHazard) ForwardB = 01



DATAPATH/CONTROL WITH FORWARDING



FORWARDING UNIT CONTROL VALUES

Mux Control Source Explanation

ForwardA = 00 ID/EX First ALU input comes from register file. 

ForwardA = 10 EX/MEM First ALU input is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB First ALU input is forwarded from the data memory or a 
prior ALU result.

ForwardB = 00 ID/EX Second ALU input comes from register file. 

ForwardB = 10 EX/MEM Second ALU input is forwarded from the prior ALU 
result.

ForwardB = 01 MEM/WB Second ALU input is forwarded from the data memory 
or a prior ALU result.



DATAPATH/CONTROL WITH FORWARDING

As a correction to slide 30, 
note that we do need an 
additional multiplexor in 
front of the second ALU
operand in order to decide
between the rt register 
contents and the sign-ext
immediate value. 

This may be omitted for 
now while we discuss data 
hazards. 



DATA HAZARDS AND STALLING

Consider the following 
sequence of instructions.

Even with forwarding, our 
dependency from a load word 
instruction goes backward in 
time. 

lw  $2, 20($1)
and $4, $2, $5
or  $8, $2, $6
add $9, $4, $2
slt $1, $6, $7



DATA HAZARDS AND STALLING

In the event that we have a load word instruction immediately followed by an 
instruction that reads its result, we must perform a stall. 

We can do this by adding a hazard detection unit in the ID stage with the following 
condition:

if (ID/EX.MemRead && 
((ID/EX.RegisterRt == IF/ID.RegisterRs) || 
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline



DATA HAZARDS AND STALLING

Is the instruction in the EX stage a load? 

if (ID/EX.MemRead && 
((ID/EX.RegisterRt == IF/ID.RegisterRs) || 
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline



DATA HAZARDS AND STALLING

Is the destination register of the load in the EX stage identical to either source 
register of the instruction in the ID stage?

if (ID/EX.MemRead && 
((ID/EX.RegisterRt == IF/ID.RegisterRs) || 
(ID/EX.RegisterRt == IF/ID.RegisterRt))) Stall the Pipeline



DATA HAZARDS AND STALLS

We implement stalls by basically inserting an instruction which does nothing. When, in 
the ID stage, we identify a need to perform a stall, we have the control unit output all 
nine control lines as 0’s. 

These 0’s are forwarded through the datapath during subsequent clock cycles with 
the desired effect – they do nothing. 

We also need the PC and IF/ID registers to remain unchanged so that we can ensure 
that the instruction scheduled for the current cycle will actually execute in the next 
cycle. 



DATA HAZARDS AND STALLS



PIPELINED DATAPATH AND CONTROL

Note: sign-ext immediate 
and branch logic are omitted 
for simplification. 



CONTROL HAZARDS

Now, we’ll turn our attention to control hazards. Let’s consider the following sequence 
of instructions: 

When we execute these instructions on our pipelined datapath, we’ll see that the 
branch target is not written back to the PC until the 4th cycle. 

beq $1,  $3, 28
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
slt $15, $6, $7
…
lw $4,  50($7)   # branch target



CONTROL HAZARDS

Only in cycle 4 do
we write back the 
branch target if the
branch is taken. 

By this point, the 
subsequent three 
instructions have 
already started 
executing. 

Cycle 4
beq $1,  $3, 28
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2



CONTROL HAZARDS

The simplest approach is to
always assume the branch isn’t taken. 
Then the correct instructions will 
already be executing anyway. 

However, if we’re proven wrong in the
4th stage of the branch instruction, then
the other three instructions need to be
flushed from the datapath. 

This is done by setting their control lines 
to 0 when the reach the EX stage. 
The next significant instruction will be
the branch target .



CONTROL HAZARDS

Another solution is to attempt to reduce the potential delay of a branch instruction. 

Right now, because we only know the decision in the 4th stage, we have to gamble on 
three instructions which might have to be flushed if the branch is taken. 

If we can move the decision to an earlier stage, then we can decrease the number of 
instructions we potentially need to flush. 

To make the decision as early as possible, we need to move two actions: 

• Calculation of the branch target address. 

• Calculation of the branch decision. 



CONTROL HAZARDS

Currently, we have 
these two actions 
taking place in the EX 
stage. 

We can clearly move 
the branch target 
calculation up to the ID 
stage as all the 
required data is 
available at that time. 

Cycle 4



CONTROL HAZARDS

The branch decision, 
however, relies on the 
Read Data 1 and Read 
Data 2 values read 
from the register file in 
the previous cycle. 

Moving this step into 
the ID stage means that 
we also need to make 
sure the forwarded 
values of the operands 
are available. Cycle 4



CONTROL HAZARDS

Furthermore, because 
our branching 
instruction needs its 
forwarded values from 
previous instructions in 
the ID stage (as 
opposed to the EX 
stage), we may need 
to stall one or two 
cycles to wait for the 
forwarded data. 

Cycle 4



CONTROL HAZARDS

Even with these difficulties, moving the branch prediction into the ID stage is desirable 
because it reduces the penalty of a branch to one instruction instead of three 
instructions. 

Consider the following instructions: 

36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or   $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Imagine the numbers on the left represent the 
addresses of the instructions.

What does beq do? 



CONTROL HAZARDS

Even with these difficulties, moving the branch prediction into the ID stage is desirable 
because it reduces the penalty of a branch to one instruction instead of three 
instructions. 

Consider the following instructions: 

36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or   $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Imagine the numbers on the left represent the 
addresses of the instructions.

What does beq do?
If the contents of $1 is equal to the contents of $3,
then we next execute the instruction given by: 
(PC+4)+(7*4) = (40+4)+(28) = 44+28 = 72

So, if the branch is taken, we should execute the lw
instruction next. 



36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or    $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Imagine we’re in cycle 3. In this
cycle, beq is in its ID stage. 

We calculate the branch target
as well as the branch decision. 

At the end of this cycle, if the 
branch is taken, the address 
72 is written to the PC to be
fetched in the next cycle. 



36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or    $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Note that the details of 
forwarding and hazard 
detection have been largely 
omitted here. 

The idea is that we’ve added 
two units – a dedicated adder
and dedicated equality tester –
to the ID stage to perform 
branching earlier. 



36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or    $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Now, the branch target will
start executing in cycle 4, but 
we have already started
executing the and instruction. 

We need to remove this from 
the datapath. We’ll do this
by adding a new control to the
IF/ID register which is 
responsible for zeroing out 
its contents – creating a stall. 



36   sub $10, $4, $8
40   beq $1, $3, 7
44   and $12, $2, $5
48   or    $13, $2, $6
52   add $14, $4, $2
56   slt $15, $6, $7
…
72   lw $4,  50($7)

Here, we can see the state of
the datapath during cycle 4.



CONTROL HAZARDS

So, we’ve looked at two possible solutions: 

• Assuming branch not taken. 
• Easy to implement. 
• High cost – three stalls if wrong. 

• Performing branching in the ID stage.
• Harder to implement – must add forwarding and hazard control earlier. 
• Lower cost – one stall if branch is taken.  

We have another solution we can try: branch prediction. 



CONTROL HAZARDS

In branch prediction, we attempt to predict the branching decisions and act 
accordingly. 

When we assumed the branch wasn’t taken, we were making a simple static 
prediction. Luckily, the performance cost on a 5-stage pipeline is low but on a deeper
pipeline with many more stages, that could be a huge performance cost!

In dynamic branch prediction, we look up the address of the instruction to see if the 
branch was taken last time. If so, we will predict that the branch will be taken again 
and optimistically fetch the instructions from the branch target rather than the 
subsequent instructions. 



CONTROL HAZARDS

A branch prediction buffer is a small memory indexed by the lower portion of the 
address of the branch instruction. The memory simply contains one bit indicating 
whether the branch was taken last time or not. 

This isn’t a perfect scheme by any means. It’s just a simple mechanism that might give 
us a hint as to what the right decision might be. Note:

• The buffer is shared between branches with the same lower addresses. A buffer 
value may reflect another branch instruction. 

• The branch instruction may simply make a different decision than it did before. 



CONTROL HAZARDS

Here’s how the 1-bit branch prediction buffer works: 

• Each element in the buffer contains a single bit indicating whether the branch prediction 
was taken last time. 

• We make our prediction based on the bit found in the buffer. 

• If the prediction turns out to be incorrect, then we flip the bit in the buffer and correct 
the pipeline. 



CONTROL HAZARDS

Consider a loop that branches nine times in a row, then is not taken once. What is the 
prediction accuracy for this branch, assuming the prediction bit for this branch 
remains in the prediction buffer? 

int i = 0;
do{

/* loop body */ 
i = i + 1

}while(i < 10);

add $t0, $0, $0
L1: /* loop body*/

addi $t0, $t0, 1 
slti $t1, $t0, 10
bne $t1, $0, L1



CONTROL HAZARDS

Consider a loop that branches nine times in a row, then is not taken once. What is the 
prediction accuracy for this branch, assuming the prediction bit for this branch 
remains in the prediction buffer? 

int i = 0;
do{

/* loop body */ 
i = i + 1

}while(i < 10);

add $t0, $0, $0
L1: /* loop body*/

addi $t0, $t0, 1 
slti $t1, $t0, 10
bne $t1, $0, L1

The prediction behavior will mispredict on both the first and last loop iterations. The last loop iteration 
prediction happens because we’ve already taken the branch nine-times so far. The first loop iteration
happens because the bit was flipped on the last iteration of the previous execution. So, the prediction
accuracy is 80%. 



CONTROL HAZARDS

To increase this prediction accuracy, we can use a 2-bit prediction buffer. In the 2-bit 
scheme, a prediction must be wrong twice before the bit is flipped. 

This way, a branch that strongly favors
a particular decision (such as in the 
previous slide) will be wrong only once. 

We can access the buffer during the IF 
stage to determine whether the next 
instruction needs to be calculated or we
can continue with sequential execution. 



CONTROL HAZARDS

As you’ve probably realized by now, even if we can predict a branch will be taken, 
we cannot write the branch target to PC until the ID stage. Therefore, we have a 1-
cycle stall on predict-taken branches. 

To avoid this, we use a branch target buffer. A branch target buffer contains a tag 
(the higher bits of the instruction) and the target address of the branch. 

If the BPB predicts the branch
is taken, and the higher
order bits of the instruction 
match the BTB tag, then we 
write the target to PC. 



FINAL DATAPATH AND CONTROL

Some details are omitted. 
Notably the ALUSrc multiplexor
and multiplexor control lines are
omitted for simplicity. 


