
LECTURE 8 Pipelining:
Datapath and Control

PIPELINED DATAPATH

As with the single-cycle and multi-cycle implementations, we will start by looking at
the datapath for pipelining.

We already know that pipelining involves breaking up instructions into five stages:

• IF – Instruction Fetch

• ID – Instruction Decode

• EX – Execution

• MEM – Memory Access

• WB – Write Back

We will start by taking a look at the single-cycle datapath, divided into stages.

PIPELINED DATAPATH

PIPELINED DATAPATH

As we can see, each of the steps maps nicely in order onto the single-cycle datapath.

Instruction fields and data generally move from left-to-right as they progress through
each stage.

The two exceptions are:

• The WB stage places the result back into the register file in the middle of the
datapath à leads to data hazards.

• The selection of the next value of the PC – either the incremented PC or the branch
address à leads to control hazards.

PIPELINED DATAPATH

One way to visualize pipelining
is to consider the execution of
each instruction independently,
as if it has the datapath all to
itself.

We can place these datapaths
on a timeline to see their
relationship.

The stages are represented by
the datapath element being
used, shaded according to use.

PIPELINED DATAPATH

In reality, these instructions are
not executing in their own
datapaths, they share a
datapath.

The first instruction uses
instruction memory in its IF stage
in cycle 1. Then, in cycle 2, the
second instruction uses instruction
memory for its own IF stage. For
this to work, we need to add
registers to store data between
cycles.

PIPELINED DATAPATH

PIPELINED DATAPATH

The previous slide shows the addition of pipeline registers (in blue) which are used to
hold data between cycles.

Following our laundry analogy, these might be like baskets between the washer,
dryer, etc that hold a clothing load between steps.

During each cycle, an instruction advances from one pipeline register to the next
pipeline register. Note that the registers are labeled by the stages that they
separate.

Pipeline registers are as wide as necessary to hold all of the data passed into
them. For instance, IF/ID is 64 bits wide because it must hold a 32-bit instruction and a
32-bit PC+4 result.

PIPELINED DATAPATH FOR LOAD WORD

Let’s walk through the datapath using the load word instruction as an example. Load
word is a good instruction to start with because it is active in every stage of the
pipelined datapath.

Note that in the following datapaths, the right half of registers or memory are
shaded when they are being read. The left half is shaded when they are being
written.

The load word instruction adds immed to the contents of $rs to obtain the address
in memory whose contents are written to $rt.

lw $rt, immed($rs)

31-26 25-21 20-16 15-0

opcode rs rt immed

PIPELINED DATAPATH FOR LOAD WORD

Instruction Fetch (IF)

• The instruction is read from memory using the contents of PC and placed in the IF/ID
register.

• The PC address is incremented by 4 and written back to the PC register, as well as
placed in the IF/ID register in case the instruction needs it later.

Note: the datapath does not know that we are performing a load word at this point
so it forwards the PC+4 value just in case.

PIPELINED DATAPATH FOR LOAD WORD: IF

PIPELINED DATAPATH FOR LOAD WORD

Instruction Decode and Register File Read (ID):

• The registers $rs and $rt are read from the register file and stored in the ID/EX
pipeline register. Remember, we don’t know what the instruction is yet.

• The 16-bit immediate field is sign-extended to 32-bits and stored in the ID/EX
pipeline register.

• The PC+4 value is copied from the IF/ID register into the ID/EX register in case the
instruction needs it later.

PIPELINED DATAPATH FOR LOAD WORD: ID

PIPELINED DATAPATH FOR LOAD WORD

Execute or Address Calculation (EX):

• From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

PIPELINED DATAPATH FOR LOAD WORD: EX

PIPELINED DATAPATH FOR LOAD WORD

Memory Access (MEM):

• Take the address stored in the EX/MEM pipeline register and use it to access data
memory. The data read from memory is stored in the MEM/WB pipeline register.

PIPELINED DATAPATH FOR LOAD WORD: MEM

PIPELINED DATAPATH FOR LOAD WORD

Write Back (WB):

• Read the data from the MEM/WB register and write it back to the register file in
the middle of the datapath.

PIPELINED DATAPATH FOR LOAD WORD: WB

PIPELINED DATAPATH FOR LOAD WORD

It’s important to note that any information we need will have to be passed from
pipeline register to pipeline register while instruction executes.

Because the instructions share the elements, we cannot assume anything from a
previous cycle is still there. We must carry the data with us as we move along the
data path.

So by now you should be wondering about the last step. How does the WB stage
know which register to write to? The IF/ID pipeline register should no longer contain
the necessary instruction field – it’s already been overwritten by three other
instructions at this point.

We’ll see the solution soon, but let’s look at store word first.

PIPELINED DATAPATH FOR STORE WORD

The IF and ID stages are identical for all instructions.

At these stages of execution, we still do not know which instruction we are actually
executing so we perform general operations that either apply to all instructions or
may speculatively apply to a select few instructions.

PIPELINED DATAPATH FOR STORE WORD: IF

PIPELINED DATAPATH FOR STORE WORD: ID

PIPELINED DATAPATH FOR STORE WORD

Execute or Address Calculation (EX):

• From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

• The contents of the $rt register are copied from the ID/EX pipeline register to the
EX/MEM pipeline register.

PIPELINED DATAPATH FOR STORE WORD: EX

PIPELINED DATAPATH FOR STORE WORD

Memory Access (MEM):

• Take the address stored in the EX/MEM pipeline register and use it to access data
memory.

• Take the contents of $rt from the EX/MEM pipeline and write it to data memory at
the address specified.

Note that in order to use the $rt field in the MEM stage, we have to carry it with us
from the ID stage. This means copying it in every pipeline register until we use it.

PIPELINED DATAPATH FOR STORE WORD: MEM

PIPELINED DATAPATH FOR STORE WORD

Write Back (WB):

• We’re already done with the store word instruction so we don’t have to do anything.

PIPELINED DATAPATH FOR STORE WORD: WB

PIPELINED DATAPATH

In both the load and store word datapaths, we can notice another important point:
every datapath element is used in only one pipeline stage. If this wasn’t the case, we’d
create a structural hazard.

Let’s say we used the ALU from the EX stage to both increment PC in the IF stage and
perform operations in the EX stage. This is fine for a single instruction, but what
happens if we’re executing multiple instructions and one is currently in the IF stage
and another is in the EX stage? Which one gets to use the ALU?

Clearly, we’d have an issue. So, we add redundancy to our datapath in order to
gain the speed improvements from pipelining.

PIPELINED DATAPATH FOR LOAD WORD

Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

PIPELINED DATAPATH FOR LOAD WORD: WB

PIPELINED DATAPATH FOR LOAD WORD

Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

That’s right! Carry the information through each stage using the pipeline registers. To do
this, we’ll modify the datapath a little bit.

Now, we’ll pass the write register number from the MEM/WB pipeline register along
with the data. This register number is initially discovered in the ID stage and must be
passed through the pipeline registers until we need it in the WB stage.

PIPELINED DATAPATH FOR LOAD WORD: WB

PIPELINED DATAPATH

Consider the 5 instruction sequence below.

First, take note of the fact that we have no data hazards since no instruction depends
on data from a previous instruction. We also have no control hazards since we are
not branching or jumping. So, we can safely pipeline without stalls.

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

PIPELINED DATAPATH

We can start by diagramming
the individual datapaths
used by every instruction.

This allows us to see which
stage each instruction is
executing in a given clock
cycle.

7 8 9

PIPELINED DATAPATH

We can also chart the stages themselves rather than the elements being used in the cycle.

7 8 9

PIPELINED DATAPATH

On the next slide, we show a single datapath as it is being used by the 5 instructions
at once.

The cycle depicted is cycle 5. In this cycle, the first load word is executing its WB
stage while the last add instruction is executing its IF stage.

PIPELINED DATAPATH

PIPELINED DATAPATH

PIPELINED DATAPATH

In the following slides, we walk through all 9 cycles required to fully complete the 5
instructions in our sample sequence.

We will start with clock cycle 1 and highlight the relevant datapath lines according to
the instruction being executed in each particular stage.

PIPELINED DATAPATH
lw $10, 20($1)

Cycle 1

PIPELINED DATAPATH
lw $10, 20($1)sub $11,$2,$3

Cycle 2

PIPELINED DATAPATH
lw $10, 20($1)sub $11,$2,$3add $12,$3,$4

Cycle 3

PIPELINED DATAPATH
lw $10, 20($1)sub $11,$2,$3add $12,$3,$4lw $13, 24($1)

Cycle 4

PIPELINED DATAPATH
lw $10, 20($1)sub $11,$2,$3add $12,$3,$4lw $13, 24($1)add $14,$5,$6

Cycle 5

PIPELINED DATAPATH
sub $11,$2,$3add $12,$3,$4lw $13, 24($1)add $14,$5,$6

Cycle 6

PIPELINED DATAPATH
add $12,$3,$4lw $13, 24($1)add $14,$5,$6

Cycle 7

PIPELINED DATAPATH
lw $13, 24($1)add $14,$5,$6

Cycle 8

PIPELINED DATAPATH
add $14,$5,$6

Cycle 9

PIPELINED CONTROL

Now, let’s add control to our pipelined datapath. We’ll start with a simple control
scheme and deal with pipeline hazards later.

A lot of the control logic is borrowed from the single-cycle and multi-cycle
implementations.

PIPELINED CONTROL

PIPELINED CONTROL

Let’s remind ourselves of the roles of these control lines.

Opcode ALU
op

Operation Funct ALU
action

ALU
Control
Input

lw 00 Load word N/A add 0010

sw 00 Store word N/A add 0010

beq 01 Branch equal N/A subtract 0110

R-type 10 Add 100000 add 0010

R-type 10 Subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 Set on less than 101010 slt 0111

PIPELINED CONTROL

1-Bit Signal Name Effect When Deasserted Effect When Asserted

RegDst The register file destination number for the
Write register comes from the rt field.

The register file destination number for the Write
register comes from the rd field.

RegWrite None Write register is written with the value of the Write
data input.

ALUSrc The first ALU operand is Read Data 2. The first ALU operand is sign-ext immediate field.

PCSrc PC is replaced by PC+4. PC is replaced by branch target.

MemRead None Content of memory at the location specified by the
Address input is put on the Memory data output.

MemWrite None The Write Data input is written to the Address input.

MemtoReg The value fed to the register file is from the
ALU.

The value fed to the register file input comes from
Memory.

PIPELINED CONTROL

Let’s remind ourselves of the roles of these control lines. Notice now that we’re
grouping the control lines based on their relevant stage.

Instr. RegDst ALUOp
1

ALUOp2 ALUSrc Branch MemRead MemWrite RegWrite MemToReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

EX MEM WB

PIPELINED CONTROL

Unlike the multi-cycle implementation, we assume that the PC is written on every
clock cycle so there is no explicit control signal for writing PC. We also assume that
the pipeline registers are written on every clock cycle.

As we just saw in the previous slide, we can handle “controlling” 5 instructions at once
by dividing the control signals into 5 groups – one for each pipeline stage.

PIPELINED CONTROL: IF

The only relevant control
signals in this stage are the
control signals to read
instruction memory and write
to PC.

These control signals are
always asserted however so
we don’t need to worry about
them.

PIPELINED CONTROL: ID

As in the previous stage,
the same actions take place
during every cycle so we
do not have to be concerned
with any optional control lines.

Notice the RegWrite signal
physically resides in this
component of the datapath
but it is a control line of the
WB stage.

PIPELINE CONTROL: EX

The relevant control signals
in this stage are:

• RegDst
• ALUOp
• ALUSrc

PIPELINE CONTROL: MEM

The relevant control signals
in this stage are:

• Branch
• MemRead
• MemWrite

PCSrc is also computed in this
stage but it is a product of
two other control signals, so
we don’t worry about it when
designing our Control unit.

PIPELINE CONTROL: WB

The relevant control signals
in this stage are:

• MemtoReg
• RegWrite

Note that RegWrite is our one
exception. It actually appears
in ID’s phase of the pipeline
but it is a control signal for the
WB stage.

PIPELINED CONTROL

As before, we need to
preserve the context of
an instruction as it
moves through the
datapath.

We cannot reach back in
the datapath for some
information about how to
execute the instruction –
it will have already been
overwritten.

PIPELINED CONTROL

We must pass along the
control line values for the
last 3 stages. Remember,
the first 2 stages are
universal.

For example, the RegWrite
and MemtoReg values,
decoded after the second
stage, must be passed
through the EX and MEM
stages to the WB stage.

PIPELINED CONTROL

Our pipeline registers have
been extended to handle
the control information as
well.

PIPELINED CONTROL

Consider the following instructions.

Let’s examine, in all the detail, how these simple instructions are executed in a
pipelined datapath. Note again that we have no control or data hazards. Each slide
following will show the datapath state in a subsequent clock cycle.

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $5
or $13, $6, $7
add $14, $8, $9

