LECTURE 8 | [z~

PIPELINED DATAPATH

As with the single-cycle and multi-cycle implementations, we will start by looking at
the datapath for pipelining.

We already know that pipelining involves breaking up instructions into five stages:
* IF — Instruction Fetch

* ID = Instruction Decode

* EX — Execution

* MEM — Memory Access

* WB — Write Back

We will start by taking a look at the single-cycle datapath, divided into stages.

PIPELINED DATAPATH

IF: Instruction fetch

ID: Instruction decode/
register file read

EX: Execute/

address calculation

PC

MEM: Memory access

T

Address

Data

Read
datal

Memory

Write
data

WB: Write back

4-» >ADD Add
result
Shift
left 2
Read Read - \
»| Address register 1 data 1 Zerd}——»
Read
. register 2 >ALU ALlIJt >
Instruction [~ Registers >0 resu
Write Read M
Instruction register data 2 :
memory Write p 1
data
16 sign 32

N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

\ w\\

PIPELINED DATAPATH

As we can see, each of the steps maps nicely in order onto the single-cycle datapath.

Instruction fields and data generally move from left-to-right as they progress through
each stage.

The two exceptions are:

* The WB stage places the result back into the register file in the middle of the
datapath =2 leads to data hazards.

* The selection of the next value of the PC — either the incremented PC or the branch
address = leads to control hazards.

PIPELINED DATAPATH

One way to visualize pipelining

is to consider the execution of

each instruction independently,
as if it has the datapath all to
itself.

We can place these datapaths
on a timeline to see their
relationship.

The stages are represented by
the datapath element being
used, shaded according to use.

Program
execution
order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

\

Time (in clock cycles)

IM

CC2 , CC3 |, CC4 , CC5 | CCBH |
A
| | | | |
I N

| T] — |

Reg ' >ALUH—DM——Reg ! l

S TER R

| | |
| | | |
R N P
IM —t—ql |Reg I SALU : Reg: :
ST

|
| |

|

|

|

|

!

Y

IM

W E

Reg

i

——

PIPELINED DATAPATH

In reality, these instructions are
not executing in their own
datapaths, they share a
datapath.

The first instruction uses
instruction memory in its IF stage
in cycle 1. Then, in cycle 2, the
second instruction uses instruction
memory for its own IF stage. For
this to work, we need to add
registers to store data between
cycles.

Program
execution
order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

\

Time (in clock cycles)

IM

CC2 , CC3 |, CC4 , CC5 | CCBH |
| | I | |
| | | | |
I N

| T] — |

Reg ' >ALUL—DMI——Reg ! '

== EnE
| | |
| : | |
| I \ : :
| = — .

IM —t—ql |Reg I SALU : Reg: :

Lo i S |
/	
!

Y

IM

W E

Reg

i

——

PIPELINED DATAPATH

PC

|
A\

Y/

IF1D

ID/EX

Add

Address

Instruction

memory

llnstructlon

Shift
left 2

“xec=°

Read
register 1 Read -
data 1

Read
register 2

Registers
Wite ?;:dz >
register
Write
data ¢ >

o

AY

extend

EX/MEM
)Add Add
)un
%—» -
PALU p iyl o
}U[t > Address
Write
data

Data
memory

Read
data

MEM/WB

PIPELINED DATAPATH

The previous slide shows the addition of pipeline registers (in blue) which are used to
hold data between cycles.

Following our laundry analogy, these might be like baskets between the washer,
dryer, etc that hold a clothing load between steps.

During each cycle, an instruction advances from one pipeline register to the next
pipeline register. Note that the registers are labeled by the stages that they
separate.

Pipeline registers are as wide as necessary to hold all of the data passed into
them. For instance, IF/ID is 64 bits wide because it must hold a 32-bit instruction and a
32-bit PC+4 result.

PIPELINED DATAPATH FOR LOAD WORD

Let’s walk through the datapath using the load word instruction as an example. Load
word is a good instruction to start with because it is active in every stage of the
pipelined datapath.

Note that in the following datapaths, the right half of registers or memory are
shaded when they are being read. The left half is shaded when they are being
written.

1w Srt, immed (Srs)

31-26 25-21 20-16 15-0

opcode rs rt immed

The load word instruction adds immed to the contents of Srs to obtain the address
in memory whose contents are written to $rt.

PIPELINED DATAPATH FOR LOAD WORD

Instruction Fetch (IF)

\g g

* The instruction is read from memory using the contents of PC and placed in the IF/ID
register.

* The PC address is incremented by 4 and written back to the PC register, as well as
placed in the IF/ID register in case the instruction needs it later.

Note: the datapath does not know that we are performing a load word at this point
so it forwards the PC+4 value just in case.

PIPELINED DATAPATH FOR LOAD WORD: IF

“xe=2°

PC

IF/ID ID/EX EX'MEM
;A} > > \ g ‘\
4 _>/ YAdd Add
Shift resu
left 2
c
Address 2 Read
3 register 1 Read > >
b2 data 1
a :1;?:1@ 2 5 Zero > B
Instruction - n Registers ALU ALU
memory > Wi Read - - result > Address
rite > 0
. data 2
register M /
u
Write b ¢
data 1
| Write
- data

16 Sign | 32

*—| extend

Data
memory

Read
data

MEM/WB

PIPELINED DATAPATH FOR LOAD WORD

Instruction Decode and Register File Read (ID):

* The registers $rs and $rt are read from the register file and stored in the ID/EX
pipeline register. Remember, we don’t know what the instruction is yet.

* The 16-bit immediate field is sign-extended to 32-bits and stored in the ID/EX
pipeline register.

* The PC+4 value is copied from the IF/ID register into the ID/EX register in case the
instruction needs it later.

PIPELINED DATAPATH FOR LOAD WORD: ID

PC

Data
memory

Read
data

MEM/WB

Y

IF/ID ID/EX EX/MEM
> Add - g \‘
A / NAdd Adc:
—_— Shift resul
left 2
5
Address g Read
= register 1 Read > >
< data 1
f‘ea}dt) Zero}—» —
. egister
Instruction - 9 Registers A ALU
memory o Read - result " Adnosa
rite data 2 - 9
. M
register /
u
Write X
data 4 1
_ | Write
> data
16 Sign | 32
*| extend

“xec=2°

PIPELINED DATAPATH FOR LOAD WORD

Execute or Address Calculation (EX):

* From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

PIPELINED DATAPATH FOR LOAD WORD: EX

“xec=°

PC

IF/ID ID/EX EX'MEM
>A> - > \’
4 _>/ Ad(rjeAsﬂﬂ g
Shift
left 2
Address _ | Read
5 " | register 1 Read > >
] data 1
2 N F*eé}dt) Zero}—» -
. 7] > ster
Instruction < oo Registers >ALU ALU -
memory . Read - - It > Address
Write . (0 resu
> " data 2 M /
register u |
Write X
data 2
- Write
w data

16 Sign | 32

‘—>| extend

Data
memory

Read
data

MEM/WB

“xec=°

PIPELINED DATAPATH FOR LOAD WORD

Memory Access (MEM):

* Take the address stored in the EX/MEM pipeline register and use it to access data
memory. The data read from memory is stored in the MEM/WB pipeline register.

PIPELINED DATAPATH FOR LOAD WORD: MEM

“xe=2°

PC

MEM/WB

IF/ID ID/EX EX/MEM
>Add > .
4 — / >AddAdﬁ >
. resu
Shift
left 2
Address _ | Read -

S " | register 1 ea > »

'tgs 9 data 1 o " \

2 - Read Zero > -

Instruction 2 register 2Registers ALU a1y Read
 — o .
memory | write z{;zdz > 0 result | Address data
| register M
. u / Data
Write X memory
" | data ! 1
-~ _ | Write
- ~| data
AY
| extend

“xec=C

PIPELINED DATAPATH FOR LOAD WORD

Write Back (WB):

¥ ¥

* Read the data from the MEM /WB register and write it back to the register file in
the middle of the datapath.

PIPELINED DATAPATH FOR LOAD WORD: WB

PC

Read
data

Data
memory

MEM/WB

IF/ID ID/EX EX/MEM
-~ ol
Shift r
left 2
Address Read
S register 1 Read -
§ Read thiat
Instruction § register 2 >ALU itle_rs - -
— Registers -
hemony B i §§§dz {0 result Address
register tﬂ /
Write X
data) 1
- Write
o data
16 Sign | 32

| extend

PIPELINED DATAPATH FOR LOAD WORD

It’s important to note that any information we need will have to be passed from
pipeline register to pipeline register while instruction executes.

Because the instructions share the elements, we cannot assume anything from a
previous cycle is still there. We must carry the data with us as we move along the
data path.

So by now you should be wondering about the last step. How does the WB stage
know which register to write to? The IF /ID pipeline register should no longer contain
the necessary instruction field — it’s already been overwritten by three other
instructions at this point.

We’'ll see the solution soon, but let’s look at store word first.

PIPELINED DATAPATH FOR STORE WORD

The IF and ID stages are identical for all instructions.

At these stages of execution, we still do not know which instruction we are actually
executing so we perform general operations that either apply to all instructions or
may speculatively apply to a select few instructions.

PIPELINED DATAPATH FOR STORE WORD: IF

“xe=2°

PC

IF/ID ID/EX EX'MEM
;Ah‘ - > ot ‘\
4 _>/ YAdd Add
Shift resu
left 2
c
Address 2 Read
3 register 1 Read > >
b2 data 1
a :1;?:1@ 2 5 Zeo > -
Instruction - n Registers ALU ALU
memory > Wi Read - - result > Address
rite > 0
. data 2
register M /
u
Write X
data 1
| Write
- data

16 Sign | 32

*—| extend

Data
memory

Read
data

MEM/WB

PIPELINED DATAPATH FOR STORE WORD: 1D

PC

Data
memory

Read
data

MEM/WB

Y

IF/ID ID/EX EX'MEM
>Add > " \‘
4 — / >Add Adﬁ
Shift rest
left 2
s
Address g Read
= register 1 Read » >
£ data 1
flegdt » Zero}—» —
. egister
Instruction L 9 Registers >ALU ALU
memory Wi Read - result > Address
rite data 2 Lt (0
i M
register /
u
Write X
data 4 1
_ | Write
g data
1? - S|gn 32

\ extend

“xec=2°

PIPELINED DATAPATH FOR STORE WORD

Execute or Address Calculation (EX):

* From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

* The contents of the $rt register are copied from the ID/EX pipeline register to the
EX/MEM pipeline register.

PIPELINED DATAPATH FOR STORE WORD: EX

PC

EX'MEM

f

IF/ID ID/EX
4 — / Add Adﬂ
Shift rest
left 2
Address Read
S register 1 Read > -
§ Read data 1
= ° Zero
. @ ter 2
ln::;?:;n . 2] register Regiters >ALU ALli{
Write > - resu
register data 2
Write
data [o =

16 Sign 32

*—| extend

Address

Wirite
data

Read
data

Data
memory

MEM/WB

PIPELINED DATAPATH FOR STORE WORD

Memory Access (MEM):

* Take the address stored in the EX/MEM pipeline register and use it to access data
memory.

* Take the contents of $rt from the EX/MEM pipeline and write it to data memory at
the address specified.

Note that in order to use the $rt field in the MEM stage, we have to carry it with us
from the ID stage. This means copying it in every pipeline register until we use it.

PIPELINED DATAPATH FOR STORE WORD: MEM

PC

Data
memory

Read
data

MEM/WB

ID/EX EX'MEM
4 — / Add Add "
resu
Shirt
left 2
Address .% _ | Read
= | register 1 Read -
ol data 1
- 22?39,2 Zero - ——
Instruction . 1 Registers >ALU ALU
e Write Read - 0 result N Address
> . data 2
register M /
u
Write X
data | 1
o Write
o data
16
5 [sign | 32
| extend —

PIPELINED DATAPATH FOR STORE WORD

Write Back (WB):

* We're already done with the store word instruction so we don’t have to do anything.

PIPELINED DATAPATH FOR STORE WORD: WB

PC

Data
memory

Read
data

MEM/WB

IF/ID ID/EX EX/MEM
Add »
4 >Add Adﬂ >
resu
Shirt
left 2
Address .§_ _ | Read

S register 1 Read -

~§ data 1

£ - ZZ?ger » Zero —» —>

Instruction - Registers >ALU ALU N
memory . Read N > Address
Write (0 result
. data 2 M /
register
u
Write X
data | 1
N Write
- data

*—-| extend

Y

“xc=C

PIPELINED DATAPATH

In both the load and store word datapaths, we can notice another important point:

every datapath element is used in only one pipeline stage. If this wasn’t the case, we'd
create a structural hazard.

Let’s say we used the ALU from the EX stage to both increment PC in the IF stage and
perform operations in the EX stage. This is fine for a single instruction, but what
happens if we're executing multiple instructions and one is currently in the IF stage
and another is in the EX stage? Which one gets to use the ALU?

Clearly, we’d have an issue. So, we add redundancy to our datapath in order to
gain the speed improvements from pipelining.

PIPELINED DATAPATH FOR LOAD WORD

Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

PIPELINED DATAPATH FOR LOAD WORD: WB

PC

Read
data

Data
memory

MEM/WB

IF/ID ID/EX EX/MEM
-~ ol
Shift r
left 2
Address Read
S register 1 Read -
§ Read thiat
Instruction § register 2 >ALU itle_rs - -
— Registers -
hemony B i §§§dz {0 result Address
register tﬂ /
Write X
data) 1
- Write
o data
16 Sign | 32

| extend

PIPELINED DATAPATH FOR LOAD WORD

Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

That's right! Carry the information through each stage using the pipeline registers. To do
this, we’ll modify the datapath a little bit.

Now, we'll pass the write register number from the MEM /WB pipeline register along
with the data. This register number is initially discovered in the ID stage and must be
passed through the pipeline registers until we need it in the WB stage.

PIPELINED DATAPATH FOR LOAD WORD: WB

PC

Read
data

MEM/WB

IF/D ID/EX EX/MEM
S Add > \‘
4 > / Add Adﬂ -
resu
Shift
left 2
Address Read
.§_ " | register 1 Read >
S data 1
_] . ?e;;e?:ter » Zeroy—»| |
Instruction :‘ Registers ALU ALU
memory Wite Read >0 result - Address
register data 2 M
g u Data
Wirite X memory
data [1
Write
- data

| extend

“*xe=®

PIPELINED DATAPATH

Consider the 5 instruction sequence below.

1w $S10, 20(S1)
sub $11, S$2, $3
add $12, $3, $4
1w $S13, 24(S51)
add $14, S$5, $6

First, take note of the fact that we have no data hazards since no instruction depends
on data from a previous instruction. We also have no control hazards since we are
not branching or jumping. So, we can safely pipeline without stalls.

PIPELINED DATAPATH

We can start by diagramming

. . . Program
the individual datapaths execution
. R order
used by every instruction. (in instructions)

.) Iw $10, 20($1)
This allows us to see which

stage each instruction is
executing in a given clock
cycle.

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CCI CCE

s

[s

Re_g:
-1

PIPELINED DATAPATH

We can also chart the stages themselves rather than the elements being used in the cycle.

Program
execution
order

(in instructions)

Iw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

Time (in clock cycles)

ccld ccH ccﬂ

CC1 CC2 CC3 CC4 CC5 CC 86
lnsftgtjé:rtlion lng;tjé:ctiign Execution ag:;gs Whita back
"letoh | decode | EXSCUION | qocgs | Wrte back
"letoh | decado. | Execution | ooicc | Wit back
"letoh | decods | EXe0uon | noice | Write back
loton | docods. | EXECUION | gocgas | Wite back

PIPELINED DATAPATH

On the next slide, we show a single datapath as it is being used by the 5 instructions
at once.

The cycle depicted is cycle 5. In this cycle, the first load word is executing its WB
stage while the last add instruction is executing its IF stage.

PIPELINED DATAPATH

| add $14, $5, $6 | Iw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | lw$10, 20($1) |
| Instruction fetch | Instruction decode | Execution | Memory | Write back |
IF/ID ID/EX EX'MEM MEM/WB
>Add - »
4 —
Shift
left 2
L 5
PC | Address Read
£ register 1 Read >
- § data 1
= Ao s \ Zero—» -
Instruction 2 o |reawster2 ALU
= Registers 5 ALU _ Read
memory > — . Read - - > Address == (0
| Write data 2 (I)“ result data M
register u Data u
Write x memory X
data 1 1
L Write
- " | data
16 slgn 32 >
| extend —

PIPELINED DATAPATH

| add $14, $5, $6 | Iw $13, 24 ($1) | add$12,$3,84 | sub$11,82,83 | W$10,20(81) |
| Instruction fetch | Instruction decode | Execution | Memory | Write back |
IF/ID ID/EX EX/MEM MEM/WB

4 — /
Shift
left 2
.
Address Read
5 register 1 Read >
- § data 1
§ > Frézqiﬁarz > 50 > e
Instruction 2 . i ALU a1y Read
memory > —1 Write Registers E:de > (0 result = | Address d:?a Bd “h
- | register 'l'l‘ / Data u
Wiite x memory 3
[} - data 1 i
. Write
- " | data
16 slgn 32 S
> extend -

PIPELINED DATAPATH

In the following slides, we walk through all 9 cycles required to fully complete the 5
instructions in our sample sequence.

We will start with clock cycle 1 and highlight the relevant datapath lines according to
the instruction being executed in each particular stage.

PIPELINED DATAPATH

[
| ———
>Add
4 —
-
PC Address
—_

Instruction
memory

| Instruction

:

EX'MEM
?Add Add -
result "
Shitt
left 2 /
Read
register 1 Read -
data 1
Re{idt » Zero—» —
register
Registers Read >ALU ALU >
Write d 0 result
. ata 2 M /
register y
Write X
data 1

*—| extend

Address

Write
data

Read
data

Data
memory

MEM/WB

Y

“xec=°

PIPELINED DATAPATH

PC

>Add

IF/ID

Address

Instruction
memory

%==| oxtend

EX'MEM
?Add Add .
result "
Shift
left 2 /
Read
5 = register 1 Read »-
'.g data 1
5 f:?sdterz Zero}—»| >
;r. Registers Read >ALU ALU
Write ea > 0 result o
> . data 2 M /
register U
o | Write X
data 1

Address

Write
data

Read
data

Data
memory

MEM/WB

\ i

“xc=°

PIPELINED DATAPATH

Read
data

Data
memory

MEM/WB

add $12,53,54 1w $10, 20($1)
[
IF1ID ID/EX EX'MEM
—
>Add = \
4 — PAddAdd >
Shitt result
left 2 /
e
PC Address Read
S | register 1 Read . \
—— S data 1
- - Re’.’dt 2 > Zero}— -
Instruction 2 o | rearste . ALU
= Regist ALU -
memory 1 Write egisiers g:;dz - >0 resultie ™ »-| Address
> i M
register U /
o | Write X
data 1
- Write
v 7| data
| extend —

“xc=°

A 4

PIPELINED DATAPATH

1w $13, 24($1) add $12,$3, %4 1w $10, 20(S1)
[
IF1ID EX'MEM MEM/WB
| o —
>Add > \
4 — Add Add >

Shitt P result

left 2 /
-

PC Address Read
5 register 1 Read
— g Ref_id data 1 . .
Instruction 3: "99'5te’2ne .
= gisters _ - Read
memory - . Read - > Add ==
N Wn‘te‘e d:; P (;d ress data
regiser u Data
o | Write X memory
data 1
- Write
- 7| data
16 S|gn 32 >
| extend —

“xc=°

PIPELINED DATAPATH

add $14,35,86 lw $13, 24($1) add $12,8$3,$4 1w $10, 20(s$1)

IF/ID ID/EX EX'MEM MEM/WB

> Add > : \

4 — Add Add >
Shitt result
left 2 /
-
PC Address Read
register 1 Read - \
_— E data 1
Read Zero

A 4

[=

2

s N R

Instruction 2 register2. >ALU
= Registers i ALU _ Read =
memory = Write g:;dz ?“ result= »-| Address data [OM
register u / Data :
Write X memory
F data 1 1

- Write
| data
16 Sign 32 .
p._\-.- extend —

]

Y
Y

PIPELINED DATAPATH

PC

>Add

IF/ID

Address

Instruction
memory

4

Instruction
b ¥ I

EX/MEM
?Add Ad?t >
resu
Shitt
left 2 /
Read
register 1 Read - \
data 1
Re{idt » > Zero—» —
register . ALU
Registers ALU _
Write 5:;”2 >0 resultf—
register ": /
Write X
data 1
16 Sign | 32
%= extend —

Address

Write
data

Read
data

Data
memory

add $14,55,%6 1w $13, 24(S1) add $12,83,54

MEM/WB

“xc=°

A 4

PIPELINED DATAPATH

add $14,5$5,$6 1w $13,

PC

24 ($1) add $12,83, 54

IF1ID ID/EX EX'MEM MEM/WB
> Add . [~
4 — g .
Shift
left 2 /
Address _ | Read
s register 1 Read \
£ . Re‘.’dt » at \ Zoro}—»| |
Instruction 2 o [reorster i ALU ALy
memory > —e Write RegISters g:;dz =0 result > Address F;Z:: M 0’d
| cqi M
register u / Data u
: X
— :QJarge 1x memory 1
- Write
- data
16 sign | 32 >
3
| extend -

PIPELINED DATAPATH

add $14,S85,5%6 1w $13,

PC

IF/ID ID/EX EX'MEM MEM/WB
> Add > \
4 — o >
Shift
left 2 /
Address Read
S register 1 gaead - \
S ta 1
.g > f:‘i’sdter 2 > Zero - =
Instruction < ; ALU 51y
memory P | Wi Read o result Address ead L =0
F— ister data 2 M M
9 u | Data u
Write X memory X
data 1 1
- Write
v data
16 Sign | 32 L >
| extend -

24 (S1)

PIPELINED DATAPATH

PC

IF/ID ID/EX EX/MEM
>Add » \
4 — oA >
Shift
left 2 /
Address Read
S register 1 g:ad - \
= ta 1
,g . f;eg‘i’sdterz > Zero—» >
Instruction " ALU
. < Registers ALU
memory > — e ge;dz >0 result]
T register 2 P: /
Write X
data 1
| extend —

Address

Write
data

Read
data

Data
memory

add $14,55,$6

MEM/WB

\ i

“xec=°

PIPELINED CONTROL

Now, let’'s add control to our pipelined datapath. We'll start with a simple control
scheme and deal with pipeline hazards later.

A lot of the control logic is borrowed from the single-cycle and multi-cycle
implementations.

PIPELINED CONTROL

MemtoReg

PCSrc
IFID ID/EX EX/MEM MEM/WB
4 — / >AddAdd -
Shift resu Branch
- il
—-(0 Rean‘te
M |
u PC Address 8 » | Read Read .
1x ’g register 1 phereg) - \ Mem\'Nnte
@ .. | Read Zero}—»
c o ALUSrc
Instruction = 'eg's'e;‘z - > Add a1y Read
i Wite | 2 fead (— . result — Address tead L,
»| register a | Data
Write memory
data
. Write
. " | data
Instruction l
(150 18 | sign- | 32 & [Aaw | "
A extend N control MemRead
Instruction
(20-16)
> ALUOp
Instruction - -
(15-11)

PIPELINED CONTROL

Let’s remind ourselves of the roles of these control lines.

Opcode | ALU | Operation Funct ALU ALU
op action Control

Input
lw 00 | Load word N/A add 0010
SW 00 | Store word N/A add 0010
beq 01 | Branch equal N/A subtract | 0110
R-type | 10 | Add 100000 | add 0010
R-type | 10 | Subtract 100010 | subtract | 0110
R-type | 10 | AND 100100 | AND | 0000
R-type | 10 | OR 100101 | OR 0001
R-type | 10 | Set on less than 101010 | slt 0111

PIPELINED CONTROL

RegDst The register file destination number for the The register file destination number for the Write
Write register comes from the rt field. register comes from the rd field.
RegWrite None Write register is written with the value of the Write
data input.
ALUSrc The first ALU operand is Read Data 2. The first ALU operand is sign-ext immediate field.
PCSrc PC is replaced by PC+4. PC is replaced by branch target.
MemRead None Content of memory at the location specified by the
Address input is put on the Memory data output.
MemWrite None The Write Data input is written to the Address input.
MemtoReg The value fed to the register file is from the The value fed to the register file input comes from
ALU. Memory.

PIPELINED CONTROL

Let’s remind ourselves of the roles of these control lines. Notice now that we're

grouping the control lines based on their relevant stage.

EX MEM WB
A A A
Instr. | RegDst | ALUOp | ALUOp2 | ALUSrc | Branch | MemRead | MemWrite | RegWrite MemToReg
1

R 1 1 0] o) o) 0] 1 0]
lw o) 0] 0] 1 0 1 1 1
SW X 0] 0] 1 o) 1 X
beq X 0] 1 o) 1 o) X

PIPELINED CONTROL

Unlike the multi-cycle implementation, we assume that the PC is written on every
clock cycle so there is no explicit control signal for writing PC. We also assume that
the pipeline registers are written on every clock cycle.

As we just saw in the previous slide, we can handle “controlling” 5 instructions at once
by dividing the control signals into 5 groups — one for each pipeline stage.

PIPELINED CONTROL: IF

PCSrc
7D DEX EXMEM MEME
The only relevant control
signals in this stage are the Add - —\
. 4 — Adg”dd -
control signals to read @_}"' Branch
left 2 LD_
instruction memory and write — —
—-{ O n
M - 1
to PC 1: PC o Address 2 > Eez?s{.jteﬂ §§§d1 MemWrite
g - 1 MemtoReg
Instruction = " gz?gterz Read
o memory Write Registersﬁead - o Address data [|

These control signals are >regiser daia2 Data

—-| Write memory
always asserted however so dela y

N rite

we don’t need to worry about Instruction e

(15-0) 16 sign. | 32 € [aw]
them. T \extend ' @ MemRead

A

Ch ALUOp
Inslruction ¥ - -
{15-11) |\

PIPELINED CONTROL: ID

As in the previous stage,

the same actions take place
during every cycle so we

do not have to be concerned
with any optional control lines.

Notice the RegWrite signal
physically resides in this
component of the datapath
but it is a control line of the
WB stage.

“xgz®

PCSrc
IFAD IDA=X EX/MEM MEM/WB
b > \
4 — / AddAdf: -
Shift resu Branch
w -
RegWrite
|
PC Address & Read
B ™ register 1 539;(11 MemWrite
B | Read — : MemioReg
Instruction - register 2 R
Registers > ead
memory wiite 2 Read Address oo ™
i a
register Data
— | Write memory
data
N Write
data
Instruction I
(1500 16 [gign. | 32 € [aw]
A extend " | control MemRead
Inslruction
(20-16) "
ALUO,
M p . .
Inslruction :
{15-11) 1
i

PIPELINE CONTROL: EX

The relevant control signals

in this stage are:

* RegDst
* ALUOp
* ALUSrc

Inslruction
{15-11)

PCSrc
IDA=X EX/MEM MEM/WB
> Add
4 — / g
Branch
il
o RegWrite [
M !
u Address s Read] flead MemWri
" iste |{
1x 'g register daiad em' e
B »| Read |
Instruction — register 2
memory Wik Registersﬁe . »| Address —- |
> i data 2
register Data
—-| Write memory
data
_ Write
| | data
Instruction I
(15-0) 16 sign. | 32]
T \extend MemRead
Inslruction
(20-16)

MemtoReg

PIPELINE CONTROL: MEM

The relevant control signals
in this stage are:

* Branch
* MemRead
* MemWrite

PCSrc is also computed in this
stage but it is a product of
two other control signals, so
we don’t worry about it when
designing our Control unit.

EXMEM

\ i

“xgz®

Instruction
memory

RegWrite
|

Read

Instruction

* | register 1
»| Read

register 2
Write

—-| Write

data

Registers e

Blinch
1

MemWrile
1

PCSrc

R
™1 register data 2

Instruction

(1500 16 [gign. | 32

k extend

Inslruction
(20-186)

»-| Address

Data
memory

Write

Inslruction
{15-11)

data

MEM'WB

MemtoReg

]
MemRead

PIPELINE CONTROL: WB

The relevant control signals
in this stage are:

* MemtoReg
* RegWrite

Note that RegWrite is our one
exception. It actually appears
in ID’s phase of the pipeline
but it is a control signal for the
WSB stage.

“xgz®

MemtoReg

PCSrc
IFAD ID/EX EX/MEM MEN/WB
b > \
4 — / AdgAdd "
Shift resu Branch
- 1A
RegWrite
!
PC Address 5 Read 1 Read MemWril
'g register dala 1 emI rile
B - Reei\g 2 —
Instruction — register R
Reqister - ead
memory wite O Read Address tead Lo
*| register data2 Data
—-| Write memory
data
R Write
, data
Instruction I
(15-0) 16 sign. | 32 € [aw]
¥ extend " | control MemRead

Instruction
(20-16)
Inslruction - -
{15-11)

PIPELINED CONTROL

As before, we need to
preserve the context of
an instruction as it
moves through the
datapath.

We cannot reach back in
the datapath for some
information about how to
execute the instruction —
it will have already been
overwritten.

Instruction

—

IF/ID

Control

WB

WB

EX

ID/EX

EX/MEM

WB

MEM/WB

PIPELINED CONTROL

We must pass along the
control line values for the
last 3 stages. Remember,
the first 2 stages are
universal.

For example, the RegWrite
and MemtoReg values,
decoded after the second
stage, must be passed

through the EX and MEM
stages to the WB stage.

Instruction

—

IF/ID

Control

WB

WB

EX

ID/EX

EX/MEM

WB

MEM/WB

PIPELINED CONTROL

Our pipeline registers have
been extended to handle
the control information as
well.

Instruction

—

IF/ID

Control

wB
l’ - M _t wWB
TEX [oM
ID/EX EX/MEM

WB

MEM/WB

PCSrc

ID/EX
we LEXMEM
*{ Control M L b | MEMAWB
EX M WB ™
IF/ID
> Add
4 — -
,‘E’ L
: B
o
o |
[2
Address H Read %
2 - i Read B 2
g register 1 ata 1 » - =
Read Zero . -
e S :
Instruction = register 2 PALU pvy ||| Read
memory . Registers poaq | resut J| T Address data ||
Write data 2 /
" |register] Data
Write memory
" |data
_ Write
" | data
Instruction
[15-0] 16 Sign- 32 6
| axtend - a';L\t?ol MemRead
Instruction
[20-16) g ALUOp
M - >
Instruction u
[15-11) 1'

MemtoReg

PIPELINED CONTROL

Consider the following instructions.

1w $10, 20(s1)
sub $11, S$2, $3
and $12, $4, S5
or $13, $S6, S7
add $14, $8, $9

Let’s examine, in all the detail, how these simple instructions are executed in a
pipelined datapath. Note again that we have no control or data hazards. Each slide
following will show the datapath state in a subsequent clock cycle.

| ID: | EX: | MEM: | WB:
IF: Tw $10,20(%$1) Ibefore<1> | before<2> Ibefore<3> Ibefore<4>
| | | |
| | | |
IF{ID ID/‘EX EX/I\IAEM MEM/V\{B
| B L | |
| - . |
| | | | Control | M o WB= I
I —12 I-»»— 9 l—»”l“ 0
l EX 20 m 0] ws| 0
— [[0 (2 |
>Add T = T . \
e Add
4> = F“d" result
o Shift / Branch | 2
o left 2 =
s Read \ ALUSrc D % &D’)
Addrasy g &—»-| register 1 Read g S
w Read) data 1 L > QE)
. c register ero}4+—p| |-
Instruction | I Write Read T\ VALU ALU -
memory I g data 2 > »| |e—|Address Read .| | (7
»| register M result ata M
. u Data
Wit . / M
dartlae Registers L 1x . mamory g
= T data
Instruction aa
. -
[2 [1 5—0] Slgh'd MemRead
Instruction (EXteN
[20-16]
nstructi > ALUOp
nstruction
[15-11] - = =
Clock 1 L - L _— S
| | | |
| f } t
| I | I

IF: 11D: IEX: IMEM: IWB:
sub $11,$2,43 :1w $10,20($1) :before<1> :before<2> :before<3>
| | | | |
IF/ID ID/EX EX/MEM MEM/WB
| Uy iwe-2 |_ ; |
| |
I" : |W 010 M 000 - w00 :
: 0001 [~ o5 I—:-» — L:,,. L 0
| EX (:]" M , |wB| 0
Add > .
2 Add
4 — = Add, oyt
3 Shift Branch | &
- left 2 = .
s, d”' \§ ALUSIC) Z 4
r= ea) ¢ 8
’IE|0‘ Address S ¢—> register 1 Read ;$>1 = 2
= X P> A [-
@ Read data 1 Ze | o =
Instruction | EI_" register2 19X 0 >ALU (Arl(_)U L -
memory »-| Write data 2 il \ M result #—»-| o—|Address Read | L (1
register u Data data n‘f
| Write i x memo X
data R = - » | Write Y 0
Instruction J data
.20 [15—0] Sigﬂ' 20 o—> (ALU .I' MemRead -
Instruction &' \control/
10| [20-16] 10
o , > >ﬂ [ALUOp
Instruction M . .
X |[15-11] X . ;‘
Clock 2 T T RegDst T e
]
| | | H
I | I i

IF: (1D: |EX: IMEM: |WB:
and $12,%4,%5 Isub $11,%2,%3 ITw $10, Ibefore<1> Ibefore<2>
[I I I
| | | |
IF/ID ID/EX EX/MEM MEM/WB
: 00 [11 ' '
| > \WB | I
| - . |
|: | o {Control 220 | 1 1210 _»w; 00 L |
| —10 0 R
| 0000 EX 00 > M | » o
[E——— L L 1 . 'I —_—
>Add D - —>\‘
= Add N
4= =3 >Addrcsult . i .
d é@* Branch | 2
- left 2 — | = .
s Read ¢ ALUSrc |)% 3
dd 8.2_’. register 1 Read |$2 $1 f_: [
Address % . Refildt) s 52 ’-\ = E)
@ register ol . . =
Instruction - ;I_> Write Read|$3 0 >ALU ALU =
memesy »| register data 2 - M result »| [-9—»|Address Rdeatd i B ;‘
Write Ragisters u / Data “%“ ;
> data o1 ~ memory ())(
> »| Write
Instruction VN data J—>
X | [15-0] _ [sign-| X 20 [ALU | | —
Rt '. | VlemRead
Instruction@ -f°m"{'x
X | [20-16] X 10 A
o - > —(0 | aLuop
Instruction o . .
11| [15-11) X
Clock 3 - - ReqDst — —
l t f f
l l | l

: WB: before<1>

IF:or $13,$6,$7 ID: and $12,$4,$5 [EX: sub $11,... IMEM: Tw $10, ...
| i I I
| | | |
IF/ID EX/MEM MEM/WB
I I I
: and +_w|;I 11 :
| 1o .
| I" w1 L’[vs X
| 0
> >
2 Add
= >Add =
< result) .
g) Shift / Bran_?h ::
< - o3 ALUSIC — = P
=14 _[Read o kS S
Address e’—" register 1 Read ﬂ $2 . = =
g 5 Read data 1 o | o
Instruction | _ ;I_> register 2 Read $5| [$3 >ALU ALU
memory »| Write oo n result f—-| |e—| Address Readf{_| | 7
register ata 2 'lf Data 931 l:.ll
| Write X memo X
data R ™\ I _ _ | Write i 0
Instruction data J—>
IX [15-0] . Slgn—d X |l T
xt
Instruction@
X |[20-16] X 2
¢ . almal ALUOp
Instruction u »| 0 -
12)[15-11] 12 11 | X
lock 4 > {1 LA
Cloc T T RegDst T !
I | [;
I | I |

IF: (1D: |EX: |MEM: |WB:
add $14,%$8,%9 lor $13,%6,%7 land $12,. Isub $11,... [Tw $10,..
' | | | |
| | | |
IF/IID ID_/JEX EX/I\IIIEM MEM/V\]IB
| LN (7 | !
| — - . |
| I or Control OOO> M 000 a WB 10 L l
| / P | |
. — 1
. : 100 Ex |2 M wa[T
>Add > = | | \
= Add N
4= %) Add, osult - S N
@ |® u“.‘l-(/i? 2
c - left2/” = o
5 Read \J "ALusrc |) F 8
addrocd §06—> register 1 Read|ss| |sa o S
res =7 Reqc{ . data 1 > =
2 register
Instruction e — 110 Write Read -sl $5-> 0 >ALU ALU Road =
memory > register data 2 M result ff—>-| - Address datal l1\l
Write pagisters u / Data u
> data | 1" memory X
. » | Write 0
Instruction data
>
’X [15-0] | Sign- | X : mRead
. |extend
Instruction \/
‘x [20-16] X o L@ .
Instruction "J .| . 10
13| [15-11] 13> 1_2> X
1
CIOCk 5 T _i_ RegDst T T
I t ; }
| | | |

IF:
after<1>

11D: |EX: IMEM: IWB:
ladd $14,$8,%9 lor $13 land $12,... :sub $11,.
| | |
I [| |
—— IF{ID EX/MEM MEM/YVB
I I |
I I
E | add Ral ;vl;‘ 10 |
I 0 I
: - I—> — 1.1
| M| wa| 0
>Add \
@
= Ada 9L
= result . .
= 'i?:g / Eukn‘?h :
< - ALUSrc D)
=18 [Read o s
Address 3 T register 1 Read ?ﬁ < £
9 Read data 1 @
Instruction | = I 11 register 2 Read $9 =
memory »| Write il | 9—>|Address Read || L (]
:;9:ster Data data nlf
= Write Registers memory X
Liliz | Write Q
Instruction dota
X |[15-0] Sign- | X MemRead
o— MemRead
. \extend
Instruction
.X [20-16] X
Instruction 11
12|[15-11] 14
Clock 6 - D
| |
| .
I |

IF: (1D: |EX: |MEM: |WB:
after<2> |after<1> ladd $14,... lor $13,... land $12,.
' ! | | |
‘ | | | |
5 (0 lF/IID ID/EX EX/I\IIIEM MEMN\llB
M A~ 10 10
u | > |WB | [
X ! [\ IE L |
I ! I >'C0nholl 000 | M 000 WB 10 l
| ' ,ul 1 L— 0 L_L 1
| /1100 ex 10 M 0] wal o
e a / i 0 [0 .
>Add - > >\‘
2
4 - § >Add re/:ﬂﬁ -
o . Branch | @
& st T E
5 Read ALUSIC J 8
B 6| register [0
n. Address = regl Read $8 s o
i Read data 1~ > ~ OEJ
nstruction || ST UTIEREEE poad | s Sacu Al || | =
memory »| register data 2> > result H=>-| [-@—» Address Rde;g = (l)ll
Write Regist Data u
g data gisiers - memory X
Write 1
. data
Instruction :
.
— [15-0] Sign- MemRead
. extend
Instruction
[20-16]
o -
Instruction - 12
[15-11] N
Clock 7 —r N : _i_
| i }
| I

l

IF: [1D: IEX: IMEM: IWB:
after<3> :after<2> :after<1> land $14,... lor $13,..
|]
IF/ID ID/EX EX/MEM MEM/WB
] | 1
l ,r"'/.-_:\ .. C:)> WB 00
| [\
: >|Contro|:LCO>— M oo 10
|
| \ /0000 - -+ I—> 1]
| Il_,_/ >|EX 0 0] 1 0
> > —>\‘
o)
= Add
4 = >Add result
o)) @ Branch | @
Q ift) "
i left 2 \ | = o
c ALUSTIC = Z ®
2 Read :]7 5 -
~ Address S " register 1 Read| ’ . = £
@D Read data 1 ’ Zero @
< : - =
In:‘:::‘:,lll;n . x 13 ‘rl?,glsterz Read |, - >ALU ALU y fend 1
p-| Write data 2 result ——>-| Address >
register Da data M
ta u
> Write Registers | . memory X
data - Write 0
Instruction VR J data
Oo— [1 5_01 _._>',- ALU : MemRead
Instruction ._f:ontro’!‘,
20710 —-(0 - "//\Luo
o} - p
Instruction "l‘l' [— 14 13
[15-11] X
| |}

IF: [1D: IEX: IMEM: IWB:
after<4> lafter<3> lafter<2> |after<1> :add $14, .
t f |
| . 1 l 1
IF/ID ID/EX EX/MEM MEM/WB
1 [| 1
| 00, lwsH2 . | |
E : o |cont \1000 Toc:) L>_:; 10 :
ontro W
| J 1o 1o L
| 0000 | . [00 |“> o [0 I_VWBL
| ol b 0 YI'ro 0
>Add - - - \
o)
= Add
4 — = >Add result >)
=2 Shift / Branch L
2 —] —
S - left ALUSrc . - é D
G g—s-| Flead S S
> Address = register 1 Read| »\ = £
17 Read data 1 Zero [0)
. = . N =
Instruction | I14 register2 L (0 JALUALU Read
memory »-| Write dat result H=>-| -—»-|Address | =1
register ata 2 M data M
u Data u
| Write Registers X / memory X
data 1 Write 0
=
Instruction data r
- . >
— [15 0] ?(Itgn.d MemRead
Instruction \oX "
[20—16]
o— >
Instruction . 14
[15—-11]
-
Clock 9 .
| | :
| | H
'

