L E c 'I' U R E 6 Multi-Cycle
Datapath and Control




SINGLE-CYCLE IMPLEMENTATION

As we’ve seen, single-cycle implementation, although easy to implement, could
potentially be very inefficient.

In single-cycle, we define a clock cycle to be the length of time needed to execute a

single instruction. So, our lower bound on the clock period is the length of the most-
time consuming instruction.

In our previous example, our jump instruction needs only 4ns but our clock period must
be 13ns to accommodate the load word instruction!



MULTI-CYCLE IMPLEMENTATION

We can get around some of the disadvantages by introducing a little more
complexity to our datapath.

Instead of viewing the instruction as one big task that needs to be performed, in
multi-cycle the instructions are broken up into smaller fundamental steps.

As a result, we can shorten the clock period and perform the instructions
incrementally across multiple cycles.

What are these fundamental steps? Well, let’s take a look at what our instructions
actually need to do...



R-FORMAT STEPS

An instruction is fetched from instruction memory and the PC is incremented.
Read two source register values from the register file.
Perform the ALU operation on the register data operands.

Write the result of the ALU operation to the register file.



LOAD STEPS

An instruction is fetched from instruction memory and the PC is incremented.

Read a source register value from the register file and sign-extend the 16 least
significant bits of the instruction.

Perform the ALU operation that computes the sum of the value in the register and the
sign-extended immediate value from the instruction.

Access data memory at the address given by the result from the ALU.

Write the result of the memory value to the register file.



STORE STEPS

An instruction is fetched from instruction memory and the PC is incremented.

Read two source register values from the register file and sign-extend the 16 least
significant bits of the instruction.

Perform the ALU operation that computes the sum of the value in the register and the
sign-extended immediate value from the instruction.

Update data memory at the address given by the result from the ALU.



BRANCH EQUAL(BEQ) STEPS

An instruction is fetched from instruction memory and the PC is incremented.

Read two source register values from the register file and sign-extend the 16 least
significant bits of the instruction and then left shifts it by two.

The ALU performs a subtract on the data values read from the register file. The
value of PC+4 is added with the sign-extended left-shifted-by-two immediate value
from the instruction, which results in the branch target address.

The Zero result from the ALU is used to decide which adder result should be used to
update the PC.



JUMP STEPS

An instruction is fetched from instruction memory and the PC is incremented.

Concatenate the four most significant bits of PC+4, the 26 least significant bits of
the instruction, and two zero bits. Assign the result to the PC.



GENERAL STEPS

So, generally, we can say we need to perform the following steps:

Instruction fetch.
Instruction decode and register fetch.

Execution, memory address computation, branch completion, or jump completion.
Memory access or R-type instruction completion.

Memory read completion.



MULTI-CYCLE DATAPATH

Here is a general overview of our new multi-cycle datapath.

* We now have a single
memory element that

interacts with both
instructions and data.
* Single ALU unit, no
dedicated adders.
* Several temporary

registers.

5

=

b—‘xcgo

Address

Memory

Write
data

MemDat4

Instructio

Read

[25-21]

Instructio
[15-0] Instructio
Instruction [15-11]

register

Instructior]
[15-0]

Instructiof Read d 1
[20-16] I 7~\ register 2 ata
0 _Registers

register 1
Read

Write d

Memory

data

. a
register 4.2 9

Write
data

register

Hxec=2 O

ALUOEF




MULTI-CYCLE DATAPATH

PC

Hxe=z @

Address

Memory

MemData|

Write
data

Instruction [5-0]

Instruction Read
[25-21] " | register 1
Instruction] Read dgt‘;a(ll_> A
[20-16] T register 2
Instruct {0 W AtRegisteEs 3
nstructior] rite ea
(15-0T { ¥ 1hstructio I\lll| register  data 2[™> B
Instruction [15-11] | X Write
register ! data
Instructior] 0
[15-0] M
u
X
)| Memory > 1
data
register

Fxe=z©

W N = O
xc =

Zero f—>
ALU AT U e

result

—p ALUOE]—




MULTI-CYCLE DATAPATH

Instruction

[25-21]

Instruction
[20-16] I register 2
0

Instruction
[15-0] Instructio
Instruction [15-11]

register

PC 0
M (
u W] Address
X
1 Memory
MemDataj
Write
> data
These are some old|datgpath
elements that we arf aljeady used

to. Note, however, that the
Memory element is pow pulling
double-duty as botl} the]lnstruction

Instruction

[15-0]

Memory

data
register

>

ALUOEI—

Read
register 1
Read
Read data 1
_Registers
Write Read
register data 2
Write
data
—
16 .
\ Sign
M |extend

Instruction [5-0]

4

AV

Memory and Data
element.



MULTI-CYCLE DATAPATH

PC

Hxe=2 @

Address

Memory
MemData|

Write
data

Instruction

[25-21]

Instructior]

[20-16]

Instruction
[15-0]

Instruction
register

[15-0]

nstructio

15-11] I

|

Hxe=

Read
register 1

Read
register 2

_Regist
Write
register

Write
data

Read
data 1

ers
Read
data 2

b—*xcgo

Memory
data
register

v

[
1’03

v

Instruction [5-0]

Zero
ALU ArLU

result

ALUO




MULTI-CYCLE DATAPATH

New temporary registers:

Instruction register (IR) — holds the instruction after its been pulled from memory.

Memory data register (MDR) — temporarily holds data grabbed from memory until
the next cycle.

A — temporarily holds the contents of read register 1 until the next cycle.
B — temporarily holds the contents of read register 2 until the next cycle.
ALUout — temporarily holds the contents of the ALU until the next cycle.

Note: every register is written on every cycle except for the instruction register.



MULTI-CYCLE DATAPATH

PC

Hxe=2 @

Address

Memory
MemData|

Write
data

Instruction Read
[25-21] " | register 1
. Read
Instruction] Read data 1[™=
[20-16] I register 2
_ 0 . Registers
Instruction M Write Read
(15-01 [ 1nstructiof U register  data 2[™ ¥
Instruction [15-11] | X Write
register ! data
Instructior] 0
[15-0] M
u
X
Memory > 1
data 16
register \‘ >

Instruction [5-0]

Zero

ALU ArLU
result

ALUOEI—




MULTI-CYCLE DATAPATH

The lorD control signal.
Deasserted: the contents of PC is used as the address for the memory unit.

Asserted: The contents of ALUout is used as the address for the memory unit.



MULTI-CYCLE DATAPATH

PC

HFHxez @

Address

Memory

Mem Dataje=—g—)p

Write
data

Instruction

Read

[25-21]

Instruction
[20-16]

Instruction
register

Instruction

[15-0]

register 1

y

Instruction
(15-0] | Instrudtio

[15-11

register 2
Registers

register

Write
data

Read
Read data 1

Write Read
data 2

!

!

v

Memory
data

register

—= |

= o
xc=
(b—lxch}

[
1’03

v

Instruction [5-0]

Zero f—>
ALU AT T e

result

= ALUOEI—




MULTI-CYCLE DATAPATH

The RegDst control signal.

Deasserted: the register file destination number for the Write register comes from
the rt field.

Asserted: the register file destination number for the Write register comes from the
rd field.



MULTI-CYCLE DATAPATH

PC

Hxe=2©°

Address

Memory
MemData|

Write
data

Instruction

[25-21]

register

Instruction

[15-0]

Memory
data

register

Instruction
[20-16] _r' register 2
0
Instruction
[15-0] Instructio
Instruction [15-11]

Inst]

Write
data

Read
register 1
Read
Read data 1
_Registers
Write Read
register data 2

!

!

Sign
extend

ruction [5-0]

Zero
ALU ArU

result

ALUOEI—




MULTI-CYCLE DATAPATH

The MemToReg control signal.
Deasserted: the value fed to the register file input comes from ALUout.

Asserted: the value fed to the register file input comes from MDR.



MULTI-CYCLE DATAPATH

PC

Hxe=2 @

Address

Memory
Mem Dataje=—g—)p

Write
data

)| Memory

Instruction Read
[25-21] " | register 1
. Read
Instruction] Read data 1[™=
[20-16] I register 2
_ 0 . Registers
Instruction M Write Read
[5-011 § nstructiof U register  data 2™ |
Instruction [15-11] | X Write
register ! data
Instructior]
[15-0]

chgo

%

b—*xcgo

v

data
register

[
1’03

v

Instruction [5-0]

W N = O

xc =

result

Zero f—>
ALU AT T e

= ALUOEI—




MULTI-CYCLE DATAPATH

One of the changes we’ve made is that we’re using only a single ALU. We have no
dedicated adders on the side. To implement this change, we need to add some
multiplexors.

ALUSrcA multiplexor chooses between the contents of PC or the contents of
temporary register A as the first operand.

ALUSrcB multiplexor chooses between the contents of temporary register B, the
constant 4, the immediate field, or the left-shifted immediate field as the second

operand.



MULTI-CYCLE DATAPATH AND CONTROL

Jump
address [31-0]

-
Op
[5-0]
A
Instruction [25-0]
Instruction|
[31-26]
0
M Instruction Read
u Address [25-21] register 1
lx Memo Instruction Read dRe ad
ry [20-16] ._‘—o_. register 2 data 1
MemData| » ) {0 _Registers
Instructlou.q M Write ead
Wit (15-0] Instructiof U register  qatq 9
; _ X
ee Instruction [15-11] | ! Write
register data
Instructio 0
[15-0] M
u
X
Memory > 1
data 16 si 32
register | demp| ©IGN
9 N |extend
Instruction [5-0]

ALUO

=

xc =2




MULTI-CYCLE DATAPATH AND CONTROL

1-Bit Signal Name Effect When Deasserted Effect When Asserted

RegDst The register file destination number for the The register file destination number for the Write
Write register comes from the rt field. register comes from the rd field.
RegWrite None Write register is written with the value of the Write
data input.
ALUSrcA The first ALU operand is PC. The first ALU operand is A register.
MemRead None Content of memory at the location specified by the

Address input is put on the Memory data output.

MemWrite None Memory contents of the location specified by the
Address input is replaced by the value on the
Write data input.




MULTI-CYCLE DATAPATH AND CONTROL

1-Bit Signal Name Effect When Deasserted Effect When Asserted

MemToReg The value fed to the register file input is The value fed to the register file input comes
ALUout. from Memory data register.

lorD The PC supplies the Address to the Memory ALUOut is used to supply the address to the
element. memory unit.

IRWrite None The output of the memory is written into the

Instruction Register (IR).

PCWrite None The PC is written; the source is controlled by
PC-Source.
PCWriteCond None The PC is written if the Zero output from the ALU

is also active.




MULTI-CYCLE DATAPATH AND CONTROL

2-bit Signal Value Effect

ALUOp 00 The ALU performs an add operation.

01 The ALU performs a subtract operation.

10 The funct field of the instruction determines the operation.
ALUSrcB 00 The second input to ALU comes from the B register.

01 The second input to ALU is 4.

10 The second input to the ALU is the sign-extended, lower 16 bits of the Instruction Register (IR).

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left by 2 bits.
PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing.

01 The contents of ALUOut (the branch target address) are sent to the PC for writing.

10 The jump target address (IR[25-0] shifted left 2 bits and concatenated with PC + 4[31-28]) is sent

to the PC for writing.




MULTI-CYCLE DATAPATH AND CONTROL

Ok, so we already observed that our instructions can be roughly broken up into the
following steps:

Instruction fetch

Instruction decode and register fetch

Execution, memory address computation, branch completion, or jump completion.
Memory access or R-type instruction completion.

Memory read completion.

Instructions take 3-5 of the steps to complete. The first two are performed identically
in all instructions.



INSTRUCTION FETCH STEP

IR
PC

Memory [PC];
PC + 4;

Operations:

Send contents of PC to the memory element as the address.
Read instruction from memory.

Write instruction into IR for use in next cycle.

Increment PC by 4.



INSTRUCTION FETCH STEP

Signal

Value

PCWrite

lorD

MemRead

MemWrite

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

PC

PCWrimcon;/\

Instruction [5-0]

/7_|—GJ PCSource
PCWritey
\ il l/ Outpuw\ALU()p
MemRead ALDSrcH
MemWritd Control ALUSrcA
MemtoReg RegWrite
RWrite \ (2 fReeDst
l ™
3
Instruction [25-0] 26 fonin) 28
N Mleft 2
Instruction
- [31-26] | -y ARRW
M Instruction | Read
u Address [25-21] register 1
x i Read
Instructios | Read
1 Memory [20-16] register 2 data 1
MemDal 0 Registers
Instructioy M Wﬂmeg vad
- (15-0] Instructio] U register  gaga o 0
dartiam lnstrt_xclion 1" Write 1
register data
Instructio 0 3
[15-0] M
u
b3
Memory 1
data L \ 16 (o )32 ALU
register n a P # contro
M lextend

Jump
address [31-0]

ALUOU g

-
xe =

[




INSTRUCTION FETCH STEP

Signal

Value

PCWrite

lorD

MemRead

MemWrite

IRWrite

PCSource

00

ALUOp

00

ALUSrcB

01

ALUSrcA

RegWrite

PC

PCWritcCon?/.\ PCSource

CF

Instruction [5-0]

PCWrite/ ALUO
TorD | Outputs\ 14
MemRead ALDSrcH
MemWritd Control ALUSecA
MemtoReg RegWrite
IRWrite\ (2 fReeDst
l ™
3
Instruction [25-0]
Instruction
> [31-26]
M Instruction | Read
u Address [25-21] register 1
x i Read
Instructios | Read
1 Memory [20-16] register 2 data 1
MemDal Registers
Instruction Wrimeg vad
—_ (15-011 T Tnstructio register  gagg o ]
data lnstrt_xclion Write 1
register data 9
Instructio 3
[15-0]
Memory
data ALU
register # contro

Jump
address [31-0]

v
-

o=

ALUOy h




INSTRUCTION DECODE + REG FETCH STEP

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Operations:
Decode instruction.
Optimistically read registers.

Optimistically compute branch target.



INSTRUCTION DECODE + REG FETCH STEP

Signal

Value

ALUOp

ALUSrcB

ALUSrcA

PC

PCWritcCon?/.\ PCSource

=CF

PCWritef

lorD I Output

MemRead

MemWritd Control

MemtoReg

RWrite \ e

l

\ALUOp
8

ALUSrcB

ALUSrcA

RegWrite
RegDst

~xe=<

Address
Memory
MemDal

Write
data

Instruction
[31-26] I*

Instructioq, I
[25-21]

Instructios
[20-16]
Instruction,/ !
[15-0]

Instruction
register

Instruction
[15-0]

Memory

{ —

4
' Instruction [25-0] |

| Read

Instructio
[15-11]

data
register

(= xez=<)

data
0
M
u
X
> 1
16 32

register 1
Rea Read

d
-1e l > register 2 data 1
Registers

Write Read
register  gaga o

Write

L — Sign

7 |extend

Instruction [5-0]

0
0
M
u
b 4
- Lls
| ()
4-»1':1I
] 2 ¥
=13
ALU
| contro

Jump
address [31-0]

ALUOU g




INSTRU

CTION DECODE + REG FETCH STEP

Signal

Value

ALUOp

00

ALUSrcB

11

ALUSrcA

PC

PCWritcCon?/.\ PCSource

=CF

PCWritef

lorD I Output

MemRead

MemWritd Control

MemtoReg

RWrite \ e

l

\ALUOp
8

ALUSrcB

ALUSrcA

RegWrite
RegDst

~xe=<

Address
Memory
MemDal

Write
data

4
' Instruction [25-0] |

lns[t{;xc;.}%n_
2 1-20
Instructioq, I | Read
[25-21] | | register 1
P . Read
InTé{)u—th(l:i(ir- ._Tp :'Eth;gwr2 data 1
0 Regist
Instructioy M Wrimeg e
00 - to Read
[15-0] Instructio] U register  gata o
Instruction [15-11) | x Write
register ] data
Instruction 0
[15-0] M
u
X
Msmow "\ 16 32
regalger dep| Sign
7 |extend
Instruction [5-0]

0
0
M
u
b 4
- Lls
| ()
4-»1':1I
] 2 ¥
=13
ALU
| contro

Jump
address [31-0]

ALUOU g




EXECUTION STEP

Here is where our instructions diverge.

Memory reference:
ALUOut = A + sign-extend(IR[15-0]);

Arithmetic-logical reference:
ALUOut = A op Bj;

Branch:
if (A == B) PC = ALUOut;

Jump
PC = PC[31-28] || (IR[25-0] << 2);



EXECUTI

ON: MEMORY REFERENCE

Signal

Value

ALUOp

00

ALUSrcB

10

ALUSrcA

PC

PCWri LcCon?/\ PCSource

CF

PCWritef

TorD I Output

MemRead

MemWritd Control

MemtoReg

IRWn'te\ [5%] / RegDst
N

\/\Ll JOp
8

ALUSrcB

ALUSrcA

RegWrite

~xe=<

Address
Memory
MemDal

Write
data

3
Instruction [25-0]
Instruction
[31-26]
Instruction | Read
[25-21] register 1
Instructio | Read d,RLe:d
[20-16] register 2 data 1
0 Regist
Instruction,] M Write - elr;!ad
(15-011 | Instructiof u register  gaga 2
Instruction [15-11] X Write
register ] datla
Instruction 0
[15-0] M
u
X
Memory > 1
data 16 Si 32
L gn
register " extend
Instruction [5-0]

ALU

| contro

Jump
address [31-0]

ALUOy h




EXECUTION: ARITHMETIC/LOGICAL OP

Signal

Value

ALUOp

10

ALUSrcB

00

ALUSrcA

PC

PCWri LcCon?/\ PCSource

CF

PCWritef

TorD I Output

\/\Ll JOp
8

MemRead

ALUSrcB

MemWritd Control

ALUSrcA

MemtoReg

IRWrite \ [5%]/@
NS

RegWrite

~xe=<

Address
Memory
MemDal

Write
data

3
Instruction [25-0]
Instruction
[31-26]
Instruction | Read
[25-21] register 1
Instructio | Read d,RLe:d
[20-16] register 2 data 1
0 Regist
Instruction,] M Write - elr;!ad
(15-011 | Instructiof u register  gaga 2
Instruction [15-11] X Write
register ] datla 2
Instruction 0 3
[15-0] M
u
X
Memory ‘Q
data Sian 32 ALU
A — o
register Y exlgn d contro
Instruction [5-0]

Jump
address [31-0]

ALUOy h




EXECUTI

ON: BRANCH

Signal

Value

ALUOp

01

ALUSrcB

00

ALUSrcA

PCSource

01

PC

PCWriteCond

PCWritcCon{\ PCSource

e CF

PCWrite/

TorD) | Output

MemRead

MemWrite

MemtoReg

Control

IRWn'te\ (0, f-ReaDst
N

JALUOp

ALUSrcB

ALUSrcA

RegWrite

“xe=<

Address
Memory
MemDal

Write
data

extend

Instruction [5-0]

>0
Jump u
Instruction [25-0] | 26 fonin) 28 address [31-0] X
N Mleft 2 -1z
Instruction
[31-26] ARRW
Instruction | Read 2“
[25-21] register 1 u
Instructios _ | Read dBLetfd —)} X
[20-16] register 2 data 1 e U
0 Registers ALUOu
Instructioy M Write ad o B
(15011 | Instructiof u register  gagao [T 0
Instruction X Write Ampll M
register 1 data o :
Instructio 3
[15-0]
Memory
data 16 X 32 ALU
register »| Sign > contro




EXECUTION: JUMP

-

o=

/}I_GJ PCWriLcCon{\ PCSource
1 PCWritef ALUO
Signal Value Nt T Outpute\ALUC
MemRead ALDSrcH
——— Control |ALUSrcA
PCSOU rce ] O MemWrite :
MemtoReg RegWrite
PCWI’iTe ] IRWrite\ [50_%] RegDst
I ™
L
Jump
' Instruction [25-0] | | i | | 2\6_ @ %8 address [31-0]
I I Mlleft2y
Instruction l
PCl=<»{0 181-26] 5 PC [31-28]
M Instructior) | Read M
u Address [25-21] register 1 u
X i Read }_’ X
Instructio | Read | A
1 Metnory [20-16] [ register 2 data 1 \l_J
MemDal Insteuctio 0 Wﬁgegislers ALUOU gy
: 4 M 2 ad >
(15-011 I Instructiof u register  gagag [P © > m
—>- g‘;‘&t" lnstrt_lclion 1" Write A=pl1 M
register data 2 :
Instructio 0 3
[15-0] M
u
X
Memory \1
data L 16 . |32 ALU
register dep| Sign »! contro
M lextend
Instruction [5-0]
&

[



MEMORY ACCESS/R-TYPE COMPLETION STEP

Memory reference:
load: MDR = Memory[ALUOut];

Store: Memory [ALUOut] = Bj;

R-type instruction:
Reg[IR[15-11]] = ALUOut;



MEMORY ACCESS: LOAD

Signal

Value

MemRead

lorD

IRWrite

PC

CF

PCWritcCon?/.\ PCSource

PCWritef ALUO
TorD | ()utpuL-s\ D
MemRead ALUSrcB
MemWritd Control ALUSrcA
MemtoReg RegWrite
IRWn'te\ [5(1%] RegDst
\
3
Instruction [25-0] I
Instruction
[31-26]
0 0
M Instruction | Road ]
u Address [25-21] register 1 . "
) i Read x
Instructios | Read | A
1 Memory [20-16] e lor 2 data 1 _1’ ;
MemDa — 0 Registers —
Instruction M Write d B /\
Write [15-0] Instructiof U register  gata o P I A
y " - M )
data ln:etg;li':tg:n 1 ;me 4 = 1 M
pe—t—1 x
Instructio 0 X
[15-0] M
u
X
Memory ~ \1.
data L 16 Sign 99 AL
n » -
register | Sian S| A
Instruction [5-0]

Jump
address [31-0]

ALUOy h




MEMORY ACCESS: STORE

Signal

Value

MemWrite

lorD

PC

PCWritcCon?/.\ PCSource

CF

Instruction [5-0]

PCWritef ALUO
TorD | Outputs\ 14
MemRead LIELE
MemWritd Control ALUSrcA
MemtoReg RegWrite
RWrite \ (%, JResDst
N > 0
b
Jump 1
Instruction [25-0] address [31-0]
™2
Instruction
o [31-26]
M Instruction | Read
u Address [25-21] register 1
X i Read
Instructios | Read
1 Metnory [20-16] register 2 data 1
MemDal Registers ALUO
Instruction Write vad
W [15-0] Instructio register  gaga o
e da‘:{" lnstrt_xclion Write
register datla >
Instructio
[15-0]
Memory
data 16 . 32 ALU
»| Sign .
register extend % contro

o=




R-TYPE COMPLETION

Signal

Value

MemtoReg

RegWrite

RegDst

PC

CF

PCWri tcCon?/.\ PCSource

PCWritef

TorD) |

MemRead

MemWrite

MemtoReg

IRWn'te\

Op RegDst
o

Oul‘puts\ ALUOp

ALUSrcB

Control | ALUSrcA

RegWrite

b
Instruction [25-0] I
Instruction
[31-26]
0 0
M Instruction | Read M
u Address [25—21] register 1 pr— u
X ; Read X
Instructio | Read | A
1 Memory l20—16| regiswr 2 data 1 _1¢J
MemDa Instructio M wﬁtﬁegislers N
. () M 2 Read
w [(15-011 T Instructiof u register  gaga o Blo a0 )
rite 15-11 X . — M
data lnstrl_.xction [ ] ; ) Write 4 =] u
reglster I dala p———1 x
Instructio 0 3
[15-0] M
u
X
Memory > 1
data L 16 .o y32 ALU
register nw esllgr? d »| contro
Instruction [5-0]

Jump
address [31-0]

ALUOy h




READ COMPLETION STEP

Load operation:

Reg[IR[20-16]] = MDR;



READ COMPLETION

Signal

Value

RegWrite

MemtoReg

RegDst

PC

PCWriLcCon?/.\ PCSource

CF

PCWrite/

TorD I Output

MemRead

MemWrite

MemtoReg

IRWrite \ e / RegDst
N

Is\/\LI JOp

ALUSrcB

Control | ALUSrcA

RegWrite

Instruction [5-0]

b
Instruction [25-0] I
Instruction
[31-26]
0 0
M Instructiof Read M
u Address [25-21] register 1 — u
x M Instructios | Read Read A X
1 emory [20-16] . register 2 data 1 _1 1
MemDa e Y Registers —
Instruction M Write Read a /\
Write (15-0 }nstruzjtio u register  gaga o |
rite 1511 X . — M
data lnstrt_xctlon h Write 4 -1 M
register data >l2 ¥
Instructio 0 3
[15-0] M
u
X
Memory & \1.
data u 16 | Sian 32 ALU
register Y exlgn d % contro

Jump
address [31-0]

ALUOU g




MULTI-CYCLE DATAPATH AND CONTROL

So, now we know what the steps are and what happens in each step for each kind of
instruction in our mini-MIPS instruction set.

To make things clearer, let’s investigate how multi-cycle works for a particular
instruction at a time.



R-FORMAT

R-format instructions require 4 cycles to complete. Let’s imagine that we’re executing
an add instruction.

add $s0, S$Ssl, Ss2

which has the following fields:

opcode rs rt rd shamt funct

000000 10001 10010 10000 00000 100000




R-FORMAT: CYCLE 1

Signal

Value

PCWrite

lorD

MemRead

MemWrite

IRWrite

PCSource

00

ALUOp

00

ALUSrcB

01

ALUSrcA

RegWrite

PC

PCWrimcon;/\

data L
register

Instruction [5-0]

ALU

| contro

/7_|—GJ PCSource
PCWritey
\ il l/ Outpuw\ALU()p
MemRead ALDSrcH
MemWritd Control ALUSrcA
MemtoReg RegWrite
RWrite \ (2 fReeDst
' o o LU
3
Jump 1
Instruction [25-0] address [31-0]
™2
Instruction
o [31-26]
M Instruction | Read
u Address [25-21] register 1
x i Read
Instructiof | Read
1 Memory [20-16] register 2 data 1
MemDa 0 Registers ALUOU gy
Instructioy M Write vad
Write (15-0] Instructio] u register  gaga o 0
d X .
data lnstrt_xctlion ; Write 1
register dala —| 2
Instructio 0 3
[15-0] M
u
X
Memory \1

o=




R-FORMAT: CYCLE 2

Signal

Value

ALUOp 00

ALUSrcB 11

ALUSrcA 0

Note that we compute the
speculative branching
target in this step even
though we will not need it.
We have nothing better to
do while we decode the
instruction so we might as
well.

pcwlrimconf\

PCp-

“xe=<

/_F—,_G_' PCSource
N \ PCWritey
[Ur])IlOlleuL's\ALUOP
MemRead ALUSrcB
MemWritd Control ALUSrcA
MemtoReg RegWrite
IRWn'te\ [5(1%] RegDst
l >0
t 1
Jump
| Instruction [25-0] | Jump
™12
lns[t{;xczt}p]n_ I
2 1-20
Instructioq, I | Read
Address [25-21] I | register 1
Instructio Read Read
MemOl’Y [20-16] 3 > o S daia
MemDal E 0 Registers ALUOH
Instruction,/ M Write Read ®
Write (15-0] Instructio u register  gata 2
’ X
data Instruction [15-11] ] Write
register dala
Instruction
[15-0]
Memory N
data AL
register J A
Instruction [5-0]




R-FORMAT: CYCLE 3

Signal

Value

ALUOp

10

ALUSrcB

00

ALUSrcA

PC

PCWri tcCon?/.\ PCSource

CF

PCWritef

Torp] Output

\/\Ll JOp
8

MemRead

ALUSrcB

MemWritd Control

ALUSrcA

MemtoReg

IRWn'te\ [W
\

RegWrite

“xe= <

Address
Memory
MemDal

Write
data

3
Instruction [25-0]
Instruction
[31-26]
Instruction | Read
[25-21] register 1
Instructio | Read d,RLe:d
[20-16] register 2 data 1
0 Regist
Instruction,/ M W"“"eg ° elr:!ad
(15-011 | Instructiof u register  gata 2 0
Instruction [15-11] x Write 1
register ] datla | 2
Instruction 0 3
[15-0] M
u
X
Memory > Q
data Sian 32 ALU
3 . o
register Y exlgn d contro
Instruction [5-0]

Jump
address [31-0]

ALUOu g




R-FORMAT: CYCLE 4

Signal

Value

MemtoReg

RegWrite

RegDst

PC

PCWritcCon?/.\ PCSource

CF

PCWritef

lorD I Output

MemRead

MemWrite

MemtoReg

IRWn'te\ [5(1%] RegDst
\

\ALUOp
8

ALUSrcB

Control | ALUSrcA

RegWrite

=29

e =

ALU

b
Instruction [25-0] I
Instruction
o [31-26]
M Instruction | Read
u Address [25-21] register 1 —
lx Memo Instructiof | Read d'RLe:d A —I_>
Y [20-16] register 2 data 1 |
MemDa 0 Registers —
Instructio 4 M Write \ad a /\
Weito [(15-011 T Instructiof u register  gaga 2 {0
. 15-11 X . L
data Instruction [ ] ; | write 4 =1
register I data | 5
Instructio 0 3
[15-0] M
u
X
Memory »l1
data L 16 . Y32
register e esllgr?d
Instruction [5-0]

» contro

Jump
address [31-0]

ALUOu l-—




BRANCH

Branch instructions require 3 cycles to complete. Let’s imagine that we’re executing a
beq instruction.

beqg $s0, $sl1, L1

which has the following fields:

opcode rs rt immed

000100 10001 10010 XXXXXXXXXXXXXXXX




BRANCH: CYCLE 1

Signal

Value

PCWrite

lorD

MemRead

MemWrite

IRWrite

PCSource

00

ALUOp

00

ALUSrcB

01

ALUSrcA

RegWrite

PC

PCWrimcon;/\

data L
register

Instruction [5-0]

ALU

| contro

/7_|—GJ PCSource
PCWritey
\ il l/ Outpuw\ALU()p
MemRead ALDSrcH
MemWritd Control ALUSrcA
MemtoReg RegWrite
RWrite \ (2 fReeDst
' o o LU
3
Jump 1
Instruction [25-0] address [31-0]
™2
Instruction
o [31-26]
M Instruction | Read
u Address [25-21] register 1
x i Read
Instructiof | Read
1 Memory [20-16] register 2 data 1
MemDa 0 Registers ALUOU gy
Instructioy M Write vad
Write (15-0] Instructio] u register  gaga o 0
d X .
data lnstrt_xctlion ; Write 1
register dala —| 2
Instructio 0 3
[15-0] M
u
X
Memory \1

o=




BRANCH: CYCLE 2

Signal

Value

ALUOp

00

ALUSrcB

11

ALUSrcA

PC

Pcwlrncconf\

/_{_I_GJ PCSource
PCWrite/ 10
N TorD | ()utputs\/ﬂ'l D
MemRead LIELE
MemWritd Control ALUSrcA
MemtoReg RegWrite
. O RegDst
IRWnte\ [5_%] g3 .
I \ >0
$ 1
Jump
Instruction [25-0] | I address [31-0]
™2
Ins[tgllxc;}%n_ I
2 1-20
0 |
M Instructioq, I Read 2“
u Address [25-21] I l register 1 u
X H Read h X
Instructio Read A
1 Metnory [20-16] *| register 2 data 1 1
MemDal 0 Regis(ers ALUOy W
Instructioy M Write Read » B
Weito (1501 ¥ 1nstructiof u register  gaga o " ]
> 1511 X .
=1 dats Instruction [ ] ; Write 1=»]1 hlf
register data p————1 x
Instruction 0 =13
[15-0] M
u
X
Memory »|1
data 16 . 32 ALU
register aw estlgx?d | contro
Instruction [5-0]




BRANCH: CYCLE 3

Signal

Value

ALUOp

01

ALUSrcB

00

ALUSrcA

PCSource

01

PCWriteCond

PC

PCWritcCon?/.\ PCSource

aas

PCWritef

lnrl)]

MemRead

MemWrite

MemtoReg

Output.

Control

RWrite \ (%, JResDst
NS

JALUOp

ALUSrcB

ALUSrcA

RegWrite

~xe=<

Address
Memory
MemDal

Write
data

>0
X — M
Jump u
Instruction [25-0] | 26 fonin) 28 address [31-0] x
S \lekt 2 =\
Instruction
[31-26] e
Instruction | Read 2“
[25-21] register 1 u
Instructiof | Read d}{tffd —5} X
[20-16] register 2 data 1 e U
Registers ALUOu
Instructioy Write vad o B
(15011 T 1nstructio register  gaga o v ]
Instruction Write 4=p{1 M
register data pr—_—{ 2 :
Instructio 3
[15-0]
Memory
data 16 . 32 ALU
»| Sign .
register extend % contro
Instruction [5-0]




