
LECTURE 6 Multi-Cycle 
Datapath and Control



SINGLE-CYCLE IMPLEMENTATION

As we’ve seen, single-cycle implementation, although easy to implement, could 
potentially be very inefficient. 

In single-cycle, we define a clock cycle to be the length of time needed to execute a 
single instruction. So, our lower bound on the clock period is the length of the most-
time consuming instruction. 

In our previous example, our jump instruction needs only 4ns but our clock period must 
be 13ns to accommodate the load word instruction!



MULTI-CYCLE IMPLEMENTATION

We can get around some of the disadvantages by introducing a little more 
complexity to our datapath. 

Instead of viewing the instruction as one big task that needs to be performed, in 
multi-cycle the instructions are broken up into smaller fundamental steps. 

As a result, we can shorten the clock period and perform the instructions 
incrementally across multiple cycles. 

What are these fundamental steps? Well, let’s take a look at what our instructions 
actually need to do…



R-FORMAT STEPS

• An instruction is fetched from instruction memory and the PC is incremented.

• Read two source register values from the register file.

• Perform the ALU operation on the register data operands.

• Write the result of the ALU operation to the register file. 



LOAD STEPS

• An instruction is fetched from instruction memory and the PC is incremented.

• Read a source register value from the register file and sign-extend the 16 least 
significant bits of the instruction.

• Perform the ALU operation that computes the sum of the value in the register and the 
sign-extended immediate value from the instruction.

• Access data memory at the address given by the result from the ALU.

• Write the result of the memory value to the register file.



STORE STEPS

• An instruction is fetched from instruction memory and the PC is incremented.

• Read two source register values from the register file and sign-extend the 16 least 
significant bits of the instruction.

• Perform the ALU operation that computes the sum of the value in the register and the 
sign-extended immediate value from the instruction.

• Update data memory at the address given by the result from the ALU.



BRANCH EQUAL(BEQ) STEPS

• An instruction is fetched from instruction memory and the PC is incremented.

• Read two source register values from the register file and sign-extend the 16 least 
significant bits of the instruction and then left shifts it by two.

• The ALU performs a subtract on the data values read from the register file. The 
value of PC+4 is added with the sign-extended left-shifted-by-two immediate value 
from the instruction, which results in the branch target address.

• The Zero result from the ALU is used to decide which adder result should be used to 
update the PC.



JUMP STEPS

• An instruction is fetched from instruction memory and the PC is incremented.

• Concatenate the four most significant bits of PC+4, the 26 least significant bits of 
the instruction, and two zero bits. Assign the result to the PC.



GENERAL STEPS

So, generally, we can say we need to perform the following steps: 

1. Instruction fetch.

2. Instruction decode and register fetch.

3. Execution, memory address computation, branch completion, or jump completion.

4. Memory access or R-type instruction completion.

5. Memory read completion.



MULTI-CYCLE DATAPATH

Here is a general overview of our new multi-cycle datapath. 

• We now have a single 
memory element that 
interacts with both 
instructions and data. 

• Single ALU unit, no 
dedicated adders. 

• Several temporary 
registers.



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

These are some old datapath
elements that we are already used 
to. Note, however, that the 
Memory element is now pulling 
double-duty as both the Instruction 
Memory and Data Memory 
element.



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

New temporary registers: 

• Instruction register (IR) – holds the instruction after its been pulled from memory.

• Memory data register (MDR) – temporarily holds data grabbed from memory until 
the next cycle.

• A – temporarily holds the contents of read register 1 until the next cycle.

• B – temporarily holds the contents of read register 2 until the next cycle. 

• ALUout – temporarily holds the contents of the ALU until the next cycle. 

Note: every register is written on every cycle except for the instruction register.



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

The IorD control signal.

• Deasserted: the contents of PC is used as the address for the memory unit. 

• Asserted: The contents of ALUout is used as the address for the memory unit. 



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

The RegDst control signal.

• Deasserted: the register file destination number for the Write register comes from 
the rt field.

• Asserted: the register file destination number for the Write register comes from the 
rd field.



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

The MemToReg control signal.

• Deasserted: the value fed to the register file input comes from ALUout.

• Asserted: the value fed to the register file input comes from MDR.



MULTI-CYCLE DATAPATH



MULTI-CYCLE DATAPATH

One of the changes we’ve made is that we’re using only a single ALU. We have no 
dedicated adders on the side. To implement this change, we need to add some 
multiplexors. 

• ALUSrcA multiplexor chooses between the contents of PC or the contents of 
temporary register A as the first operand. 

• ALUSrcB multiplexor chooses between the contents of temporary register B, the 
constant 4, the immediate field, or the left-shifted immediate field as the second 
operand. 



MULTI-CYCLE DATAPATH AND CONTROL



MULTI-CYCLE DATAPATH AND CONTROL

1-Bit Signal Name Effect When Deasserted Effect When Asserted

RegDst The register file destination number for the 
Write register comes from the rt field.

The register file destination number for the Write 
register comes from the rd field.

RegWrite None Write register is written with the value of the Write
data input.

ALUSrcA The first ALU operand is PC. The first ALU operand is A register.

MemRead None Content of memory at the location specified by the
Address input is put on the Memory data output.

MemWrite None Memory contents of the location specified by the
Address input is replaced by the value on the
Write data input.



MULTI-CYCLE DATAPATH AND CONTROL

1-Bit Signal Name Effect When Deasserted Effect When Asserted

MemToReg The value fed to the register file input is 
ALUout.

The value fed to the register file input comes 
from Memory data register.

IorD The PC supplies the Address to the Memory 
element.

ALUOut is used to supply the address to the 
memory unit.

IRWrite None The output of the memory is written into the
Instruction Register (IR).

PCWrite None The PC is written; the source is controlled by
PC-Source.

PCWriteCond None The PC is written if the Zero output from the ALU 
is also active.



MULTI-CYCLE DATAPATH AND CONTROL
2-bit Signal Value Effect

ALUOp 00 The ALU performs an add operation.

01 The ALU performs a subtract operation.

10 The funct field of the instruction determines the operation. 

ALUSrcB 00 The second input to ALU comes from the B register.

01 The second input to ALU is 4. 

10 The second input to the ALU is the sign-extended, lower 16 bits of the Instruction Register (IR).

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left by 2 bits.

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing.

01 The contents of ALUOut (the branch target address) are sent to the PC for writing.

10 The jump target address (IR[25-0] shifted left 2 bits and concatenated with PC + 4[31-28]) is sent 
to the PC for writing.



MULTI-CYCLE DATAPATH AND CONTROL

Ok, so we already observed that our instructions can be roughly broken up into the 
following steps: 

1. Instruction fetch

2. Instruction decode and register fetch

3. Execution, memory address computation, branch completion, or jump completion.

4. Memory access or R-type instruction completion.

5. Memory read completion.

Instructions take 3-5 of the steps to complete. The first two are performed identically 
in all instructions. 



INSTRUCTION FETCH STEP

IR = Memory[PC];
PC = PC + 4;

Operations:

• Send contents of PC to the memory element as the address.

• Read instruction from memory.

• Write instruction into IR for use in next cycle. 

• Increment PC by 4. 



INSTRUCTION FETCH STEP

Signal Value

PCWrite

IorD

MemRead

MemWrite

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite



INSTRUCTION FETCH STEP

Signal Value

PCWrite 1

IorD 0

MemRead 1

MemWrite 0

IRWrite 1

PCSource 00

ALUOp 00

ALUSrcB 01

ALUSrcA 0

RegWrite 0



INSTRUCTION DECODE + REG FETCH STEP

A = Reg[IR[25-21]];
B = Reg[IR[20-16]]; 
ALUOut = PC + (sign-extend(IR[15-0]) << 2); 

Operations: 

• Decode instruction.

• Optimistically read registers.

• Optimistically compute branch target.



INSTRUCTION DECODE + REG FETCH STEP

Signal Value

ALUOp

ALUSrcB

ALUSrcA



INSTRUCTION DECODE + REG FETCH STEP

Signal Value

ALUOp 00

ALUSrcB 11

ALUSrcA 0



EXECUTION STEP

Here is where our instructions diverge. 

• Memory reference:
• ALUOut = A + sign-extend(IR[15-0]);

• Arithmetic-logical reference: 
• ALUOut = A op B;

• Branch:
• if (A == B) PC = ALUOut;

• Jump
• PC = PC[31-28] || (IR[25-0] << 2);



EXECUTION: MEMORY REFERENCE

Signal Value

ALUOp 00

ALUSrcB 10

ALUSrcA 1



EXECUTION: ARITHMETIC/LOGICAL OP

Signal Value

ALUOp 10

ALUSrcB 00

ALUSrcA 1



EXECUTION: BRANCH

Signal Value

ALUOp 01

ALUSrcB 00

ALUSrcA 1

PCSource 01

PCWriteCond 1



EXECUTION: JUMP

Signal Value

PCSource 10

PCWrite 1



MEMORY ACCESS/R-TYPE COMPLETION STEP

• Memory reference:
• Load: MDR = Memory[ALUOut];
• Store: Memory[ALUOut] = B;

• R-type instruction:
• Reg[IR[15-11]] = ALUOut;



MEMORY ACCESS: LOAD

Signal Value

MemRead 1

IorD 1

IRWrite 0



MEMORY ACCESS: STORE

Signal Value

MemWrite 1

IorD 1



R-TYPE COMPLETION

Signal Value

MemtoReg 0

RegWrite 1

RegDst 1



READ COMPLETION STEP

• Load operation:

Reg[IR[20-16]] = MDR;



READ COMPLETION

Signal Value

RegWrite 1

MemtoReg 1

RegDst 0



MULTI-CYCLE DATAPATH AND CONTROL

So, now we know what the steps are and what happens in each step for each kind of 
instruction in our mini-MIPS instruction set. 

To make things clearer, let’s investigate how multi-cycle works for a particular 
instruction at a time. 



R-FORMAT

R-format instructions require 4 cycles to complete. Let’s imagine that we’re executing 
an add instruction. 

add $s0, $s1, $s2

which has the following fields: 

opcode rs rt rd shamt funct

000000 10001 10010 10000 00000 100000



R-FORMAT: CYCLE 1

Signal Value

PCWrite 1

IorD 0

MemRead 1

MemWrite 0

IRWrite 1

PCSource 00

ALUOp 00

ALUSrcB 01

ALUSrcA 0

RegWrite 0



R-FORMAT: CYCLE 2

Signal Value

ALUOp 00

ALUSrcB 11

ALUSrcA 0

Note that we compute the 
speculative branching 
target in this step even 
though we will not need it.
We have nothing better to 
do while we decode the 
instruction so we might as 
well. 



R-FORMAT: CYCLE 3

Signal Value

ALUOp 10

ALUSrcB 00

ALUSrcA 1



R-FORMAT: CYCLE 4

Signal Value

MemtoReg 0

RegWrite 1

RegDst 1



BRANCH

Branch instructions require 3 cycles to complete. Let’s imagine that we’re executing a 
beq instruction. 

beq $s0, $s1, L1

which has the following fields: 

opcode rs rt immed

000100 10001 10010 XXXXXXXXXXXXXXXX



BRANCH: CYCLE 1

Signal Value

PCWrite 1

IorD 0

MemRead 1

MemWrite 0

IRWrite 1

PCSource 00

ALUOp 00

ALUSrcB 01

ALUSrcA 0

RegWrite 0



BRANCH: CYCLE 2

Signal Value

ALUOp 00

ALUSrcB 11

ALUSrcA 0



BRANCH: CYCLE 3

Signal Value

ALUOp 01

ALUSrcB 00

ALUSrcA 1

PCSource 01

PCWriteCond 1


