
LECTURE 3 Translation

PROCESS MEMORY
There are four general areas of memory in a process.

• The text area contains the instructions for the application.
• Text area may contain data (constants), accessed using PC-relative addressing mode

• The static data area is also fixed in size and contains:
• Global variables, static local variables, string and sometimes floating-point constants

• The run-time stack
• Contains activation records (information associated with a function invocation).
• Saved values of callee-saved registers
• Local variables and arguments not allocated to registers.
• Space for the maximum words of arguments passed on stack to other functions.

• The heap contains dynamically allocated data
• e.g. data allocated by the new operator in C++ or malloc function call in C.

ORGANIZATION OF PROCESS MEMORY

Reserved

Text

Static Data

Dynamic Data

Stack
$sp à

$gp à

pc à

Address 0 à

Here is MIPS convention for allocation of
memory.

The stack starts at the higher-end of
memory and grows downward, while the
heap grows upward into the same space.

The lower end of memory is reserved. The
text segment follows, housing the MIPS
machine code.

TRANSLATION PROCESS

• Preprocessing

• Compiling

• Assembling

• Linking

• Loading

PREPROCESSING

Some preliminary processing is performed on a C or C++ file.

• Definitions and macros

• File inclusion

• Conditional compilation

Try g++ with the -E option!

COMPILING

Compiling is referred to as both the entire translation process from source file to
executable or the step that translates a source file in a high-level language
(sometimes already preprocessed) and produces an assembly file.

Compilers are also responsible for checking for correct syntax, making semantic
checks (e.g., to locate bugs and vulnerabilities), and performing optimizations to
improve performance, code size, and energy usage.

ASSEMBLING

Assemblers take an assembly language file as input and produce an object file as
output.

Assembling is typically accomplished in two passes.

• First pass: stores all of the identifiers representing addresses or values in a table as
there can be forward references (e.g., jump to the end of the loop).

• Second pass: translates the instructions and data into bits for the object file.

THE OBJECT FILE

The object file (in the format of ELF, PE, etc) contains:

• An object file header describing the size and position of the other portions of the object file.

• The text segments containing the machine instructions.

• The data segments containing the data values.

• Relocation information identifying the list of instructions and data words that depend on
absolute addresses (e.g., call printf function from your code).

• A symbol table containing global labels and associated addresses in object file and the list of
unresolved references.

• Debugging information to allow a symbolic debugger to associate machine instruction
addresses with source line statements and data addresses with variable names.

LINKING

• Linkers take object files and object libraries as input and produce an executable file
as output.

• Linkers also resolve external references by either finding the symbols in another
object file or in a library.

• The linker aborts if any external references cannot be resolved.

• A generated executable is either loadable at a fixed address or many addresses
(position-independent executable)
• PIE binaries are essential for address-space layout randomization, a security defense

LINKING

LOADING

The loader copies the executable file (or a portion of it) from disk into memory so it
can start executing.

• Reads the executable file's header to determine segment sizes.

• Allocates the address space for the process (text, data, heap, and stack segments).

• Copies the code into the text segment and data into the static data segment.
• It also inserts the code to load a library/resolve a symbol if necessary (e.g., glibc)

• Copies arguments passed to the program onto the stack.

• Initializes the machine registers and stack pointer.

• Jumps to a start-up routine that will call the main function.
• Main function is NOT the first piece of code executed

GCC EXAMPLE
$ ls
exp.c exp.h main.c
$ gcc -c exp.c
$ gcc -c main.c
$ ls
exp.c exp.h exp.o main.c main.o
$ gcc main.o exp.o -o exp_prog
exp.c exp.h exp.o exp_prog main.c main.o

Let’s say I have three files – a class declared in exp.h and defined in
exp.c, as well as a main.c file which uses the class.

Preprocessing, Compiling, and Assembling the
source code individually. Result is an object file.

Linking the object files together into an
executable file.

You can check out the pre-processed version of your code with the –E option. Prints to stdout.
You can check out the assembly version of your code with the –S option. Check the filename.s file.

STORED PROGRAM CONCEPT

• Memory can contain both instructions and data
and the computer is instructed to start executing
at a specific location.

• Different programs can be loaded in different
locations and the processor can switch between
processes very quickly.

