
LECTURE 2 Assembly

MACHINE LANGUAGE

As humans, communicating with a machine is a tedious task. We can’t, for example,
just say “add this number and that number and store the result here”. Computers have
no way of even beginning to understand what this means.

• As we stated before, the alphabet of the machine’s language is binary – it simply
contains the digits 0 and 1.

• Continuing with this analogy, instructions are the words of a machine’s language. That
is, they are meaningful constructions of the machine’s alphabet.

• The instruction set, then, constitutes the vocabulary of the machine. These are the
words understood by the machine itself.

MACHINE LANGUAGE

To work with the machine, we need a translator.

Assembly languages serve as an intermediate form between the human-readable
programming language and the machine-understandable binary form.

Generally speaking, compiling a program into an executable format involves the
following stages:

High-level Language Assembly Language Machine Language

EXAMPLE OF TRANSLATING A C PROGRAM

swap(int v[], int k){
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

High-Level Language Program

swap:
multi $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

Assembly Language Program

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Binary Machine Language Program

Compiler

Assembler

MACHINE LANGUAGE

• A single human-readable high-level language instruction is generally translated into
multiple assembly instructions.

• A single assembly instruction is a symbolic representation of a single machine
language instruction.
• Some assembler supports high-level assembly (HLA) code

• A single machine language instruction is a set of bits representing a basic operation
that can be performed by the machine.

• The instruction set is the set of possible instructions for a given machine.

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Requiring these translation steps may seem cumbersome but there are a couple of
high-level language advantages that make this scheme worthwhile.

• More expressive: high-level languages allow the programmer to think in more
natural, less tedious terms.

• Improve programmer productivity.

• Improve program maintainability.

• Improve program portability

• More efficient code: compilers can produce very efficient machine code optimized
for a target machine.

WHY LEARN ASSEMBLY LANGUAGE?

So, if high-level languages are so great…why bother learning assembly?

• Knowing assembly language illuminates concepts not only in computer organization,
but operating systems, compilers, parallel systems, etc.

• Understanding how high-level constructs are implemented leads to more effective
use of those structures.
• Control constructs (if, do-while, etc.)
• Pointers
• Parameter passing (pass-by-value, pass-by-reference, etc.)

• Helps to understand performance implications of programming language features.

MIPS

We will start with a lightning review of MIPS.

• MIPS is a RISC (Reduced Instruction Set Computer) instruction set, meaning that it has
simple and uniform instruction format.

• Originally introduced in the early 1980’s.
• In the mid to late 90’s, approximately 1/3 of all RISC microprocessors were MIPS implementations.

• An acronym for Microprocessor without Interlocked Pipeline Stages.

• MIPS architecture has been used in many computer products.
• N64, Playstation, and Playstation 2 all used MIPS implementations.
• Still popular in embedded systems like routers.

• Many ISAs that have since been designed are very similar to MIPS (e.g., ARMv8).

RISC ARCHITECTURE

• CISC (Complex Instruction Set Computer)
• Intel x86
• Variable length instructions, lots of addressing modes, lots of instructions.

• Recent x86 decodes instructions to RISC-like micro-operations.

• RISC (Reduced Instruction Set Computer)
• MIPS, Sun SPARC, IBM, PowerPC, ARM, RISC-V

• RISC Philosophy
• fixed instruction lengths, uniform instruction formats
• load-store instruction sets
• limited number of addressing modes
• limited number of operations

THE FOUR ISA DESIGN PRINCIPLES

1. Simplicity favors regularity
• Consistent instruction size, instruction formats, data formats
• Eases implementation by simplifying hardware, leading to higher performance

2. Smaller is faster
• Fewer bits to access and modify
• Use the register file instead of slower memory

3. Make the common case fast
• e.g. Small constants are common, thus small immediate fields should be used.

4. Good design demands good compromises
• Compromise with special formats for important exceptions
• e.g. A long jump (beyond a small constant)

MIPS REVIEW

Now we’ll jump right into our lightning review of MIPS.
The general classes of MIPS instructions are

• Arithmetic
• add, subtract, multiply, divide

• Logical
• and, or, nor, not, shift

• Data transfer (load and store)
• load from or store to memory

• Control transfer (branches)
• jumps, branches, calls, returns

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

This MIPS instruction symbolizes the machine instruction for adding the contents of
register t1 to the contents of register t2 and storing the result in t0.

add $t0, $t1, $t2

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

add $t0, $t1, $t2

OperandsOperation

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion tells the machine exactly which operation we’re
performing. In this case, 100000 refers to an addition operation

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion is used for shift instructions, and is therefore not used
by the machine in this case.

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the destination register – this is where the
result will be stored. Because $t0 is the 8th register, we use
01000 to represent it.

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the second source register. Because $t2 is
the 10th register, we use 01010 to represent it.

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the first source register. Because $t1 is the
9th register, we use 01001 to represent it.

QUICK EXAMPLE

Here is an example of one of the simplest and most common MIPS instructions.

The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This last portion holds the operation code relevant for other types
of instructions. The add operation, and others like it, always have
a value of 0 here.

MIPS INSTRUCTION OPERANDS

So now that we’ve seen an example MIPS instruction and how it directly corresponds
to its binary representation, we can talk about the components of an instruction. MIPS
instructions consist of operations on one or more operands. Operands in MIPS fit into
one of three categories.

• Integer constants

• Registers

• Memory

INTEGER CONSTANT OPERANDS

Integer constant operands are used frequently. For example, while looping over an
array, we might continually increment an index to access the next array element.

To avoid saving the constant elsewhere and having to retrieve it during every use,
MIPS allows for immediate instructions which can include a constant directly in the
instruction.

A simple example is add immediate:

addi $s3, $s3, 4 # adds 4 to the value in $s3 and stores in $s3

INTEGER CONSTANTS

• Generally represented with 16 bits, but they are extended to 32 bits before being
used in an operation.

• Most operations use signed constants, although a few support unsigned.
• Signed constants are sign-extended

• Integer constants can be represented in MIPS assembly instructions using decimal,
hexadecimal, or octal values.

• A reflection of design principle 3, make the common case fast.
• Because constants are used frequently, it is faster and more energy efficient to support instructions

with built-in constants rather than fetching them from memory all the time.

REGISTERS

We’ve already seen some simple register usage in our two example MIPS instructions.

In these instructions, $t0, $t1, $t2, and $s3 are all registers. Registers are special
locations built directly into the hardware of the machine. The size of a MIPS register
is 32 bits. This size is also commonly known as a word in MIPS architecture.

add $t0, $t1, $t2

addi $s3, $s3, 4

REGISTERS

• There are only 32 (programmer visible) 32-bit registers in a MIPS processor.
• Intel x86 has 8 registers, x86-64 has 16 registers

• Reflects design principle 2, smaller is faster.
• Having a small number of registers ensures that accessing a desired register is fast since they can be

kept closer.
• Also means that fewer bits can be used to identify registers à decreases instruction size.

• Registers also use much less power than memory accesses.

• MIPS convention is to use two-character names following a dollar sign.
• Register 0: $zero – stores the constant value 0.
• Registers 16-23: $s0-$s7 – saved temporaries (variables in C code).
• Registers 8-15: $t0-$t7 – temporaries.

REGISTERS
Name Number Use

$zero 0 Constant value 0.

$at 1 Assembler temporary. For resolving pseudo-instructions.

$v0-$v1 2-3 Function results and expression evaluation.

$a0-$a3 4-7 Arguments.

$t0-$t9 8-15, 24-25 Temporaries.

$s0-$s7 16-23 Saved temporaries.

$k0-$k1 26-27 Reserved for OS kernel.

$gp 28 Global pointer.

$sp 29 Stack pointer.

$fp 30 Frame pointer.

$ra 31 Return address.

MEMORY OPERANDS

Before we talk about memory operands, we should talk generally about how data is
stored in memory.

• As we said before, memory contains both data and instructions.
• von Neumann architecture v.s. Harvard architecture

• Memory can be viewed as a large array of bytes.
• The beginning of a variable or instruction is associated with a specific element of this array.
• The address of a variable or instruction is its offset from the beginning of memory.

… v … … i …Memory

Address of variable v Address of instruction i

MEMORY OPERANDS

For a large, complex data structure, there are likely many more data elements than
there are registers available. However, arithmetic operations occur only on registers
in MIPS (This is why MIPS is a load/store architecture).

To facilitate large structures, MIPS includes data transfer instructions for moving data
between memory and registers.

As an example, assume we have the following C code, where A is an array of 100
words.

g = h + A[8]

MEMORY OPERANDS

Let’s say g and h are associated with the registers $s1 and $s2 respectively. Let’s
also say that the base address of A is associated with register $s3.

To compile this statement into MIPS, we’ll need to use the load word instruction to
transfer A[8] into a register.

There is an equivalent store word instruction for storing data to memory as well.

g = h + A[8]

lw $t0,32($s3) # load the element at a 32 byte offset from $s3
add $s1,$s2,$t0

MIPS ASSEMBLY FILE

Now, let’s turn our attention to the structure of a MIPS assembly file.

• MIPS assembly files contain a set of lines.

• Each line can be either a directive or an instruction.

• Each directive or instruction may start with a label, which provides a symbolic name
for a data or instruction location.

• Each line may also include a comment, which starts with # and continues until the end
of the line.

GENERAL FORMAT

.data
allocation of memory
.text
.global main

main:
instructions here
jr $ra # instruction indicating a return

MIPS DIRECTIVES
Directive Meaning

.align n Align next datum on 2^n boundary.

.asciiz str Place the null-terminated string str in memory.

.byte b1, …, bn Place the n byte values in memory.

.data Switch to the data segment.

.double d1, …, dn Place the n double-precision values in memory.

.float f1, …, fn Place the n single-precision values in memory.

.global sym The label sym can be referenced in other files.

.half h1, …, hn Place the n half-word values in memory.

.space n Allocates n bytes of space.

.text Switch to the text segment.

.word w1, …, wn Place the n word values in memory.

MIPS INSTRUCTIONS

General format:

Example:

<optional label> <operation> <operands>

loop: addu $t2,$t3,$t4 # instruction with a label
subu $t2,$t3,$t4 # instruction without a label

L2: # a label can appear on a line by itself
a comment can appear on a line by itself

MIPS INSTRUCTIONS

What does this look like in memory?

.data
nums:

.word 10, 20, 30

.text

.globl main
main:

la $t0, nums
lw $t1, 4($t0)

MIPS INSTRUCTION FORMATS

There are three different formats for MIPS instructions.

• R format
• Used for shifts and instructions that reference only registers.

• I format
• Used for loads, stores, branches, and immediate instructions.

• J format
• Used for jump and call instructions.

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.
rs – first register source operand.
rt – second register source operand.
rd – register destination operand.

shamt – shift amount.
funct – additional opcodes.
immed – offsets/constants (16 bits).
targaddr – jump/call target (26 bits).

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.
rs – first register source operand.
rt – second register source operand.
rd – register destination operand.

shamt – shift amount.
funct – additional opcodes.
immed – offsets/constants.
targaddr – jump/call target.

All MIPS instructions are 32 bits – Design principle 1: simplicity favors regularity!

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.
rs – first register source operand.
rt – second register source operand.
rd – register destination operand.

shamt – shift amount.
funct – additional opcodes.
immed – offsets/constants.
targaddr – jump/call target.

Make simple instructions fast and accomplish other operations as a series of
simple instructions – Design principle 3: make the common case fast!

MIPS R FORMAT

• Used for shift operations and instructions that only reference registers.

• The op field has a value of 0 for all R format instructions.

• The funct field indicates the type of R format instruction to be performed.

• The shamt field is used only for the shift instructions (sll and srl, sra)

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

op – instruction opcode.
rs – first register source operand.
rt – second register source operand.

rd – register destination operand.
shamt – shift amount.
funct – additional opcodes.

R FORMAT INSTRUCTION ENCODING EXAMPLE

Consider the following R format instruction:

addu $t2, $t3, $t4

Fields op rs rt rd shamt funct

Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Decimal 0 11 12 10 0 33

Binary 000000 01011 01100 01010 00000 100001

Hexadecimal 0x016c5021

MIPS I FORMAT
• Used for arithmetic/logical immediate instructions, loads, stores, and conditional
branches.

• The op field is used to identify the type of instruction.

• The rs field is the source register.

• The rt field is either the source or destination register, depending on the instruction.

• The immed field is zero-extended if it is a logical operation. Otherwise, it is sign-
extended.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I format op rs rt immed

I FORMAT INSTRUCTION ENCODING EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 9 8 8 1

Binary 001001 01000 01000 0000000000000001

Hexadecimal 0x25080001

addiu $t0,$t0,1

Arithmetic example:

I FORMAT INSTRUCTION ENCODING EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 35 18 17 100

Binary 100011 10010 10001 0000000001100100

Hexadecimal 0x8e510064

lw $s1,100($s2)

Memory access example:

I FORMAT INSTRUCTION ENCODING EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 4 14 15 -3

Binary 000100 01110 01111 1111111111111101

Hexadecimal 0x11cffffd

L2:instruction
instruction
instruction
beq $t6,$t7,L2

Conditional branch example:
Note: Branch displacement is a signed value in
instructions, not bytes, from the current
instruction. Branches use PC-relative
addressing.

ADDRESSING MODES

• Addressing mode – a method for evaluating an operand.

• MIPS Addressing Modes
• Immediate – operand contains signed or unsigned integer constant.
• Register – operand contains a register number that is used to access the register file.
• Base displacement – operand represents a data memory value whose address is the sum of some

signed constant (in bytes) and the register value referenced by the register number.
• PC relative – operand represents an instruction address that is the sum of the PC and some signed

integer constant (in words).
• Pseudo-direct – operand represents an instruction address (in words) that is the field concatenated

with the upper bits of the PC.

PC Relative and Pseudo-direct addressing are actually relative to PC + 4, not PC. The reason for this will
become clearer when we look at the design for the processor, so we’ll ignore it for now.

MEMORY ALIGNMENT REQUIREMENTS

• MIPS requires alignment of memory references to be an integer multiple of the size
of the data being accessed.

• These alignments are enforced by the compiler.

• The processor checks this alignment requirement by inspecting the least significant
bits of the address.

Byte: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Half: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0

Word: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX00

Double: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX000

MIPS J FORMAT

• Used for unconditional jumps and function calls.

• The op field is used to identify the type of instruction.

• The targaddr field is used to indicate an absolute target address.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

J format op targaddr

J FORMAT INSTRUCTION ENCODING EXAMPLE

Jump example:

Assume L1 is at the address 4194340 in decimal, which is 400024 in hexadecimal.
We fill the target field as an address in instructions (0x100009) rather than bytes
(0x400024). Jump uses pseudo-direct addressing to create a 32-bit address.

j L1

Fields op target address

Size 6 bits 26 bits

Decimal 2 1048585

Binary 000010 00000100000000000000001001

Hexadecimal 0x08100009

ARITHMETIC/LOGICAL GENERAL FORM

• Most MIPS arithmetic/logical instructions require 3 operands.

• Design principle 1: Simplicity favors regularity.

• Form 1: <operation> <dstreg>, <src1reg>, <src2reg>

• Form 2: <operation> <dstreg>, <srcreg>, <constant>

Example Meaning Comment

addu $t0, $t1, $t2 $t0 = $t1 + $t2 Addition (without overflow)

subu $t1, $t2, $t3 $t1 = $t2 - $t3 Subtraction (without overflow)

Example Meaning Comment

addiu $t1,$t2,1 $t1 = $t2 + 1 Addition immediate (without overflow)

USING MIPS ARITHMETIC INSTRUCTIONS

• Consider the following C++ source code fragment.

• Assume the values of f, g, h, i, and j are associated with registers $t2, $t3, $t4, $t5,
and $t6 respectively. Write MIPS assembly code to perform this assignment assuming
$t7 is available.

unsigned int f,g,h,i,j;
...
f = (g+h)-(i+j);

USING MIPS ARITHMETIC INSTRUCTIONS

Solution (among others):

addu $t2,$t3,$t4 # $t2 = g + h
addu $t7,$t5,$t6 # $t7 = i + j
subu $t2,$t2,$t7 # $t2 = $t2 - $t7

MULTIPLY, DIVIDE, AND MODULUS INSTRUCTIONS

• Integer multiplication, division, and modulus operations can also be performed.

• MIPS provides two extra registers, hi and lo, to support division and modulus
operations.
• hi and lo are not directly addressable, instead must use mfhi and mflo instructions

Example Meaning Comment

mult $t1,$t2 $lo = $t1 * $t2 Multiplication

divu $t2,$t3 $lo = $t2/$t3
$hi = $t2%$t3

Division and Modulus

mflo $t1 $t1 = $lo Move from $lo

mfhi $t1 $t1 = $hi Move from $hi

CALCULATING QUOTIENT AND REMAINDER

• Given the values $t1 and $t2, the following sequence of MIPS instructions assigns the
quotient ($t1/$t2) to $s0 and the remainder ($t1%$t2) to $s1 .

divu $t1,$t2 # perform both division and modulus operations
mflo $s0 # move quotient into $s0
mfhi $s1 # move remainder into $s1

LOGICAL OPERATIONS

• Consist of bitwise Boolean operations and shifting operations.

• Shifting operations can be used to extract or insert fields of bits within a word.

X Y Not X X and Y X or Y X nand Y X nor Y X xor Y

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

GENERAL FORM OF MIPS BITWISE INSTRUCTIONS

• Bitwise instructions apply Boolean operations on each of the corresponding pairs of
bits of two values.

Example Meaning Comment

and $t2,$t3,$t4 $t2 = $t3 & $t4 Bitwise and

or $t3,$t4,$t5 $t3 = $t4 | $t5 Bitwise or

nor $t4,$t3,$t6 $t4 = ~($t3 | $t6) Bitwise nor

xor $t7,$t2,$t4 $t7 = $t2 ^ $t4 Bitwise xor

andi $t2,$t3,7 $t2 = $t3 & 7 Bitwise and with immediate

ori $t3,$t4,5 $t3 = $t4 | 5 Bitwise or with immediate

xori $t7,$t2,6 $t7 = $t2 ^ 6 Bitwise xor with immediate

GENERAL FORM OF MIPS SHIFT INSTRUCTIONS
• Shift instructions move the bits in a word to the left or right by a specified amount.

• Shifting left (right) by i is the same as multiplying (dividing) by 2" .

• An arithmetic right shift replicates the most significant bit to fill in the vacant bits.

• A logical right shift fills in the vacant bits with zero.

Example Meaning Comment

sll $t2,$t3,2 $t2 = $t3 << 2 Shift left logical

sllv $t3,$t4,$t5 $t3 = $t4 << $t5 Shift left logical variable

sra $t4,$t3,1 $t4 = $t3 >> 1 Shift right arithmetic (signed)

srav $t7,$t2,$t4 $t7 = $t2 >> $t4 Shift right arithmetic variable (signed)

srl $t2,$t3,7 $t2 = $t3 >> 7 Shift right logical (unsigned)

srlv $t3,$t4,$t6 $t3 = $t4 >> $t6 Shift right logical variable (unsigned)

GLOBAL ADDRESSES AND LARGE CONSTANTS

• The lui instruction can be used to construct large constants or addresses. It loads a 16-bit
value in the 16 most significant bits of a word and clears the 16 least significant bits.
• MIPS immediate is 16 bits

• Example: load 131,071 (or 0x1ffff) into $t2.

• Having all instructions the same size and a reasonable length means having to construct
global addresses and some constants using two instructions.

• Design principle 4: Good design demands good compromise!

lui $t2,1 # put 1 in the upper half of $t2
ori $t2,$t2,0xffff # set all bits in the lower half

Form Example Meaning Comment

lui <dreg>,<const> lui $t1,12 $t1 = 12 << 16 Load upper immediate

DATA TRANSFER GENERAL FORM

• MIPS can only access memory with load and store instructions, unlike x86

• Form: <operation> <reg1>, <constant>(<reg2>)

Example Meaning Comment

lw $t2,8($t3) $t2 = Mem[$t3 + 8] 32-bit load

lh $t3,0($t4) $t3 = Mem[$t4] Signed 16-bit load

lhu $t8,2($t3) $t8 = Mem[$t3 + 2] Unsigned 16-bit load

lb $t4,0($t5) $t4 = Mem[$t5] Signed 8-bit load

lbu $t6,1($t9) $t6 = Mem[$t9 + 1] Unsigned 8-bit load

sw $t5,-4($t2) Mem[$t2-4] = $t5 32-bit store

sh $t6,12($t3) Mem[$t3 + 12] = $t6 16-bit store

sb $t7,1($t3) Mem[$t3 + 1] = $t7 8-bit store

USING DATA TRANSFER INSTRUCTIONS

• Consider the following source code
fragment.

• Assume the addresses of a, b, c, and d
are in the registers $t2, $t3, $t4, and
$t5, respectively. The following MIPS
assembly code performs this assignment
assuming $t6 and $t7 are available.

int a, b, c, d;
...
a = b + c - d;

lw $t6,0($t3) # load b into $t6
lw $t7,0($t4) # load c into $t7
add $t6,$t6,$t7 # $t6 = $t6 + $t7
lw $t7,0($t5) # load d into $t7
sub $t6,$t6,$t7 # $t6 = $t6 - $t7
sw $t6,0($t2) # store $t6 into a

INDEXING ARRAY ELEMENTS

• Assembly code can be written to access
array elements using a variable index.
Consider the following source code fragment.

• Assume the value of i is in $t0. The following
MIPS code performs this assignment.

int a[100], i;
...
a[i] = a[i] + 1;

.data
_a: .space 400 # declare space

...
la $t1, _a # load address of _a
sll $t2,$t0,2 # determine offset
add $t2,$t2,$t1 # add offset and _a
lw $t3,0($t2) # load the value
addi $t3,$t3,1 # add 1 to the value
sw $t3,0($t2) # store the value

BRANCH INSTRUCTIONS

• Branch instructions can cause the next instruction to be executed to be other than the
next sequential instruction.

• Branches are used to implement control statements in high-level languages.
• Unconditional (goto, break, continue, call, return)
• Conditional (if-then, if-then-else, switch)
• Iterative (while, do, for)

GENERAL FORM OF JUMP AND BRANCH

• MIPS provides direct jumps to support unconditional transfers of control to a
specified location.

• MIPS provides indirect jumps to support returns and switch statements.

• MIPS provides conditional branch instructions to support decision making. MIPS
conditional branches test if the values of two registers are equal or not equal.

General Form Example Meaning Comment

j <label> j L1 goto L1; Direct jump (J)

jr <sreg> jr $ra goto $ra; Indirect jump (R)

beq <s1reg>,<s2reg>,<label> beq $t2, $t3, L1 if($t2 == $t3) goto L1; Branch equal (I)

bne <s1reg>,<s2reg>,<label> bne $t2, $t3, L1 if($t2 != $t3) goto L1; Branch not equal (I)

IF STATEMENT EXAMPLE

• Consider the following source code:

• Translate into MIPS instructions assuming the values of i, j, and k are associated with
the registers $t2, $t3, and $t4, respectively.

if(i == j)
k = k + i;

bne $t2,$t3,L1 # if ($t2 != $t3) goto L1
addu $t4,$t4,$t2 # k = k + i

L1:

GENERAL FORM OF COMPARISON INSTRUCTIONS

• MIPS provides set-less-than instructions that set a register to 1 if the first source
register is less than the value of the second operand. Otherwise, it is set to 0.

• There are versions for performing unsigned comparisons as well.

General Form Example Meaning Comment

slt <dreg>,<s1reg>,<s2reg> slt $t2,$t3,$t4 if($t3<$t4) $t2 = 1;
else $t2 = 0;

Compare less
than (R)

sltu <dreg>,<s1reg>,<s2reg> sltu $t2,$t3,$t4 if($t3<$t4) $t2 = 1;
else $t2 = 0;

Compare less
than unsigned (R)

slti <dreg>,<s1reg>,<const> slti $t2,$t3,100 if($t3<100) $t2 = 1;
else $t2 = 0;

Compare less
than constant (I)

sltiu <dreg>,<s1reg>,<const> sltiu $t2,$t3,100 if($t3<100) $t2 = 1;
else $t2 = 0;

Compare less than
constant unsigned (I)

TRANSLATING AN IF STATEMENT

• Consider the following source code:

• Translate into MIPS instructions assuming the values of a, b, and c are associated with
the registers $t2, $t3, and $t4 respectively. Assume $t5 is available.

if(a > b)
c = a;

slt $t5,$t3,$t2 # b < a
beq $t5,$zero,L1 # if($t5==0)goto L1
or $t4,$t2,$zero # c = a

L1:

TRANSLATING AN IF-THEN-ELSE STATEMENT
• Consider the following source code:

• Translate into MIPS instructions assuming the values of a, b, and c are associated with
the registers $t2, $t3, and $t4 respectively. Assume $t5 is available.

if(a < b)
c = a;

else
c = b;

slt $t5,$t2,$t3 # a < b
beq $t5,$zero,L1 # if($t5==0)goto L1
move $t4,$t2 # c = a
j L2 # goto L2

L1:move $t4, $t3 # c = b
L2:

HIGH-LEVEL CONTROL STATEMENTS

• How do we translate other high-level control statements (while, do, for)?

• We can first express the C statement using C if and goto statements.

• After that, we can translate using MIPS unconditional jumps, comparisons, and
conditional branches.

TRANSLATING A FOR STATEMENT

• Consider the following source code:

• First, we replace the for statement using an if and goto statements.

sum = 0;
for(i=0; i<100; i++)

sum += a[i];

sum = 0;
i = 0;
goto test;

loop: sum += a[i];
i++;

test: if (i < 100) goto loop;

TRANSLATING A FOR STATEMENT

• Now for the MIPS instructions. Assume sum, i and the starting address of a are
associated with $t2, $t3, and $t4 respectively and that $t5 is available.

li $t2, 0 # sum = 0
move $t3, $zero # i = 0
j test

loop: sll $t5,$t3,2 # temp = i * 4
addu $t5,$t5,$t4 # temp = temp + &a
lw $t5,0($t5) # load a[i] into temp
addu $t2,$t2,$t5 # sum += temp
addiu $t3,$t3,1 # i++

test: slti $t5,$t3,100 # test i < 100
bne $t5,$zero,loop # if true, goto loop

