
LECTURE 10 Pipelining: Advanced ILP

EXCEPTIONS

• An exception, or interrupt, is an event
other than regular transfers of control
(branches, jumps, calls, returns) that
changes the normal flow of instruction
execution.

• An exception refers to any unexpected
change in control flow without
distinguishing if the cause is internal or
external.

• An interrupt is an event that is
externally caused.

Event Source Terminology

I/O Device Request External Interrupt

Syscall Internal Exception

Arithmetic Overflow Internal Exception

Page Fault Internal Exception

Undefined Instruction Internal Exception

Hardware Malfunction Either Either

MULTIPLE EXCEPTIONS
• Exceptions can occur on different pipeline stages on different instructions.

• Multiple exceptions can occur in the same clock cycle. The load word instruction could
have a page fault in the MEM stage and the add instruction could have an integer
overflow in the EX stage, both of which are in cycle 4.

• Exceptions can occur out of order. The and instruction could have a page fault in the
IF stage (cycle 3), whereas the load word instruction could have a page fault in the
MEM stage (cycle 4).

Cycle 1 2 3 4 5 6 7 8

lw IF ID EX MEM WB

add IF ID EX MEM WB

and IF ID EX MEM WB

sub IF ID EX MEM WB

PRECISE EXCEPTIONS

Supporting precise exceptions means that:

• The exception addressed first is the one associated with the instruction that entered
the pipeline first.

• The instructions that entered the pipeline previously are allowed to complete.

• The instruction associated with the exception and any subsequent instructions are
flushed.

• The appropriate instruction can be restarted after the exception is handled or the
program can be terminated.

HANDLING EXCEPTIONS

When an exception is detected, the machine:

• Flushes the instructions from the pipeline – this includes the instruction causing the
exception and any subsequent instructions.

• Stores the address of the exception-causing instruction in the EPC (Exception Program
Counter).

• Begins fetching instructions at the address of the exception handler routine.

DATAPATH WITH EXCEPTION HANDLING

• New input value for PC
holds the initial address to
fetch instruction from in the
event of an exception.

• A Cause register to record
the cause of the exception.

• An EPC register to save the
address of the instruction
to which we should return.

HANDLING AN ARITHMETIC EXCEPTION

Assume we have the following instruction sequence.

Also assume that in the event of an exception, the instructions to be evoked begin like
this:

40#$% sub $11, $2, $4
44#$% and $12, $2, $5
48#$% or $13, $2, $6
4𝐶#$% add $1, $2, $1
50#$% slt $15, $6, $7
54#$% lw $16, 50($7)

40000040#$% sw $25, 1000($0)
40000044#$% sw $26, 1004($0)
...

What happens in the pipeline if
an overflow exception occurs in
the add instruction?

HANDLING AN ARITHMETIC EXCEPTION

The address after the add is
saved in the EPC and flush
signals cause control values in
the pipeline registers to be
cleared.

HANDLING AN ARITHMETIC EXCEPTION

Instructions are converted
into bubbles in the
pipeline and the first
of the exception handling
instructions begins its IF
stage.

MULTIPLE CYCLE OPERATIONS

• The EX stages of many arithmetic operations are traditionally performed in multiple
cycles.
• integer and floating-point multiplication.
• integer and floating-point division.
• floating-point addition, subtraction, and conversions.

• Completing these operations in a single cycle would require a longer clock cycle
and/or much more logic in the units that perform these operations.

MULTIPLE CYCLE OPERATIONS

In this datapath, the multicycle operations
loop when they reach the EX stage as
these multicycle units are not pipelined.
Unpipelined multicycle units can lead to
structural hazards.

MULTIPLE CYCLE OPERATIONS

The latency is the minimum number of intervening cycles between an instruction that
produces a result and an instruction that uses the result.

The initiation interval is the number of cycles that must elapse between issuing two
operations of a given type.

Functional Unit Latency Initiation Interval

Integer ALU 0 1

Data Memory 1 1

FP Add 3 1

FP Multiply 6 1

FP Divide 23 24

MULTIPLE CYCLE OPERATIONS

• The multiplies, FP adds, and
FP subtracts are pipelined.

• Divides are not pipelined
since this operation is used
less often.

MULTIPLE CYCLE OPERATIONS

Consider this example pipelining of independent (i.e. no dependencies) floating point
instructions.

The states in italics show where data is needed. The states is bold show where data is
available.

MULTIPLE CYCLE OPERATIONS

• Stalls for read-after-write hazards will be more frequent.

• The longer the pipeline, the more complicated the stall and forwarding logic
becomes.

• Structural hazards can occur when multicycle operations are not fully pipelined.

• Multiple instructions can attempt to write to the FP register file in a single cycle.

• Write-after-write hazards are possible since instructions may not reach the WB
stage in order.

• Out of order completion may cause problems with exceptions.

MULTIPLE CYCLE OPERATIONS

• The multiply is stalled due to a load delay.

• The add and store are stalled due to read-after-write FP hazards.

MULTIPLE CYCLE OPERATIONS

In this example three instructions attempt to simultaneously perform a write-back to
the FP register file in clock cycle 11, which causes a write-after-write hazard due to
a single FP register file write port. Out of order completion can also lead to
imprecise exceptions.

MORE INSTRUCTION LEVEL PARALLELISM

•Superpipelining
• Means more stages in the pipeline.
• Lowers the cycle time.
• Increases the number of pipeline stalls.

• Multiple issue
• Means multiple instructions can simultaneously enter the pipeline and advance to each stage during each

cycle.
• Lowers the cycles per instruction (CPI).
• Increases the number of pipeline stalls.

• Dynamic scheduling
• Allows instructions to be executed out of order when instructions that previously entered the pipeline are

stalled or require additional cycles.
• Allows for useful work during some instruction stalls.
• Often increases cycle time and energy usage.

MIPS R4000 PIPELINE
• Below are the stages for the MIPS R4000 integer pipeline.
• IF - first half of instruction fetch; PC selection occurs here with the initiation of the IC access.
• IS - second half of instruction fetch; complete IC access.
• RF - instruction decode, register fetch, hazard checking, IC hit detection.
• EX - effective address calculation, ALU operation, branch target address calculation and condition

evaluation.
• DF - first half of data cache access.
• DS - second half of data cache access.
• TC - tag check to determine if DC access was a hit.
• WB - write back for loads and register-register operations.

MIPS R4000 PIPELINE
• A two cycle delay is possible because the loaded value is available at the end of
the DS stage and can be forwarded.

• If the tag check in the TC stage indicates a miss, then the pipeline is backed up a
cycle and the L1 DC miss is serviced.

MIPS R4000 PIPELINE

A load instruction followed by an immediate use of the loaded value results in a 2
cycle stall.

MIPS R4000 PIPELINE

The branch delay is 3 cycles since the condition evaluation is performed during the EX
stage.

MIPS R4000 PIPELINE

A taken branch on the MIPS R4000 has a 1 cycle delay slot followed by a 2 cycle
stall.

MIPS R4000 PIPELINE

A not taken branch on the MIPS R4000 has just a 1 cycle delay slot.

STATIC MULTIPLE ISSUE

In a static multiple-issue processor, the compiler has the responsibility of arranging
the sets of instructions that are independent and can be fetched, decoded, and
executed together.

A static multiple-issue processor that simultaneously issues several independent
operations in a single wide instruction is called a Very Long Instruction Word (VLIW)
processor. Below is an example static two-issue pipeline in operation.

STATIC MULTIPLE ISSUE

The additions needed for
double-issue are highlighted
in blue.

STATIC MULTIPLE ISSUE

Original loop in C:

Original loop in MIPS assembly:

for (i = n-1; i != 0; i = i-1)
a[i] += s

Loop: lw $t0,0($s1) # $t0 = a[i];
addu $t0,$t0,$s2 # $t0 += s;
sw $t0,0($s1) # a[i] = $t0;
addi $s1,$s1,-4 # i = i-1;
bne $s1,$zero,Loop # if (i!=0) goto Loop

DYNAMIC MULTIPLE ISSUE

• Dynamic multiple-issue processors dynamically detect if sequential instructions can be
simultaneously issued in the same cycle.
• no data hazards (dependences)
• no structural hazards
• no control hazards

• These type of processors are also known as superscalar.

• One advantage of superscalar over static multiple-issue is that code compiled for
single issue will still be able to execute.

OUT-OF-ORDER EXECUTION PROCESSORS

• Some processors are designed to execute instructions out of order to perform useful
work when a given instruction is stalled.

• The add is dependent on the lw, but the sub is independent.

• Out-of-order or dynamically scheduled processors:
• Fetch and issue instructions in order
• Execute instructions out of order
• Commit results in order

• Many out-of-order processors also support multi-issue to further improve
performance.

lw $1,0($2)
add $3,$4,$1
sub $6,$4,$5

DYNAMICALLY SCHEDULED PIPELINE

INTEL MICROPROCESSORS

Due to thermal limitations, the clock rate has not increased in recent years, which has
led to fewer pipeline stages and the adoption of multi-core processors.

EMBEDDED AND SERVER PROCESSORS

