Process Out-Grafting: An Efficient “Out-of-VM” Approach
for Fine-Grained Process Execution Monitoring

Deepa Srinivasan
NC State University
dsriniv@ncsu.edu

Zhi Wang
NC State University

ABSTRACT

Recent rapid malware growth has exposed the limitations of
traditional in-host malware-defense systems and motivated
the development of secure virtualization-based out-of- VM
solutions. By running vulnerable systems as virtual ma-
chines (VMs) and moving security software from inside the
VMs to outside, the out-of-VM solutions securely isolate the
anti-malware software from the vulnerable system. However,
the presence of semantic gap also leads to the compatibil-
ity problem in not supporting existing defense software. In
this paper, we present process out-grafting, an architectural
approach to address both isolation and compatibility chal-
lenges in out-of-VM approaches for fine-grained process-level
execution monitoring. Specifically, by relocating a suspect
process from inside a VM to run side-by-side with the out-
of-VM security tool, our technique effectively removes the
semantic gap and supports existing user-mode process mon-
itoring tools without any modification. Moreover, by for-
warding the system calls back to the VM, we can smoothly
continue the execution of the out-grafted process without
weakening the isolation of the monitoring tool. We have
developed a KVM-based prototype and used it to natively
support a number of existing tools without any modifica-
tion. The evaluation results including measurement with
benchmark programs show it is effective and practical with
a small performance overhead.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection - In-
vasive Software

General Terms
Security

Keywords

Virtualization, Process Monitoring, Semantic Gap

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’11, October 17-21, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

zhi_wang@ncsu.edu

Xuxian Jiang
NC State University
jlang@cs.ncsu.edu

Dongyan Xu
Purdue University
dxu@cs.purdue.edu

1. INTRODUCTION

Computer malware (e.g., viruses and trojans), in its seem-
ingly infinite evolution of functionality and forms, is one of
the largest threat that end users and enterprises are combat-
ing daily. A recent report from McAfee [3] shows a rapidly
exploding malware growth with new record numbers “ac-
complished” in the last year. Specifically, as highlighted in
the report, “McAfee Labs identified more than 20 million
new pieces of malware in 2010,” which translates into nearly
55,000 new malware samples discovered every day! More-
over, “of the almost 55 million pieces of malware McAfee
Labs has identified and protected against, 36 percent of it
was written in 2010!” This alarming trend reveals the dis-
turbing fact that existing malware defenses fail to effectively
contain the threat and keep up with the malware growth.

Especially, if we examine traditional anti-malware tools,
they are typically deployed within vulnerable systems and
could be the first targets once malware infect a computer
system. In other words, though these traditional in-host
tools are valuable in monitoring system behavior or detect-
ing malicious activities (with their native access inside the
systems), they are fundamentally limited in their isolation
capability to prevent themselves from being infected in the
first place. To address that, researchers propose out-of-VM
approaches [8, 15, 20, 21, 30, 31, 37], which change the mal-
ware defense landscape by leveraging recent advances of vir-
tualization to run vulnerable systems as VMs and then mov-
ing anti-malware tools from inside the systems to outside.
By enlisting help from the underlying virtualization layer (or
hypervisor), out-of-VM approaches can effectively overcome
the isolation challenge that encumbers traditional in-host
approaches. However, by separating anti-malware software
from the untrusted systems, they also naturally encounter
the well-known semantic gap challenge: these anti-malware
software or tools — as out-of-VM entities — need to monitor
or semantically infer various in-VM activities.

In the past several years, researchers have actively exam-
ined this semantic-gap challenge and implemented a number
of introspection-based systems [12, 21] to mitigate it. For ex-
ample, VMwatcher [21] proposes a guest view casting tech-
nique to apply the knowledge of inner guest OS kernel, es-
pecially the semantic definition of key kernel data structure
and functionality, to bridge the semantic gap. Virtuoso [12]
aims to automate the process of extracting introspection-
relevant OS kernel information (by monitoring the execu-
tion of an in-guest helper program) for the construction of
introspection-aware security tools. Though these systems
make steady progresses in bridging the semantic gap, the

gap still inevitably leads to a compatibility problem. In par-
ticular, none of these introspection-based systems is compat-
ible with existing anti-malware software (including various
system/process monitoring tools) that were designed to run
within a host. Due to the lack of compatibility, significant ef-
fort and advanced mechanisms [12, 21] are still needed to re-
engineer these tools and adapt them for different guest OSs.
This is especially concerning when fine-grained monitoring
of individual processes requires intercepting a wide variety
of events (e.g. user-library function calls or system calls)
and interpreting them meaningfully (e.g. to determine their
arguments). Worse, these introspection-based solutions are
sensitive to guest OS versions or variants and to some extent
fragile to any change or patch to the guest OS. As a result,
this compatibility problem severely limits the effectiveness
and the adoption of these out-of-VM approaches.

In this paper, we present process out-grafting, an archi-
tectural approach that addresses both isolation and com-
patibility challenges for out-of-VM, fine-grained user-mode
process execution monitoring. Similar to prior out-of-VM
approaches, out-grafting still confines vulnerable systems as
VMs and deploys security tools outside the VMs. How-
ever, instead of analyzing the entire VM on all running
processes, out-grafting focuses on each individual process
for fine-grained execution monitoring. More importantly,
our approach is designed to naturally support existing user-
mode process monitoring tools (e.g., strace, ltrace, and gdb)
outside of monitored VMs on an internal suspect process,
without the need of modifying these tools or making them

introspection-aware (as required in prior out-of-VM approaches).

For simplicity, we use the terms “production VM” and “secu-
rity VM” respectively to represent the vulnerable VM that
contains a suspect process and the analysis VM that hosts
the security tool to monitor the suspect process.

To enable process out-grafting, we have developed two
key techniques. Specifically, the first technique, on-demand
grafting, relocates the suspect process on demand from the
production VM to security VM (that contains the process
monitoring tool as well as its supporting environment). By
doing so, grafting effectively brings the suspect process to
the monitor for fine-grained monitoring, which leads to at
least two important benefits: (1) By co-locating the suspect
process to run side-by-side with our monitor, the semantic
gap caused by the VM isolation is effectively removed. In
fact, from the monitor’s perspective, it runs together with
the suspect process inside the same system and based on its
design can naturally monitor the suspect process without
any modification. (2) In addition, the monitor can directly
intercept or analyze the process execution even at the gran-
ularity of user-level function calls, without requiring hyper-
visor intervention, which has significant performance gains
from existing introspection-based approaches.

To still effectively confine the (relocated) suspect process,
our second technique enforces a mode-sensitive split execu-
tion of the process, thus the name split execution. Specifi-
cally, only the user-mode instructions of the suspect process,
which is our main focus for fine-grained monitoring, will be
allowed to execute in the security VM; all kernel-mode exe-
cution that requires the use of OS kernel system services is
forwarded back to the production VM. By doing so, we can
not only maintain a smooth continued execution of the sus-
pect process after relocation, but ensure its isolation from
our monitoring tools. Particularly, from the suspect process’

perspective, it is still logically running inside the production
VM. In the meantime, as the suspect process physically runs
inside the security VM, the monitoring overhead will not be
inflicted to the production VM, thus effectively localizing
monitoring impact within the security VM.

We have implemented a proof-of-concept prototype on
KVM/ Linux (version kvmn-2.6.36.1) and tested it to out-
graft various processes from different VMs running either
Fedora 10 or Ubuntu 9.04. We have evaluated it with a
number of different scenarios, including the use of traditional
process monitoring tools, i.e., strace/ltrace/gdb, to monitor
an out-grafted process from another VM. Note that these
fine-grained process monitoring tools cannot be natively sup-
ported if the semantic gap is not effectively removed. More-
over, we also show that advanced (hardware-assisted) mon-
itoring tools [26] can be deployed in the security VM to
monitor a process in the production VM, while they may
be inconvenient or even impossible to run inside the pro-
duction VM. The performance evaluation with a number of
standard benchmark programs shows that our prototype im-
plementation incurs a small performance overhead and the
monitoring overhead is largely confined within the security
VM, not the production VM.

The rest of the paper is organized as follows: we first
present the system design in Section 2. We then describe
the implementation and evaluation in Sections 3 and 4, re-
spectively. We discuss possible limitations and explore fu-
ture improvements in Section 5. Finally, we describe related
work in Section 6 and conclude the paper in Section 7.

2. SYSTEM DESIGN

2.1 Goals and Assumptions

Process out-grafting is a virtualization-based approach that

advances current out-of-VM approaches for fine-grained process-

level execution monitoring. It is introduced to effectively
support existing user-mode process-level monitoring tools
while removing the inherent semantic gap in out-of-VM ap-
proaches. To achieve that, we have three main design goals.

e Jsolation Process out-grafting should strictly isolate
process monitoring tools from the untrusted process.
In other words, the untrusted process will be architec-
turally confined without unnecessarily exposing moni-
toring tools. This essentially achieves the same isola-
tion guarantee as existing out-of-VM approaches.

e Compatibility Our solution should naturally support
existing fine-grained process monitoring tools (e.g., strace
/ltrace / gdb) without modification. Accordingly, all re-
quired semantic information by these tools need to be
made available in the security VM.

o FEfficiency Process out-grafting needs to efficiently
support existing process monitoring tools without much
additional performance overhead caused by isolation.
Due to its process-level granularity, we also need to lo-
calize the monitoring overhead to the monitored pro-
cess, without unnecessarily impacting the production
VM as a whole.

In this work, we assume no trust from the suspect process
being monitored. An attacker may also introduce malicious
software (either user-mode or kernel-mode) to compromise
the production VM. However, we assume the presence of a

Technique I: On—demand Grafting

Production VM

Suspect PnV Suspect Process
Ve N N ~
/ - -~
L .7 =
- | -—————— . e
[i -
\ \/ Non-executable Executable -7
4 _ -
\ \/ y -
A (stub)
0
User [User
host—ph: .
Kernel : memor% s - Kernel
. helper module
.
N *
" L

Security VM

Hypervisor (e.g., KVM)

Technique II: Split Execution

Figure 1: An Overview of Process Out-Grafting

trusted hypervisor [25, 40|, which properly enforces the iso-
lation between running VMs. By focusing on fine-grained
user-mode process-level monitoring, our system does not ad-
dress OS kernel monitoring. But a compromised OS kernel
should not affect our design goals. Also, we do not attempt
to hide the fact that an out-grafted process or malware is
being actively monitored. But we do guarantee that the
monitoring process itself cannot be disabled by the moni-
tored process.

Figure 1 shows the overview of our system with two key
techniques: on-demand grafting and split execution. Before
presenting each technique in detail, we define some termi-
nology used throughout the paper. Our system is designed
to work with hardware virtualization extensions available
in commodity CPUs, including support for efficient memory
virtualization. Leveraging the underlying hardware support,
a CPU can enter either host or guest mode. The hypervi-
sor code runs directly in host mode while the VM runs in
guest mode. In a virtualized system, there are three differ-
ent kinds of memory addresses: A guest-virtual address is
the virtual address observed by a running process inside the
guest; a guest-physical address is the physical addresses seen
by the guest when it runs in the guest mode; a host-physical
address is the actual machine address seen by the CPU hard-
ware. While executing in guest-mode, a VM never sees the
host-physical addresses directly.

We point out that when memory virtualization support is
enabled, the CPU utilizes an additional level of page ta-
bles managed by the hypervisor to translate from guest-
physical to host-physical addresses (i.e., the Nested Page
Table (NPT) [7] in AMD CPUs or the Extended Page Table
(EPT) [18] in Intel CPUs). Since our current prototype uses
an Intel processor, we simply use the term EPT to represent
both. With that, the guest OS is free to manage its own
guest-physical page frame allocation, with no intervention
from the hypervisor. The hypervisor controls only the EPT
to allocate host-physical memory, as needed for the guest.
While the CPU EPT support significantly improves perfor-
mance for the running VM [6, 7, 18], such support also poses
challenges in our design and some of them will be highlighted
below as we describe our system.

2.2 On-demand Grafting

Our first key technique is developed to re-locate a sus-
pect process running in a production VM to a security VM
for close inspection. Specifically, it enables efficient, native
inspection from existing process-level monitoring tools by
avoiding unnecessary hypervisor intervention and eliminat-

ing the inherent semantic gap from VM isolation. Relocat-
ing a suspect process can be initiated as determined by an
administration policy, say a process can be brought under
scrutiny either periodically, at random time intervals or us-
ing certain event triggers. The monitoring duration can be
arbitrary, including the entire lifetime of a process. Regard-
less of the out-grafting policy, in this paper, we mainly focus
on the mechanisms for the out-grafting support.

In order to out-graft a running process, we will need to
first accurately locate it (e.g. using the base address of its
page table directory). Once it is located, the hypervisor
can then redirect or transfer its execution from the produc-
tion VM into the security VM. In the following, we examine
when, what, and how to transfer the suspect process execu-
tion across the two VMs.

2.2.1 When to Out-graft

To determine the appropriate moment for process execu-
tion transfer, we need to ensure it is safe to do so, i.e., the
transfer will not corrupt the execution of the out-grafted
process and the OS kernel. Particularly, once a process is
selected for out-grafting, the hypervisor first pauses the pro-
duction VM, which is akin to a VM Exit event and causes the
VM’s virtual CPU (VCPU) state to be stored in hypervisor-
accessible memory. At this particular time, the to-be-grafted
process may be running in either user- or kernel-mode. (If it
is not actively running, it is then waiting in the kernel-mode
to be selected or dispatched for execution.) If the VCPU
state indicates the VCPU is executing the process in user
mode, we can immediately start out-grafting the process.

On the other hand, if the VCPU was running in privi-
leged mode (in the context of either the suspect process or
another process), we should not start the out-grafting pro-
cess to avoid leading to any inconsistency. For example, the
suspect process may have made a system call to write a large
memory buffer to a disk file. If its execution is transferred at
this point to another VM, we may somehow immediately re-
sume execution (in the security VM) at the next user-mode
instruction following the system call. As we are only trans-
ferring the user-mode execution, this will implicitly assume
the production VM kernel has already completed servicing
the system call, which may not be the case. Therefore, we
choose to wait till the process is selected to execute and even-
tually returns to user-mode. One way the hypervisor could
detect this is by monitoring context switches that occur in-
side the VM. However, in systems that support EPT, the
hypervisor is no longer notified of in-VM context switches.
Instead, based on the process’ page tables, we mark the

Production VM Security VM
Process Process _ Host Process Process
virtual memory page table physical memory page table virtual memory
VAL [~~~ N e D B VAl
va->gfn gfn—>pfn pfn<—gfn gfn<-va
VA2 p-moo N e D B VA2
VAZ [[T R R B B aREEh VA3

Figure 2: Out-grafted Process Memory Mapping in
Production and Security VMs (va: virtual address;
gfn: guest frame number; pfn: physical frame num-
ber)

corresponding user-level host-physical pages non-executable
(NX) in the EPT. When the kernel returns control of the
process back to user-mode, it will immediately cause a trap
to the hypervisor and thus kick off our out-grafting process.

2.2.2 What to Out-graft

After determining the right moment, we then identify the
relevant state that is needed to continue the process exe-
cution in the security VM. As our focus is primarily on its
user-mode execution, we need to transfer execution states
that the user-mode code can directly access (i.e. its code
and data). It turns out that we only need to transfer two
sets of states associated with the process: the execution con-
text (e.g., register content) and its memory page frames.
The hypervisor already identifies the process’ register values
from the VCPU state (stored in the hypervisor-accessible
memory). To identify its memory page frames, we simply
walk through the guest OS-maintained page tables (located
from the guest CRS3) to identify the guest-physical page
frames for the user-mode memory of the process. For each
such page, we then further identify the corresponding host-
physical page frame from the EPT. At the same time, we
mark NX bit on each user-mode page frame in EPT that
belongs to the process. (Although this seems to duplicate
the setting from Section 2.2.1, this is required in case the
guest OS may allocate new pages right before we start to
out-graft.) After that, if the user-level code is executed, in-
advertently or maliciously, when the process has been out-
grafted for monitoring, the hypervisor will be notified. Note
that we mark the NX bit in the EPT, which is protected
from the (untrusted) production VM.

‘We point out that the transferred resources or state do not
include those OS kernel-specific states, which the process
may access only via system calls (e.g. open file descriptors
and active TCP network connections). This is important
from at least three different aspects. First, the OS kernel-
specific states are the main root cause behind the semantic
gap challenge. Without the need of interpreting them, we
can effectively remove the gap. Second, keeping these spe-
cific states within the production VM is also necessary to
ensure smooth continued execution of the out-grafted pro-
cess in the security VM — as the system call will be redirected
back to the production VM. It also allows for later process
restoration. Third, it reduces the state volume that needs to
be transferred and thus alleviates the out-grafting overhead.

2.2.3 How to Out-graft

Once we identify those states (e.g., the execution state
and related memory pages), we then accordingly instantiate

them in the security VM. There are two main steps. First,
we lock down the guest page table of the out-grafted process
in the production VM. Specifically, we mark the page frames
that contain the process’ page table entries as read-only in
the EPT so that any intended or unintended changes to them
(e.g. allocating a new page or swapping out an existing page)
will be trapped by the hypervisor. This is needed to keep in-
sync with the out-grafted process in the security VM. These
hardware-related settings are the only interposition we need
from the hypervisor, which are completely transparent to,
and independent of the monitoring tools (in the security
VM). The lock-down of page tables is due to the previously
described lack of hypervisor intervention over in-guest page
tables. In our system, these settings are temporary and only
last for the duration of our monitoring.

Second, we then populate the transferred states in the
security VM. For simplicity, we collectively refer to those
states as Spq. For this, we prepare a helper kernel mod-
ule (LKM) running inside the security VM. The hypervisor
issues an upcall to the helper module to instantiate Spq.
In that case, the helper module retrieves S.q and creates a
process context within the security VM for the out-grafted
process to execute. At this point, the memory content of
the process needs to be transferred from the production VM
to the security VM. In a non-EPT supported system, the
hypervisor could simply duplicate the page table between
the production and security VMs. In the presence of EPT
however, we aim to avoid large memory transfers by en-
abling the memory transfer as follows: The helper module
allocates the guest-physical page frames for those virtual
addresses that were present in S, and sends this informa-
tion to the hypervisor; The hypervisor then simply maps
each such page to the host-physical page frame for the cor-
responding virtual address in the production VM. In other
words, this mechanism ensures that a user-level virtual ad-
dress A of the out-grafted process in the security VM and
the user-level virtual address A of the process in the produc-
tion VM are ultimately mapped to the same host-physical
page (as illustrated in Figure 2). After that, the helper also
ensures that any system call from the out-grafted process
will not be serviced in the security VM. Instead, they will
be forwarded back to the production VM and handled by
our second key technique (Section 2.3).

When a process is out-grafted for monitoring, its state in
the production VM is not destroyed. As mentioned earlier,
the production VM still maintains the related kernel state,
which not only serves the forwarded system calls but also
greatly facilitates the later restoration of the process from
the security VM back to the production VM. Meanwhile,
because of the separate maintenance of the process page
tables inside both VMs, we need to ensure they are kept in-
sync. In particular, the production VM may make legitimate
changes (e.g. swapping out a page). To reflect these changes
back in the security VM, our previous read-only marking on
related page tables can timely intercept any changes and
then communicate the changes back to the security VM.

With the populated states in a new process inside the se-
curity VM, existing process-level monitoring tools such as
strace, ltrace, and gdb can naturally access its state or mon-
itor its execution. For example, when the out-grafted pro-
cess executes system call instructions in the security VM
(although they are not actually serviced by the security VM
kernel), these can be examined in a semantically-rich manner

(i.e., interpreting the arguments) without any modification
to existing tools. Specifically, different from prior out-of-
VM approaches, the monitor in our case no longer needs
to walk through external page tables to identify the physi-
cal addresses for examination. In other words, they can be
transparently supported! Finally, in order to support tools
that may need to access disk files used by the monitored
process, we make the file system that is used by the produc-
tion VM available in the security VM. We mount this file
system as read-only and non-executable. Note that the file
system is accessed only by the monitor to access any seman-
tic information. The requests by the out-grafted process to
access files are not handled in the security VM, but in the
production VM through forwarded system calls.

2.3 Mode-sensitive Split Execution

After selecting and out-grafting a process to the security
VM, our second key technique ensures that it can smoothly
continue its execution in the security VM, even though the
out-grafted process may consider itself still running inside
the same production VM. Also, we ensure that the untrusted
process cannot tamper with the security VM, including the
security VM’s kernel and the runtime environment (libraries,
log files etc.). We achieve this by splitting the monitored
process’ execution between the two VMs: all user-mode in-
structions execute in the security VM while the rest execute
in the production VM. In the following, we describe related
issues in realizing this mechanism and our solutions.

2.3.1 System Call Redirection

To continue the out-grafted process execution and isolate
it from the security VM, there is a need for it to access the
kernel-specific resources or states maintained in the produc-
tion VM. For instance, if the process already opened a file
for writing data, after the relocation to the security VM, it
must be able to continue writing to it. As the process needs
to make system calls to access them, we therefore intercept
and forward any system call from the out-grafted process
back to the production VM.

To achieve that, there exist two different approaches. The
first one is to simply ask hypervisor to intervene and forward
the system call (by crafting an interrupt and preparing the
appropriate execution context). However, it will unfortu-
nately impact the entire production VM execution. The
second one is to have a small piece of stub in place of the
out-grafted process. The stub is mainly designed to receive
forwarded system calls from the security VM, invoke the
same in the production VM, and then return the results
back to the security VM. We take the second approach in
our design as it can effectively localize the effect within the
out-grafted process itself and avoid heavy hypervisor inter-
vention for every forwarded system call.

The placement of the stub code deserves additional con-
sideration. Since the guest page tables are not managed by
the hypervisor, it cannot simply allocate a separate guest-
physical page for the stub code. As our solution, we choose
to temporarily “steal” an existing code page in the process,
by saving the original content aside and overlaying it with
the stub’s code. Recall (from Section 2.2) that the host-
physical memory frames corresponding to the process ad-
dress space are mapped in both VMs. To steal a code page,
the corresponding host-physical page frame is replaced with
another one that contains the stub code. To protect it from

Production VM Security VM
s \

Stub Pl il

Forwarded Syscall -

N
Handle Syscall ~ Syscall Return

Kernel

Figure 3: The Interplay Between the Stub (in Pro-
duction VM) and the Helper LKM (in Security VM)

being tampered by the production VM, we mark it non-
writable in the production VM’s EPT for the duration of
out-grafting.

The stub’s main function is to proxy the forwarded sys-
tem call from the security VM and replay it in the produc-
tion VM. In order to facilitate direct communication without
requiring hypervisor intervention, during the out-grafting
phase, we set up a small shared communication buffer ac-
cessible to the stub and the helper module in the security
VM. Also, note that if a system call argument is a pointer
to some content in the process address space, our design en-
sures that there is no need to copy this data between the
production and security VM. Since the process’ memory is
mapped in both VMs, the production VM kernel can sim-
ply access this as it would for any regular process. This
eliminates unnecessary memory copy overhead.

An interesting dilemma arises if the stub code needs to use
the stack. Specifically, the process’ stack is part of its data
pages and these pages are mapped faithfully in both VMs.
Any user-space instructions in the out-grafted process will
use this memory region as the stack. Further, these memory
regions may also contain the arguments to be passed down
to the production VM kernel for system calls. Hence, the
stub code cannot use the original stack pointer as its stack
frame, or it will collide with the user-mode execution in the
security VM. In our design, we simply avoid using the stack
in the stub code execution.

The interplay between the stub code and our helper mod-
ule is shown in Figure 3. The stub code is self-contained and
will directly invoke system calls without relying on any ad-
ditional library calls. Its size has been kept to the minimum
since we are overlaying over existing code memory for this.
Also, the stub can handle signals from the production VM
kernel and communicate them to the security VM helper
module. Specifically, when the production VM invokes a
previously registered signal handler, it will cause an exit to
the hypervisor, which will be eventually relayed to the helper
module to deliver the same signal to the out-grafted process
for handling.

2.3.2 Page Fault Forwarding

In addition to forwarding system calls, we also need to
forward the related page faults for the out-grafted process.
More specifically, at the time when a process’ execution is
being redirected to the security VM, some of its pages may
not be present (e.g., due to demand paging). Hence, when
the process is executing in the security VM, if it accesses a
non-present page, it will be trapped. Since the security VM
has no knowledge of how to correctly allocate and populate

a new page (e.g., in case of a file-mapped page), we forward
page faults to the production VM. This also ensures that
when the production VM kernel attempts to access a new
memory page during process execution, it will be immedi-
ately available.

To forward related page faults, out helper module in the
security VM registers itself to receive notification from the
security VM kernel for any page fault (or protection fault)
related to the out-grafted process. When it receives such
a notification, it places the virtual address that causes the
page fault and a flag to indicate a read-fault (including in-
struction fetches) or a write-fault, in the communication
buffer and notifies the stub in the production VM. To ser-
vice a page fault, the stub will attempt to either read in a
byte from the address or write a byte to the address. This
will cause the same page fault in the production VM. After
completing this read or write, the stub sends a notification
back to our helper module. The stub’s write to the mem-
ory will be immediately overwritten with the correct value
by the out-grafted processes when it re-executes a faulting
instruction, thus ensuring correct process execution. Unlike
a system call return value, the stub cannot return the guest-
physical page allocated for the new address in the produc-
tion VM. Instead, since we have write-protected the process
page tables, when the production VM makes a change to it
(i.e. to set the page table entries for the new page), this
is intercepted by the hypervisor and our helper module will
be notified. After that, it then allows the page fault han-
dling routines in the security VM to continue processing. As
previously described, instead of duplicating a memory page,
we simply tell the hypervisor to map the same host-physical
memory page corresponding to new page in the production
VM.

Later on, if we decide not to continue monitoring the out-
grafted process, we can place it back in the production VM.
In this case, since we have already maintained synchronized
page tables between the two VMs, we only need to restore
the execution context states back in the production VM.
For those memory pages overlaid for the stub use, they need
to be properly restored as well. Specifically, if we find the
VCPU was executing stub code, which is located in the user
mode, we can simply change the VCPU state contents to
restore the execution context. Otherwise, we need to de-
tect when the user-mode execution resumes by marking the
stub’s code page as NX and then restore the VCPU values.
In the security VM, any state for the out-grafted process
is then simply destroyed (i.e. guest-physical page frames
allocated to it are freed and helper module requests the hy-
pervisor to release the mappings in the security VM EPT).

3. IMPLEMENTATION

We have implemented a process out-grafting prototype
by extending the open-source KVM [2] hypervisor (version
2.6.36.1). All modifications required to support out-grafting
are contained within the KVM module and no changes are
required to the host OS. Our implementation increases KVM’s
36.5K SLOC (x86 support only) by only 1309 SLOC, since
most functionality required for out-grafting (e.g. manipu-
lating a VM’s architectural state) is already present in the
stock KVM. Our prototyping machine runs Ubuntu 10.04
(Linux kernel 2.6.28) with an Intel Core i7 CPU and hard-
ware virtualization support (including EPT). Though our
prototype is developed on KVM, we believe it can be sim-

ilarly implemented on other hypervisors such as Xen and
VMware ESX. Our current prototype supports both 32-bit
Fedora 10 and Ubuntu 9.04 as guests (either as the produc-
tion VM or the security VM). In the rest of this section, we
present details about our KVM-based prototype with Intel
VT support.

3.1 On-demand Grafting

KVM is implemented as a loadable kernel module (LKM),
which once loaded extends the host into a hypervisor. Each
KVM-powered guest VM runs as a process on the host OS,
which can execute privileged instructions directly on the
CPU (in the so-called guest mode based on hardware virtual-
ization support). The VM’s virtual devices are emulated by
a user-level program called QEMU [4] that has a well-defined
toctl-based interface to interact with the KVM module. In
our prototype, we extend the interface to define the out-
grafting command graft_process. This command accepts a
valid page table base address (or guest c¢r3) to directly lo-
cate the process that needs to be out-grafted. The guest cr3
could be retrieved either by converting from the process ID
or process name via VM introspection, or directly reading
from the guest kernel with a loadable kernel module.

Once the graft_process command is issued, the KVM mod-
ule pauses the VM execution, which automatically saves the
VM execution context information in the VM control struc-
ture (VMCS [19]). KVM provides a number of functions
that wrap CPU-specific instructions to read and write to
different fields in this VMCS structure. From this struc-
ture, we retrieve the current value of the VM’s cr3 register
and compare with the argument to the graft_process. If they
match and the current VCPU is running in user-mode, we
then read the VCPU’s register values (eax, ebx, esp etc.) and
store them in memory. Otherwise, we take a walk through
the process page table from the given base address to locate
all the user-mode guest-physical page frames (gfn) used by
the to-be-grafted process. Using the gfn_to_pfn() function in
KVM, we obtain the host-physical page frames (pfn) and set
the NX bit in the VM’s EPT. As a result, when the VCPU
returns back to execute any user-mode instruction in this
process, an EPT wiolation occurs and the control is trans-
ferred to KVM. At this point, KVM can read the register
values from VMCS and save a copy.

After retrieving its execution context (i.e., those register
values), we then examine the page table (from the given
base address) to determine which virtual addresses in the
suspect process have pages allocated or present. That is, it
determines the gfn for each virtual address and then invokes
gfn_to_pfn() to determine the corresponding pfn in the pro-
duction VM’s EPT. KVM stores this information in a local
buffer. It then makes an upcall in the form of a virtual IRQ
to the security VM (using the inject_irg() function).

In the security VM, we have implemented a helper mod-
ule which is registered to handle this (virtual) IRQ. The
helper module then instantiates a process context for the
out-grafted process so that it can continue the execution.
Specifically, it first allocates a memory buffer and makes a
hypercall to KVM with the address of this memory buffer,
so that KVM can copy the state S,.q to it. Since spawning
a new process is a complex task, our helper module creates
a simple “dummy” process in the security VM, which exe-
cutes in an infinite sleep loop. Upon the IRQ request from
KVM, it proceeds to replace the dummy process with the

out-grafted process state. Specifically, our helper module re-
trieves register values from S,4 and instantiates them in the
dummy process (using the pt_regs structure) After that, we
simply destroy any pages (i.e., via do_unmap()) allocated to
the dummy process and then allocate “new” pages for virtual
addresses, as indicated in S,.4. Note that we do not actu-
ally allocate new host-physical memory pages to accommo-
date these transferred memory pages. Instead, KVM simply
maps (_direct_map()) those host-physical memory frames
that are used by the out-grafted process to the dummy pro-
cess in the security VM. After the mapping, the out-grafted
process is ready to execute its user-mode instructions in the
security VM. An execution monitor (such as strace) in this
security VM can now intercept the process-related events it
is interested in.

3.2 Mode-sensitive Split Execution

After relocating the suspect process to the security VM,
any system call made from it will be intercepted by our
helper module and forwarded back to the production VM.
Specifically, our helper module wraps the exposed system
call interface in the security VM to the out-grafted process.
For each intercepted system call, we collect the correspond-
ing system call number and its argument values in a data
structure (sc_info) and save it in the shared communication
buffer so the stub code in production VM will pick it up to
invoke the actual system call. (As noted in Section 2.3.1,
memory contents for pointer arguments are not copied since
the user-level memory is present in both VMs).

More specifically, the stub code is created when the pro-
cess is being out-grafted from the production VM to the
security VM. Its main purpose is to proxy the forwarded
system calls from the security VM to the production VM.
As mentioned in Section 2.3.1, we need to “steal” an existing
code page to host the stub code. We have written the stub
code in a few lines of assembly with an overall size of 167
bytes. The stub code itself does not make any use of a stack
while executing (Section 2.3.1). Similarly, with the help of
KVM, we set up a shared communication buffer between
the stub code and our helper module. When a system call
is to be forwarded to the production VM, our helper mod-
ule copies the sc_info data structure described above to this
buffer. It then sets a flag (in the same buffer) to indicate to
the stub that a new system call is to be serviced and waits
in a loop for this flag to be cleared by the stub. To avoid
blocking the entire security VM during this time, it yields
from inside the loop.

The stub code checks the flag and then retrieves the sc_info
values and copies them to the registers in the production
VM. It then invokes the requested system call so that the
production kernel can service the request. Once the request
is complete, the stub places the return value in the buffer
and modifies the flag indicating service completion. After
that, our helper module in the security VM can now re-
turn the same value to the out-grafted process. In addition
to forwarding system calls from the out-grafted process, we
also need to forward related page faults to the production
VM. Naturally, we leverage the above communication chan-
nel between the stub code and our helper module. Specif-
ically, when a page fault occurs in the out-grafted process
(while running in the security VM), the security VM’s page
fault handler invokes a callback defined in our helper mod-
ule, which then forwards the page fault information to the

stub. Based on the fault information, the stub either reads
or writes a dummy value in the faulting address in the pro-
duction VM to trigger a page fault of the same nature in
the production VM. When the page fault handler in the
production VM attempts to update the page tables with a
new page table entry (pointing to a new page frame we de-
note by gfn_p), this causes an “EPT violation” and control
is transferred to KVM. KVM examines the root cause and
saves a copy of the gfn_p->pfn mapping while fixing the vio-
lation and resuming the production VM. The helper module
notifies KVM with the new guest-physical frame it allocated
in the security VM (gfn_s). KVM then maps gfn_s to pfn
and ensures the same memory content is available in both
VMs. After that, the out-grafted process can continue its
execution with the new memory page.

3.3 Process Restoration

In our prototype, process out-grafting is initiated through
a QEMU command graft_process. As mentioned earlier,
other mechanisms can also be added to trigger the out-
grafting process. An example is an event-based trigger that
runs inside the production VM (Section 4).

In our current prototype, we also implemented another
QEMU command restore_process, which can be invoked to
notify KVM (via an ioctl interface) to restore the out-grafted
process back to the production VM. Similar to the out-
grafting procedure, when KVM receives the restore_process
command, it injects an IRQ to the security VM, which will
be received by the helper module. If the module is currently
waiting on a forwarded system call’s completion, the restora-
tion operation cannot be immediately carried out. Instead,
it will wait for the completion of the system call. After that,
it fetches register values stored in the process’ pt_regs data
structure and sends this down to KVM with a hypercall.
KVM then restores this register state back in the produc-
tion VM. Due to the similarity with the earlier out-grafting
steps, we omit the details here. The key difference however
is that, instead of copying values from the VCPU fields, we
copy values to it. For the page tables, as they are kept
in-sync between the two VMs, no further actions will be
needed. For those process contexts and guest memory pages
allocated to the out-grafted process in the security VM, we
simply discard them. At this point, the process can seam-
lessly resume its execution in the production VM.

4. EVALUATION

In this section, we first perform a security analysis on
the isolation property from our approach. Then, we present
case studies with a number of execution monitoring tools.
Finally, we report the performance overhead with several
standard benchmarks.

4.1 Security Analysis

Monitor isolation and effectiveness To allow for
fine-grained out-of-VM process monitoring, one key goal is
to ensure that the process monitoring tool and its support-
ing environment cannot be tampered with or disabled by
the out-grafted process. In the following, we examine possi-
ble attacks and show how our system can effectively defend
against them. Specifically, one main way that a suspect pro-
cess can tamper with another process (or the monitor in our
case) is through system calls. However, such attack will not
work since our system strictly forwards all system calls from

the suspect process back to the production VM. Moreover,
the controlled interaction is only allowed from the monitor-
ing process to the suspect process, not the other way around.
From another perspective, the suspect process may choose
to attack the (production VM) OS kernel when it services
system calls (for e.g. exploiting a buffer overflow by sending
in an invalid argument). Such attack will only impact the
production VM and its own execution.

According to our threat model (Section 2), we stress that
our system does not attempt to guarantee stealthy moni-
toring as out-grafted monitoring could be detected by so-
phisticated malware. But we do enable reliable monitoring
in protecting our system from being tampered with by the
suspect process. In addition, a strong administrative policy
might reduce the time window for such out-grafting detec-
tion. For example, out-grafting can be initiated randomly
(at any instance in a process’ lifetime) and can span arbi-
trary durations. In such cases, malware would be forced to
continuously check for out-grafting which can be costly and
expose its presence. Note that the out-grafted process is
ultimately serviced by the untrusted production VM, and
as such, we cannot guarantee that it accurately services the
out-grafted process’ system calls, but any inappropriate han-
dling of system calls will not violate the isolation provided
by our approach.

Protection of helper components The out-grafting
operation itself is initiated and controlled by the hypervi-
sor and cannot be disabled by a malicious production VM
kernel. However, there are two helper components in the
production VM to support out-grafting: the stub code and
shared communication buffer, which may be open to attack.
We point out that since the stub code’s host-physical page
is marked as read-only in the EPT, any malicious attempts
to write to it will be trapped by the hypervisor. The stub
code’s guest virtual-to-physical mapping cannot be altered
by the production VM since the page tables of the process
are write-protected by the hypervisor. The untrusted kernel
in the production VM is responsible for scheduling the stub
process as well as saving and restoring its execution context
according to the scheduling policy. If it tampers with the ex-
ecution context states (such as the instruction pointer), then
the stub code itself will not execute correctly, which cascad-
ingly affects the execution of the suspect process itself. As
mentioned earlier, if the production VM does not properly
serve the forwarded system calls or attempts to alter the
system call arguments or return incorrect results, such be-
havior may result in incorrect execution for the out-grafted
process, but will not affect the isolation or the integrity of
our monitoring process.

4.2 Case Studies

Next, we describe experiments with a number of execution
monitoring tools, including the most common ones: strace,
ltrace, gdb, as well as an OmniUnpack|[26]-based tool (to de-
tect malware unpacking behavior). The common tools are
used to demonstrate the effectiveness of our approach in
removing the semantic-gap, while the OmniUnpack tool re-
quires special hardware support for the monitoring in the
security VM and such support may not be enabled or pro-
vided in production VM. As a test process for out-grafting,
we chose the thittpd web server that uses both disk and net-
work resources and has a performance benchmark tool read-
ily available to automatically exercise it.

4.2.1 Tracing System Calls

In our first experiment, we demonstrate semantically-rich
system call tracing. This type of monitoring has been widely
applied to detect malicious behavior [13] such as accesses to
sensitive resources or dangerous system calls. For this, we
install the standard Linux strace tool in the security VM.
strace makes use of the underlying OS facilities to monitor
system calls invoked by another running process, which in
our case logically runs in another VM. For each intercepted
system call, it retrieves and parses the arguments. The re-
sults will allow us to know what file was opened by a process,
what data is read from it etc.

In prior “out-of-VM” systems, the code to determine sys-
tem call number and interpret each of its arguments has to
be completely re-written. In fact, one of our earlier systems,
i.e., VMscope [20], took one of the co-authors more than
one month to correctly intercept and parse the arguments
of around 300 system calls supported in recent Linux ker-
nels. This task is expected to become even more complicated
especially for closed-source OSs.

To better understand the effectiveness, we perform a com-
parative study. Specifically, we first run strace inside the
production VM to monitor invoked system calls from thttp
when it handles an incoming HTTP request. After that, we
out-graft thttp and run strace in the security VM for out-
of-VM monitoring when it handles another incoming HTTP
request. Our results are shown in Figure 4. From the figure,
we can verify that both strace runs lead to the same system
call patterns in the handling of incoming HT'TP requests by
accurately capturing system calls invoked by the same thttpd
process and interpreting each related argument.

4.2.2 Tracing User-level Library Calls

In our second experiment, we show the capability of reusing
existing tools for user-level library call tracing. User-level
library call tracing is a fine-grained monitoring technique
that allows for understanding which library functions are
being used by a running process and what are their argu-
ments. It has advantages over system call tracing in col-
lecting semantically-rich information at a higher abstraction
level.

As one can envision, the number of library functions avail-
able to a program and the type and definition of each argu-
ment for such functions can be very large. This can make
it complex, expensive, or even impossible to examine such
events in a semantically-rich manner using prior “out-of-VM”
approaches. Fortunately, in our approach, we can simply
re-use an existing tool ltrace to intercept and interpret user-
level library calls of a running process in one VM from an-
other different VM. In our experiment, we found that ltrace
extracts process symbol information from the process’ bi-
nary image on disk. As we mounted the production VM’s
filesystem read-only in the security VM, ltrace works natu-
rally with no changes needed. Our results show that ltrace
indeed accurately captures and interprets the user-level li-
brary calls invoked by the out-grafted thttpd process. In a
similar setting, we replace ltrace with gdb, which essentially
allows for debugging an in-VM process from outside the VM!

4.2.3 Detecting Malware Unpacking Behavior

Most recent malware apply obfuscation techniques to evade
existing malware detection tools. Code packing is one of the
popular obfuscation techniques [17]. To detect packed code,

open source, we wrote a Linux tool that faithfully imple-

ments OmniUnpack’s algorithm. We stress that if OmniUn-

would not be necessary. In our Linux porting, we do not
introspection techniques. Instead, we just envision a Linux

pack was previously available for Linux, this porting step
need to bridge the semantic gap or be aware of any prior

tool that will be used in-host. This experience also demon-

strates the benefits from our approach.

In this experiment, we

Since the system calls invoked by
the process are also available for monitoring, OmniUnpack

In our test, we use the freely available UPX packer [5]
successfully detects the packing behavior.

to pack the Kaiten bot binary [1].
We highlight several interesting aspects this experiment

also utilize a security-sensitive event trigger that initiates
out-grafting when a suspect process invokes the sys_ezecve
system call. The trigger is placed such that just before the
system call returns to user-mode (to execute the first in-
demonstrates. In the past, packer detection has required a
trade-off between tool isolation and performance overhead.

struction of the new code), KVM is invoked to out-graft the
process’ execution to the security VM. Inside the security

VM, we run the OmniUnpack tool to keep track of page
Specifically, in-host tools [26, 33], including OmniUnpack

can efficiently detect packing behavior, but they are vulnera-

accesses by the process.

ble to attack. “Out-of-VM” techniques [11] ensure packer de-
tection is isolated, but introduce very high overhead, largely
limiting its usability for offline malware analysis, not on-
line monitoring. Using process out-grafting, we are able to
effectively move an in-host tool “out-of-VM” without intro-
ducing significant overhead while still providing the needed
isolation. Another interesting aspect is due to the fact that

Thus, if the monitoring tool

requires additional features or support from the underlying
OS, even if this support is not present in the production
VM, we can take advantage of it in the security VM. Also,

To evaluate the performance overhead of our system, we
measure two different aspects: the slowdown experienced by

For 32-bit Linux, this bit is available only if PAE support is
enabled. In our experiments, we enabled PAE only in the se-
curity VM, whereas in the production VM page tables, the
we point out that the process out-grafting happens at the
very beginning of its execution. When a process begins exe-
cution, most of its code pages are not yet mapped in by the
OS. As such, this experiment also thoroughly tests the page
the production VM when a process is out-grafted for mon-

OmniUnpack requires the NX bit in the guest-page tables.
fault forwarding mechanisms in our system (Section 2.3).

NX bit is still not available.
4.3 Performance

sy

(]
([{dnHT10d INITT0d=S1uaA20 *T=P4}]) T = (805 *T *[{NITT0d=SIuana *
0=

TT,Und ST pd3IUI<3TLIL=<QVEHEUN<THLH> . b

(1{1n0770d=51u3A31

B #[~ un fatandasdreos]

paudElap SeET SSA30.d

<77 P3USTUTIUNE D.ZETH “[{NITI0d=S31uaAa ‘@=pi}]1)110d
B

€8T = (TYNDISON 9SW ‘€8T **'°.:[/S2T]Pd11ul 9@:95:0T 9

99/£69VOET

a

i

(T)aso1d

Aew<pe>

(960p *

(110N “{2E€95 "99LEEILOETYH) T
1=P1} "{NITT0d=S1U3A= “9=ps}])110d
(/+ PUBS 4/ T ‘T)umopinus

zes = (g "[{11€ *

CTUWT/POITYT PUBAIBSUNIAMND B80T T T/dLIH.}] ‘T)A3ITIM
© = (110N “{ZBPES ‘99LEEIYOET})ABPLOBUTIIAG
[{1N0710d=51U3A3 “T=p1} ‘{NIT10d=51U3A3 ‘g=ps}1}110d

“{1ve

‘T=P4}1) T = (86TF ‘T

99LE6OPOET = (T70N) 3UTL
(A1D3334TP 40 31T4 Ydns ON) LINIONI 1- = (>q39094aqxQ ‘.pMmssediy-/
(1usunbie PTLEAUL) TWANII T- = (666) ‘BpODODIAXD ', 1WlY’X3pU
0 = ({""" "IIE=SZTS 35 ‘pp90|93Y4I S=3pow 3s} ,1wiyx;
0 = ({"'* "960y=SZTS 35 '£5.0|WIAQ4I S=Spouw 3Is}
(3usunbie PT1BAUI) TWANII T- = (666 ‘89690910%0 .
TeE = (889 °°°.T1°0°89T°Z6T :3SOHUNIAT T/dLIH / 139. T)peas
@ = (1NN {11€0S ‘99/£69vOET})AepioswT33ab
‘1=p+}1) 1 = (1ez¥ 'z ‘[{NT1T0d=S3uan3 “1=p4} "{NITI04=sS3usa3 ‘@=p:}1)110d

([{NIT10d=s3uanas

(@1ge1Teneun A1Tieiodwa) @3inosay) NIVOYI 1-

‘1707891 ZEL 444451,

(Iszr]l‘8evie949x0 '0)3dadde
(»2078NON 0ldMId 0 ‘14135 4 ‘T)P913uds
_ (14139 3 ‘T)v913uny

- _(33x3072 04 ‘04135 4 T)913uds
T = ([8z] “{o=pT adods guTs ‘g=o0juTMols 9uTs ' (Jppe gu
*913NI dw)uoid 33uT ‘(ZLE@¥)suoly=3iod guis ‘gIINI dJy=A1Twey es} ‘g)idadde
8 = (1IN “{6vSiv "99.€69vBET}) Aepioawriyyab
‘e=p4H1) T ‘' [{NITTI0d=s3uan3

]
(umod 0 sbery) zxe
i

{[{NITT0d=S3uan31 = f{@e6¥ ‘T ‘@=p4}1)110d

8 = (TINN “{€LL1SZ 'S9LEBEITOET})AvpioawTldab
3Tnb 03 3dnJJ3IUT - PIYILIIE SPBT SSIV04d
<081 d- 228435 [~ wA A3Tan2asBicod]

#[~ wA A3Tan22s®1004]1

#[~ wA A37an22sB1004]1

#[~ WA A3Tan22s®1004]

og daub | 21u- 3easizu [~ wa AiTan23sdiood]
@00EX0:sSa.ppe 2seg T1:3dnii2iul
(873 £78T) zezeT:s33Ag XL (4TH 9°LT) 9TIBL:S334g ¥y
@00T:u212nanbx3 @:SUOTST1102
@:42TJed gisuniiaA0 gipaddosp BisJodi2 ZeTisiaxzed XL
@:2wel) @isuniiano p:paddoip @:Si0113 99T:s1awded Xu
T:OTJ13W GOSTNLW ISYOTLINN INIMNNY 1SWIQvoud dn
MUTT:8000S $9/9SHEZTaLi 4L ibS0S: 10834 FIDPE 91aUT
©'0°0°SSZ:¥SEW S5Z°SSZ'SSZ OT:1SEdd OI°8°0°0T:dppe 1auT

9S:pEIZTI00:YSIZS JOPEMH 13UJBUIT:dedUa NuT1 oua

0U1I3 BTJUOIST #[~ WA A1TINd3sD1004]

disH jeunwal maiR ypd anF

~:WA A311IN33583001

([{dnHT10d INT1T0d=53uA24

rr.und ST PA33NI<ITULIL=<0
([{1noTlod=s1uanals -

(Ai01

([{NITT0d=53u3A31
(a1ge1TRARUN

TST CLTT0°89T TETIAAILIC,

N3LSIT

[#1~ wa uet3anpoiddiooa]
Pau2eIaP LSBT $52204d

< PAYSTUTIUN> Ju6SEY T “[{NITI0d=s3u=a2 “p=p:}l)11ed
5 6= (1)ase12
€8T = (IYNIISON 9SW €8T " " .:[£S8TIPd33Ul ST:vS:0L 9 ARW<OE>. "£)puas
SS9EEIFOET = (17NN) 2wt
0= {968y " .. T)PEd
8 = (1IN “{6T11068 "SSIEEITOET})ARPLoawTII0
‘T=p4}1) T = (805 ‘Z ‘[{NIT10d=S3uaAa *T=p4} *{NITI0d-53u2A2 “B=p:}1)110d
G (/+ PU3S «/ T ‘T)umopinys
ess = (g “[{rte *
WIH>UN<TWIH>.} “{TrZ ** ' .2/Pd21ul :J23AJ3aSUNINND 802 T'T/dlIH.}] ‘T)a23Tim
@ - (110N ‘{regess ‘SS9EE9OET})ARpLoauTIIal
1=ps}1) T = (19g¥ ‘Zz ‘[{1N0TI0d=S1uana *T=ps} ‘{NIT104=S1u3A3 “e=ps}]1)110d
SS9EGILEET = (1INN) BwTL
33JTP 40 B1TL UINS ON) INJONI 1- = (303gp91axe ‘.pMssediy’
(3uBunbie PT1EAUI) TYANI3 T- = (666¢ 'E8v0989I0XD ‘. 1Wlu X3puT
® = ({"'" *1I€=3ZTS 15 *$+90 /93441 S=3pow 15} ‘.1wlu"xap

© = ({"'" *960Yy=32ZTS 15 '£5/@|YI04T S=apouw 15}

(1uaunbiie pTiEAUI) TWANIS 1- = (6667 ‘8909091a%@ ‘.,)}uT1pEal
186 = (009 *°°'.T°0°891°T6T 1SOHUNINT T/dLIH / 139, ‘T)pead

@ = (7NN ‘{r16.82 'S59E69FOET})AeploawTIIA6

‘1=Pi}1) T = (29g+ 'z ‘[{NIT10d=53UaA3 *T=p1} ‘{NIT10d=S1u3ra ‘@=pi}])110d
A1Tleiodway 23.inosay) NIVOVI T- _(lgzil_‘Berie9igxe ‘0)idasde
(%2078NON 0luMaY 0 *74135 4 "T)¥913udL

a
(uMad 0 sbevd) zxe

_ (1413974 "TIv913udg

0= (33X3070 04 "Q413S 4 ‘T)b913ud)

T = ([gz] *{0=PT 3d0>s QUTS ‘@=0JUTMO1) QUTS ‘(Ippe 9u

“913NI dv)uoid 13uT ‘(pIBES)SUOIY=110d QUTS 'QLINI Jv=A1Twey es} ‘g)idasrse

© = (71NN '{Z6T£88 'SSIEE9POET})IAEPLOSUTIISG
*0=P4}1) T = (B66F 'T '[{NIT10d=S1u3A3 ‘g=ps}])110d
8 = (110N '{0908SZ 'SSIEEIPOET})AEPLIOaUTIIZE

© 11e> pa1dniiajut Butwnsal - ->)11e35As jaeysal
3Tnb 01 3dnuialuT - paydelIE £GBT SS3D04d

£58T d- 358435 #[~ wA uoTIdnposddioos]

#[~ wA uoT3dnpoaddioos]

] 0 day
WA uoTI5NPodPi00.]

([{NITT0d=S1uaA31

8= (<

08t
68 246 | 31u- 3e3sisu gl-

00pexp:ssaippe aseg [1:3dniiajul
(8T 9-@s) 9/815:533Aa X1 (AT € /¥) 69rBF:s33hq
900T:Ua1ananbxy g:sSUOTSTI10D
@:19TJeD gisuniiano gipaddolp pisioiia [sEisiaxsed xI
@i2uWels @iSuNiiaA0 @:ipaddolp @iSJ01J2 SEpisiawded xu
Ti2TJ23W OOSTNIW ISYILLINW ININNNY 1SYIOYOud dn
MUTT:2000S $O/9SPEZT2L:44i PSS 10824 (IpPR 91aUT
0°SSZ°SSZTSSZiWSEW SSZ°0 891 Z61:15228 OT°0 891 Z6TiJPpE 2a3uT
9SiPEIZTI00:PSIZS JPREMH 32uJ3uldidedua NuTl ou3a
BY32 BTLU0DLT #[~ wA uoTiznpolddicod]

disH jeunwal maik eI and

~iwA uononpoid@lool

f strace results of the thttpd
ide the VM (on the bottom)

and out-grafted to another VM (on the top)

son o

: Compari

Figure 4

itoring as well as the slowdown to the out-grafted process
itself. The platform we use is a Dell T1500 system con-

taining an Intel Core i7 processor with 4 cores, running at

ing ins

server when runn

2.6 GHz, and 4 GB RAM. The host OS is 32-bit Ubuntu

efficient behavioral monitoring techniques such as OmniUn-
pack [26] have been developed to perform real-time monitor-

10.04 (Linux kernel 2.6.32) and the guests run 32-bit Fedora

10 (Linux kernel 2.6.27).

Both VMs are configured with 1

ing of a process’ behavior by tracking the pages it writes to
and then executes from. When the process invokes a “dan-

virtual CPU each. The production VM is configured with
2047 MB memory and the security VM is configured with
1 GB memory. Table 1 lists the detailed configuration. In

all experiments, the two VMs are pinned to run on separate

gerous” system call, OmniUnpack looks up its page list to

determine whether any previously written page has been ex-

ecuted from. If so, this indicates packing behavior, at which
point a signature-based anti-virus tool can be invoked to

CPU cores in the host (using the Linux taskset command).

First, we measure the

Production VM overhead
slowdown experienced by the VM (i.e.

check the process’ memory for known malware. Since Om-

other normal pro-

niUnpack was developed only for Windows and also is not

Table 1: Software Packages in Our Evaluation

Name Version Configuration
Host OS Ubuntu 10.04 | Linux-2.6.32
Guest OS Fedora 10 Linux-2.6.27
SPEC CPU 2006 1.0.1 integer suite
Apache 2.2.10 ab -¢ 3 -t 60
thttpd 2.25b ab-c1-t 60

Normalized overhead (%)
SIS
I
i

perlbench -

[

[

]

E

]

o

j O
i

:

omnepp - |
C

xalanbnchmk - [T

libquantum -

Figure 5: Production VM Slowdown with a Con-
tending Process Out-grafted

cesses running in it) when we out-graft an unrelated pro-
cess for monitoring. Specifically, we choose a standard CPU
benchmark program, i.e., SPEC CPU 2006, and run it twice
(1) either with another CPU-intensive process that spins in
an infinite loop inside the same VM (2) or with the CPU-
intensive process out-grafted to another VM. Our results
show benchmarks experience speedups after out-grafting the
CPU-intensive process. This is expected as a contending
process has been moved to execute in a different VM for
monitoring, which is running on a different core. This also
confirms the monitoring overhead has been localized inside
the security VM, not the production VM. Next, we measure
the impact to Apache and pigz (or parallel gzip) when they
run together either with thttp out-grafted or not. In our ex-
periments, Apache and thitpd listen on different TCP ports,
but their network traffic is handled by the same production
VM kernel. Our results are shown in Figure 5. It is interest-
ing to note that when thitpd is out-grafted, it is scheduled
more often (since both Apache and pigz dominate it when
they run in the same VM). However, the redirected system
calls from thttpd will not get serviced until the stub is sched-
uled for execution in the production VM, thus its impact to
the dominant processes is still low. Finally, we also mea-
sured the time it takes to identify the state for out-grafting
during which time the production VM is paused. While this
would vary depending on the memory size of a process, we
observed an average time of ~ 250us in our current exper-
iments. Opportunities still exist to further reduce it (e.g.,
with lazy updates — Section 5).

Out-grafted process slowdown Second, we measure
the slowdown an out-grafted process may experience due
to the fact that it is running in a different VM. For this,
we first measure slowdown in two out-grafted processes: (1)
The first one is a simple file copy command that transfers a
tar file (421MB) from one directory to another in the pro-
duction VM, which will result in lots of file-accessing system
calls being forwarded. (2) The second is thitpd, for which we
generate traffic using the ab benchmark program. In each
set of experiments above, we have rebooted both VMs and
physical machine after each run to avoid any caching in-
terference. The average slowdown experienced by them is
35.42% and 7.38%, respectively. Moreover, we run a micro-

benchmark program to measure the system call delay expe-
rienced by sys_getpid(). Our result shows that the average
time of invoking sys_getpid() is ~ 11us. As sys_getpid() sim-
ply obtains the process ID (after it has been forwarded), its
slowdown is approximately equivalent to the system call for-
warding latency.

5. DISCUSSION

While our prototype demonstrates promising effectiveness
and practicality, it still has several limitations that can be
improved. For example, our current prototype only supports
out-grafting of a single process. A natural extension will
be the support of multiple processes for simultaneous out-
grafting. Note it is cumbersome and inefficient to iterate
the out-grafting operation for each individual process. From
another perspective, simultaneous out-grafting of multiple
processes can also lead to the unique scenario where multiple
security VMs can be engaged in monitoring different groups
of out-grafted processes or different aspects of behavior.

Also, our current way of handling sys_erecve() can be
improved. Specifically, as this system call will completely
change the memory layout of the out-grafted process, our
current prototype simply chooses to first restore the pro-
cess back to the production VM and then out-graft again
the process immediately after this system call is completed
by the production VM. Though this approach can leverage
the functionalities we already implemented for graft_process
and restore_process, an integrated solution is still desired.
Moreover, our current prototype proactively maps all the
(user-mode) memory pages at the very beginning when a
process is out-grafted. A better solution will be to only map
the currently executing code page to the security VM. For
the rest of the pages, they can be lazily mapped when they
are being actually accessed. This could further improve our
system performance.

One caveat we experienced in our prototype development
is related to shared pages. Specifically, most commodity OSs
map the same physical pages for common shared library code
among different processes. In our system, this means that
a single host-physical page can contain code that is used
across multiple processes in the production VM. Recall that
our system directly maps this host-physical page to the out-
grafted process in the security VM. If the monitoring tool
modifies such code page (say to install certain code hooks),
this could alter other process’ behavior in the production
VM. Fortunately, this can be resolved in a straightforward
manner by co-operating the helper module and KVM to
mark all executable code pages for the out-grafted process
as read-only in the EPT. By applying the classic copy-on-
write technique, if the monitor process (not the out-grafted
process) attempts to write to this page, a separate copy of
the page can be created.

Finally, with the wide adoption of virtualization in data
centers, we also envision that different security VMs can be
dispatched to each physical machine to inspect running guest
VMs and their internal processes (for fine-grained execution
monitoring). This is largely feasible as the semantic gap has
been effectively bridged to support existing monitoring tools.
On the other hand, with our current focus on examining in-
dividual suspect process for malicious behavior, we believe
other interesting applications and opportunities (e.g., per-
formance monitoring and intelligent parallel job scheduling)
remain, which we plan to explore in the future.

6. RELATED WORK

Virtualization has been widely proposed to address vari-
ous computer system problems, including enhancing the ef-
fectiveness and robustness of host-based monitoring tools.
Specifically, it has been applied in offline malware analy-
sis [9, 11], honeypot-based malware capture [20], intrusion
analysis [23, 24] and malware detection [15, 21]. Among the
most notable, Livewire [15] pioneered the concept of placing
a monitor “out-of-VM” and applying VM introspection tech-
niques to understand in-VM activities. A number of recent
systems address the inherent semantic gap challenge to im-
prove VM introspection for various purposes [8, 10, 21, 30,
31, 37]. For instance, one recent work Virtuoso [12] aims to
effectively automate the process of building introspection-
based security tools. Another system [10] proposes injecting
stealthy agents into a monitored VM to solve the seman-
tic gap problem and enhance out-of-VM tools. Similar to
most of these efforts, our approach places security tools out-
of-VM. However, our approach mainly differs from them in
the way to address the semantic gap challenge. In particu-
lar, while prior approaches are sensitive to particular guest
kernel versions or patches, our approach brings the suspect
process to the security tool and allows for native support
of existing tools. In other words, by effectively removing
the semantic gap, our approach enables re-use of existing
user-mode process monitoring tools. Further, our approach
localizes the impact on the out-grafted process and avoids
perturbing the monitored VM as a whole.

From another perspective, one recent system SIM [34] uti-
lizes hardware features to place an “in-VM” monitor in a
hypervisor-protected address space. While it is not physi-
cally running out-of-VM, SIM still suffers from the semantic-
gap and cannot natively support existing monitoring tools.
In other words, though the in-VM presence leads to unique
performance benefits, there is a need to adapt existing tools
to take advantage of the SIM support. Also, the main goal
of SIM is to protect “kernel hook”™based monitors. Another
recent system Gateway [38] leverages virtualization to de-
tect kernel malware by monitoring kernel APIs invoked by
device drivers. In contrast, our focus is for fine-grained
process-level execution monitoring (e.g. ltrace) that typi-
cally requires user-mode interception. Process implanting
[22] is another “in-VM” approach, where an “undercover
agent” process is dynamically implanted in a target VM for
surveillance and repair operations. Contrary to process out-
grafting, process implanting relies on the integrity of the
target VM’s kernel and requires special modification to the
program executed by the implanted process.

Process out-grafting requires redirecting the process exe-
cution across two different VMs, which bears certain simi-
larities to well-known process migration mechanisms [28, 29,
35, 36]. However, one key difference is that process migra-
tion techniques typically move the entire execution states,
including kernel-maintained resources while our approach
only (temporarily) redirects the user-level execution of a
process for secure monitoring. Moreover, most process mi-
gration techniques are typically applied for generic purposes
such as fault-tolerance and load-balancing [28, 35] and do
not consider the isolation challenge for secure monitoring.

We also notice that the idea of system call forwarding has
been previously applied in systems to protect a critical ap-
plication from an untrusted kernel [39]. In this case, a pro-
grammer can divide system calls into two sets so that each

set will be serviced by either a trusted or untrusted ker-
nel, respectively. In contrast, throughout the out-grafting
duration, our system has one single kernel to serve all sys-
tem calls for the out-grafted process. Moreover, due to the
relocated user-level execution, we need to perform mode-
sensitive split execution, which leads to an extra but unique
need of forwarding page faults. System call forwarding be-
tween VMs has also been used [27] to improve the fidelity of
runtime environment for better malware behavior monitor-
ing, albeit without isolation guarantees. In contrast, we aim
to address compatibility of existing process monitoring tools
while ensuring their strong isolation in the context of VM
introspection. Further, we dynamically create the memory
mapping for the out-grafted process between the production
VM and security VM. Also, our on-demand grafting allows
for dynamically grafting the execution first and then restor-
ing the execution back.

More generally, sandboxing and isolation techniques [14,
16, 32] have been widely researched and applied as effec-
tive mechanisms to confine an untrusted process’ access to
sensitive resources in the host system. Our work is related
to them by essentially leveraging the VM isolation provided
by the underlying virtualization layer. However, with an
out-of-VM approach, process out-grafting can be applied
on-demand, which provides certain flexibility in monitoring
runtime behavior of suspect processes. Also, our approach
is unorthodox when compared with traditional sandboxing
and isolation techniques due to its split execution, i.e., the
user-mode and kernel-mode execution of an out-grafted pro-
cess run in two different VMs.

7. CONCLUSION

We have presented the design, implementation and eval-
uation of process out-grafting, an architectural approach to
address isolation and compatibility challenges in out-of-VM
approaches for fine-grained process-level execution monitor-
ing. In particular, by effectively relocating a suspect pro-
cess from a production VM to the security VM for close
inspection, process out-grafting effectively removes the se-
mantic gap for native support of existing process monitor-
ing tools. Moreover, by forwarding the system calls from
the out-grafted process back to the production VM, it can
smoothly continue its execution while still being strictly iso-
lated from the monitoring tool. The evaluation results with
a number of performance benchmarks show its effectiveness
and practicality.

Acknowledgements The authors would like to thank
the anonymous reviewers for their insightful comments that
helped improve the presentation of this paper. This work
was supported in part by the US Air Force Office of Scientific
Research (AFOSR) under Contract FA9550-10-1-0099 and
the US National Science Foundation (NSF) under Grants
0852131, 0855297, 0855036, 0910767, and 0952640. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the AFOSR and the NSF.

8. REFERENCES

[1] Kaiten. http://packetstormsecurity.org/irc/kaiten.c.
[last accessed: May 2011].

[2] Kernel Virtual Machine. http://www.linux-kvm.org. [last
accessed: May 2011].

(3]

(4]
(5]

[6]

[7]
(8]

[9]

(10]

11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

McAfee Threats Report: Fourth Quarter 2010.
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q4-2010.pdf. [last accessed: May
2011].

QEMU. http://www.qemu.org. [last accessed: May 2011].
UPX: The Ultimate Packer for eXecutables.
http://upx.sourceforge.net. [last accessed: May 2011].
Apams, K., AND AGESEN, O. A Comparison of Software
and Hardware Techniques for x86 Virtualization. In
Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems (2006).

AMD. AMD-V Nested Paging. AMD White Paper (2008).
AzaB, A. M., NING, P., SEZER, E. C., AND ZHANG, X.
HIMA: A Hypervisor-Based Integrity Measurement Agent.
In Proceedings of the 25th Annual Computer Security
Applications Conference (2009).

BAYER, U., KRUEGEL, C., AND KIrRDA, E. TTAnalyze: A
Tool for Analyzing Malware. In Proceedings of the 15th
Annual Conference of the European Institute for Computer
Antivirus Research (2006).

CKER CHIUEH, T., CONOVER, M., Lu, M., AND MONTAGUE,
B. Stealthy Deployment and Execution of In-Guest Kernel
Agents. In BlackHat 2009.

DINABURG, A., RovaL, P., SHARIF, M., AND LEE, W.
Ether: Malware Analysis via Hardware Virtualization
Extensions. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (2008).
Doran-Gavirr, B., LEek, T., ZHivicH, M., GIFFIN, J.,
AND LEE, W. Virtuoso: Narrowing the Semantic Gap in
Virtual Machine Introspection. In Proceedings of the 32nd
IEEE Symposium on Security and Privacy (2011).
FORREST, S., HOFMEYR, S., AND SOMAYAJI, A. The
Evolution of System-Call Monitoring. In Proceedings of the
24th Annual Computer Security Applications Conference
(2008).

GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A
Delegating Architecture for Secure System Call
Interposition. In Proceedings of the 11th Annual Network
and Distributed System Security Symposium (2004).
GARFINKEL, T.; AND ROSENBLUM, M. A Virtual Machine
Introspection Based Architecture for Intrusion Detection.
In Proceedings of the 10th Annual Network and Distributed
Systems Security Symposium (2003).

GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER,
E. A. A Secure Environment for Untrusted Helper
Applications: Confining the Wily Hacker. In Proceedings of
the 6th USENIX Security Symposium (1996).

Guo, F., FERRIE, P., AND CHIUEH, T.-c. A Study of the
Packer Problem and Its Solutions. In Proceedings of the
11th International Symposium on Recent Advances in
Intrusion Detection. (2008).

INTEL. Intel Virtualization Technology: Hardware Support
for Efficient Processor Virtualization. Intel(R) Technology
Journal 10, 3 (2006).

INTEL. Intel 64 and IA-32 Architectures Software
Developers Manual Volume 3: System Programming
Guide, Part 1 and Part 2, (2010).

JIANG, X., AND WANG, X. “Out-of-the-Box” Monitoring of
VM-Based High-Interaction Honeypots. In Proceedings of
the 10th International Symposium on Recent Advances in
Intrusion Detection (2007).

JIANG, X., WANG, X., AND XU, D. Stealthy Malware
Detection through VMM-based “Out-of-the-Box” Semantic
View Reconstruction. In Proceedings of the 14th ACM
Conference on Computer and Communications Security
(2007).

Gu, Z., DENG, Z., Xu, D., AND JIANG, X. Process
Implanting: A New Active Introspection Framework for
Virtualization. In Proceedings of the 30th IEEE Symposium
on Reliable Distributed Systems (2011).

23]

(24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

37)

(38]

39]

[40]

JosHi, A., King, S. T., Dunrar, G. W., AND CHEN, P. M.
Detecting Past and Present Intrusions through
Vulnerability-specific Predicates. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (2005).
King, S. T., AND CHEN, P. M. Backtracking Intrusions. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (2003).

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
Cock, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
Koranski, R., NOrrisH, M., SEWELL, T., TucH, H., AND
WINWOOD, S. sell4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd Symposium on Operating
Systems Principles (2009).

MARTIGNONI, L., CHRISTODORESCU, M., AND JHA, S.
OmniUnpack: Fast, Generic, and Safe Unpacking of
Malware. In Proceedings of the 23rd Annual Computer
Security Applications Conference (2007).

MARTIGNONI, L., PALEARI, R., AND BruUscHI, D. A
Framework for Behavior-Based Malware Analysis in the
Cloud. In Proceedings of the 5th International Conference
on Information Systems Security (2009).

NuTTALL, M. A Brief Survey of Systems Providing Process
or Object Migration Facilities. ACM SIGOPS Operating
Systems Review 28 (1994).

OSMAN, S., SUBHRAVETI, D., Su, G., AND NIEH, J. The
Design and Implementation of Zap: a System for Migrating
Computing Environments. ACM SIGOPS Operating
Systems Review 36 (2002).

PAYNE, B., DE CARBONE, M., AND LEE, W. Secure and
Flexible Monitoring of Virtual Machines. In Proceedings of
the 23rd Annual Computer Security Applications
Conference (2007).

PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.
Lares: An Architecture for Secure Active Monitoring Using
Virtualization. In Proceedings of the 29th IEEE Symposium
on Security and Privacy (2008).

Provos, N. Improving Host Security with System Call
Policies. In Proceedings of the 12th USENIX Security
Symposium (2003).

RovaL, P., HALpPIN, M., DAGON, D., EDMONDS, R., AND
LEE, W. PolyUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware. In Proceedings of
the 22nd Annual Computer Security Applications
Conference (2006).

SHARIF, M. 1., LEE, W., Cui, W., AND LANZI, A. Secure
In-VM Monitoring Using Hardware Virtualization. In
Proceedings of the 16th ACM Conference on Computer and
Communications Security (2009).

SmitH, J. M. A survey of process migration mechanisms.
ACM SIGOPS Operating Systems Review 22 (1988).
SMITH, J. M. The Design and Implementation of Berkeley
Lab’s Linux Checkpoint/Restart. Berkeley Lab Technical
Report (2002).

SRIVASTAVA, A., AND GIFFIN, J. Tamper-Resistant,
Application-Aware Blocking of Malicious Network
Connections. In Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection
(2008).

SRIVASTAVA, A., AND GIFFIN, J. Efficient Monitoring of
Untrusted Kernel-mode Execution. In Proceedings of the
18th Annual Network and Distributed Systems Security
Symposium (2011).

Ta-MiN, R., LitTy, L., AND LIE, D. Splitting Interfaces:
Making Trust between Applications and Operating Systems
Configurable. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (2006).
WANG, Z., AND JIANG, X. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. Proceedings of the 31st IEEE Symposium on
Security and Privacy (2010).

