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ABSTRACT
This paper presents HyperSentry, a novel framework to en-
able integrity measurement of a running hypervisor (or any
other highest privileged software layer on a system). Unlike
existing solutions for protecting privileged software, Hyper-
Sentry does not introduce a higher privileged software layer
below the integrity measurement target, which could start
another race with malicious attackers in obtaining the high-
est privilege in the system. Instead, HyperSentry introduces
a software component that is properly isolated from the hy-
pervisor to enable stealthy and in-context measurement of
the runtime integrity of the hypervisor. While stealthiness
is necessary to ensure that a compromised hypervisor does
not have a chance to hide the attack traces upon detect-
ing an up-coming measurement, in-context measurement is
necessary to retrieve all the needed inputs for a successful
integrity measurement.

HyperSentry uses an out-of-band channel (e.g., Intelli-
gent Platform Management Interface (IPMI), which is com-
monly available on server platforms) to trigger the stealthy
measurement, and adopts the System Management Mode
(SMM) to protect its base code and critical data. A key con-
tribution of HyperSentry is the set of novel techniques that
overcome SMM’s limitation, providing an integrity measure-
ment agent with (1) the same contextual information avail-
able to the hypervisor, (2) completely protected execution,
and (3) attestation to its output. To evaluate HyperSentry,
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we implement a prototype of the framework along with an
integrity measurement agent for the Xen hypervisor. Our
experimental evaluation shows that HyperSentry is a low-
overhead practical solution for real world systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-

vasive software

General Terms
Security
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Virtualization, Hypervisor Integrity, Integrity Measurement

1. INTRODUCTION
A hypervisor, a.k.a. Virtual Machine Monitor, is a piece

of software that manages the sharing of a hardware platform
among multiple guest systems. Hypervisors have a relatively
small code base and limited interaction with the external
world. Thus, they were assumed to be well-protected and
easily verifiable. Therefore, hypervisors played an impor-
tant role in many security services proposed recently (e.g.,
Terra [14], Lares [23], HIMA [3], vTPM [5] and SIM [30]).

Unfortunately, hypervisors did not turn out to be com-
pletely secure. A perfect example is Xen [1], which is a pop-
ular hypervisor used in Amazon’s Elastic Compute Cloud
(EC2) [2]. Recent attacks showed that Xen’s code and data
can be modified at runtime to allow a backdoor functional-
ity [36]. Although all known backdoors were immediately
patched, the growing size of Xen (currently :230K lines of
code) clearly indicates that there would be more vulnera-
bilities and consequently more attacks. As a matter of fact,
there are at least 17 vulnerabilities reported for Xen 3.x [28].

The growing size of hypervisor’s code base is not limited
to Xen. It is a general trend in most popular hypervisors
due to the need of supporting multiple production hardware
and combinations of different guest operation modes. For
instance, there are at least 165 vulnerabilities reported in
the VMware ESX 3.x bare-metal hypervisor [27].

The above discussion indicates that hypervisors do face
the same or similar integrity threats as traditional operating
systems. It is thus necessary to protect, measure, and verify
the integrity of hypervisors. It is relatively easy to verify
the integrity of the hypervisor at system boot time (e.g., via
trusted boot). The true challenge lies in the measurement
of hypervisor integrity at runtime.



1.1 Previous Attempts
The protection of the highest privileged software on a com-

puter system has been investigated for several decades. A
common approach is to place another smaller higher priv-
ileged software layer (e.g., a hypervisor or a micro-kernel)
below the intended measurement target. However, we have
repeatedly encountered the same issue: Once a higher priv-
ileged software is introduced (and becomes the new highest
privileged software), how to provide protection for this newly
introduced software layer?

A few recent attempts [24, 36, 22, 34] tried to tackle a
more specific problem: using an independent component
(that is out of the control of the highest privileged software)
to measure the integrity of the highest privileged software
on a system. Unfortunately, none of them was successful.

Copilot [24] uses a special PCI device dedicated to mea-
sure the code base of a running system. Although Copilot is
neither modifiable nor detectable by the running system, it
has two main drawbacks. First, there is a semantic gap be-
tween the code running on the PCI device and the running
system. The PCI device cannot access the CPU state (e.g.,
CR3 register), which is essential to the integrity measurement
process. Second, there are existing attacks [25] that can pre-
vent Copilot, or any other PCI RAM acquisition tool, from
correctly accessing the physical memory using the hardware
support of protected memory ranges (e.g., Intel VT-d).

HyperGuard [36] and HyperCheck [34] are two frame-
works that provide integrity measurement of hypervisors.
Both frameworks rely on the SMM, which provides hard-
ware protection for the integrity measurement code. How-
ever, both HyperCheck and HyperGuard suffer from serious
limitations. First, none of these frameworks provide a way to
trigger the integrity measurement without alerting the Hy-
pervisor. Hence, they are both vulnerable to the scrubbing

attack, where a compromised hypervisor can clean up the
attack traces before the integrity measurement starts. Sec-
ond, neither HyperGuard nor HyperCheck solve the techni-
cal problems associated with running a measurement agent
in the SMM on a platform with hardware assisted virtualiza-
tion (e.g., Intel VT). For example, the hypervisor context is
hidden in the CPU if the SMM interrupts a guest VM rather
than the hypervisor [7].

Flicker [22] uses the measured late launch capability to
run a verifiable and protected program from a secure state.
One of the proposed uses of Flicker is to run a rootkit de-
tector, which can be modified to do integrity measurement,
and attest to its output to a remote user. However, Flicker’s
rootkit detector is directly vulnerable to the scrubbing at-
tack because the measurement target (the running system) is
the one responsible for invoking the integrity measurement.

1.2 Challenges
The above review testifies to the limitations of past ef-

forts and challenges we face. To overcome these challenges,
a good solution has to have the following capabilities. First,
the integrity measurement has to be stealthily invoked so
that a compromised hypervisor does not get the chance to
scrub traces of previous attacks. Achieving this capabil-
ity is complicated by the fact that hypervisors can capture
all events that occur inside the system. Second, the mea-
surement agent has to be verifiable despite the hypervisor’s
ability to tamper with any code or data stored in the sys-
tem memory. Third, the measurement agent execution has

to be deterministic and non-interruptible. In particular, the
hypervisor should not be able to interrupt its execution or
modify its intermediate or final measurement output. This
property is challenged by the fact that many control-flow
transfers (e.g., interrupts) normally trap into the hypervi-
sor. Fourth, the measurement agent should be capable of
doing in-context measurement that reveals the entire CPU
state essential for integrity measurement, given that the hy-
pervisor exclusively runs at the highest privilege level. Fi-
nally, the measurement technique should provide attestation

to the authenticity of the measurement output, given that
hypervisors have full control over the system both before
and after the measurement process.

1.3 Introducing HyperSentry
In this paper, we present HyperSentry, a framework that

supports stealthy in-context integrity measurement of a run-
ning hypervisor (or any other highest privileged software).
HyperSentry’s main focus is not on integrity measurement
itself. Instead, HyperSentry aims to provide all the required
support for an integrity measurement agent to verify the
integrity of the highest privileged software.

HyperSentry differs from the rich body of research on as-
suring the integrity of privileged software. HyperSentry does
not introduce a higher privileged layer to measure the in-
tegrity of privileged software. Instead, by harnessing exist-
ing hardware and firmware support, HyperSentry introduces
a software component properly isolated from the hypervisor
to enable the integrity measurement. In other words, Hyper-
Sentry relies on a Trusted Computing Base (TCB) composed
of hardware, firmware and a software component properly
isolated from the highest privileged software.

HyperSentry is triggered by an out-of-band communica-
tion channel that is out of the control of the system’s CPU
and consequently the highest privileged software. HyperSen-
try uses a novel technique to maintain the stealthiness of its
invocation despite the ability of the hypervisor to block or
reroute all the system’s communication channels. The out-
of-band channel is used to invoke a System Management In-
terrupt (SMI) on the target platform to trigger HyperSentry.
In this paper, we use Intelligent Platform Management In-
terface (IPMI) [17], which is commonly available on server
platforms, to establish this out-of-band channel. Neverthe-
less, HyperSentry can also use any mechanism that can trig-
ger SMIs without going through the CPU (e.g., Intel Active
Management Technology (AMT) [16]).

HyperSentry resides in the SMM, which provides the pro-
tection required for its base code. However, the SMM does
not offer all the necessary contextual information needed
for integrity measurement. To achieve in-context measure-
ment, HyperSentry uses a set of novel techniques to (1) set
the CPU to the required context, and (2) provide a verifi-
able and protected environment to run a measurement agent
in the hypervisor context. Hence, it has full access to the
correct CPU state and consequently all the required input
for integrity measurement. Finally, HyperSentry presents a
novel technique to attest to the measurement output.

Although there are existing approaches that rely on the
SMM to initiate runtime integrity measurement, HyperSen-
try solves the real-world problems involved in this process
using commodity hardware. In particular, HyperSentry pro-
vides a stealthy measurement invocation, in-context integrity



measurement, and attestable output. No existing solution
provides these capabilities combined.

We implement a prototype of HyperSentry on IBM Blade-
Center H chassis with HS21 XM blade servers [6]. To vali-
date HyperSentry, we implement an integrity measurement
agent to verify the integrity of the Xen hypervisor [1]. Xen
is chosen because it is both popular and open source, and
has previously struggled with some security bugs. However,
HyperSentry can be adopted to verify the integrity of any
privileged software (e.g., another hypervisor or OS kernel).

We perform a set of experiments to evaluate our Hyper-
Sentry prototype. The end-to-end time for the measurement
process, excluding output signing, is about 35ms, which is
reasonable given that the hypervisor integrity measurement
should not be a frequent operation. To support this hy-
pothesis, we use a benchmark to measure the performance
overhead on guest VMs. If HyperSentry is periodically in-
voked every 16s, the average overhead is less than 1.3%.

1.4 Summary of Contributions
We make the following contributions in this paper:

• For the first time, we provide a complete and feasible
solution to measure the integrity of privileged system
software without placing a higher privileged software
layer below. This enables the integrity measurement
of the highest privileged software layer on a system.

• We develop a concrete framework to enable an agent
to measure the integrity of the highest privileged soft-
ware. It harnesses the isolation provided by existing
hardware and firmware components to build the TCB
required by integrity measurement and to offer stealthy
invocation, in-context protected execution, and attes-
tation to the measurement agent.

• We solve a set of challenging technical issues associated
with the HyperSentry framework (e.g., revealing the
hypervisor context upon receiving an SMI, creating an
isolated environment for the measurement agent).

• We provide a thorough security analysis of HyperSen-
try. We prove that it is tamper-proof against any at-
tacks that can compromise the hypervisor. Moreover,
the measurement process is neither detectable nor in-
terruptible by a compromised hypervisor.

• We implement a prototype of HyperSentry on an IBM
BladeCenter using Xen as the measurement target. We
evaluate both the execution time needed by our mea-
surement code and its performance overhead on the
overall system performance.

The rest of this paper is organized as follows. Section 2
provides background information on SMM and IPMI. Sec-
tion 3 discusses our assumptions, threat model, and security
requirements. Section 4 presents HyperSentry in detail. Sec-
tion 5 discusses a case study of HyperSentry using Xen as the
measurement target. Section 6 presents the implementation
and experimental evaluation of our HyperSentry prototype.
Section 7 discusses related work, and Section 8 concludes
this paper with some future research directions. Additional
implementation details are given in the appendix.

2. BACKGROUND
In this section, we briefly give some background informa-

tion on System Management Mode (SMM) and Intelligent
Platform Management Interface (IPMI), which are used to
develop HyperSentry.

SMM: SMM is an x86 operating mode designed to handle
system management functions. The CPU enters the SMM
upon receiving an SMI, triggered by either software or hard-
ware events. SMM is an independent and protected envi-
ronment that cannot be tampered by software running on
the system. Moreover, SMM’s code is stored in a desig-
nated, lockable memory called SMRAM. Locking SMRAM
(through the memory controller’s D_LCK bit) prevents all ac-
cess to it except from within the SMM. Currently, all BIOS
manufactures lock the SMRAM before the system boots to
prevent SMM misuses. In this research, we installed a cus-
tomized BIOS on our hardware platform, which allows us to
add our SMI handler to the SMRAM before it is locked.

When an SMI is invoked, the hardware saves the current
CPU state to a dedicated state save map and switches the
context to the SMM. After the SMI finishes, it executes the
RSM instruction to resume the interrupted CPU operation.
All interrupts, including the non-maskable ones, are disabled
upon entering the SMM. Thus, even the hypervisor cannot
interfere with the SMI handler execution as long as the SM-
RAM is locked. Additional information on the SMM can be
found in [12] and [13], while more detailed information can
be found in Intel [7] and AMD [9] developer’s manuals.

IPMI: The current HyperSentry prototype takes advan-
tage of IPMI to introduce an out-of-band channel to stealthily
trigger the integrity measurement. IPMI is a server-oriented
platform management interface directly implemented in hard-
ware and firmware [17]. It is adopted by all major server
hardware vendors. The key characteristic of the IPMI is that
its management functions are independent of the main pro-
cessors, BIOS, and system software (e.g., OS, hypervisor),
and thus can bypass the hypervisor’s observation. IPMI re-
lies on a microcontroller embedded on the motherboard of
each server, called the Baseboard Management Controller
(BMC), to manage the interface between system manage-
ment software and platform management hardware. Remote
access to IPMI is usually authenticated (e.g., via SSH).

In this research, we use IPMI to reach the BMC on the
target platform’s motherboard to remotely trigger a hard-
ware SMI, which in turn triggers the integrity measurement
of the hypervisor. Nevertheless, the techniques developed
in this research can be used with any mechanism that can
remotely trigger hardware SMIs (e.g., Intel AMT [16]).

3. ASSUMPTIONS, THREAT MODEL, AND
SECURITY REQUIREMENTS

Assumptions: We assume that HyperSentry runs on a
system that is equipped with an out-of-band channel that
can remotely trigger an SMI (e.g., IBM BladeCenter). We
also assume that the target platform is physically secured
(e.g., locked in a server room) so that the adversary cannot
launch any hardware attack. Moreover, we assume that the
target platform is equipped with the TCG’s [31] trusted boot
hardware (i.e., BIOS with Core Root of Trust for Measure-
ment (CRTM) and Trusted Platform Module (TPM) [32]).
Thus, a freshly booted hypervisor can be measured and
trusted initially through trusted boot. Finally, we assume
that the SMRAM is tamper-proof. Recent incidents showed
that attackers were able to subvert the SMRAM using cache
poisoning [11, 37]. Fortunately, such attacks can be pre-
vented using proper hardware configurations (e.g., System
Management Range Register (SMRR) [7]).

Threat model: Our primary objective is to develop an



effective and efficient stealthy in-context measurement frame-
work. We address the“scrubbing attack”, which removes the
attack traces upon detecting a measurement attempt. We
assume that the adversary, once compromising the hypervi-
sor, will attempt to attack the measurement software and/or
forge measurement output. We focus on periodic integrity
measurement, and thus do not handle attacks that do not
cause a persistent change to the hypervisor.

Note that the exact integrity properties to be measured
(e.g., code integrity, control flow integrity) are determined
by the measurement agents supported by HyperSentry; they
are not the concern of HyperSentry. Nevertheless, in our
case study with the Xen hypervisor (Section 5), we do target
hypervisor code integrity and integrity of memory isolation
between different guest VMs.

Security Requirements: To defend against the above
threats, particularly attackers with control of the hypervisor,
HyperSentry needs to meet the following requirements:

• (SR1) Stealthy Invocation: HyperSentry needs to
be invoked without alerting the measurement target.
Otherwise, a malicious hypervisor would clean up pre-
vious attack traces before the measurement session be-
gins (i.e., the scrubbing attack).

• (SR2) Verifiable Behavior: The code base of the
measurement agent, along with the input data, should
be measured and verified before being invoked. This is
critical in ensuring that the adversary cannot modify
the measurement agent to influence its output.

• (SR3) Deterministic Execution: After the mea-
surement agent is invoked, it should be neither change-
able nor interruptible. If a compromised hypervisor re-
gains control during the measurement process, it can
scrub attack traces to mislead the measurement agent.

• (SR4) In-context Privileged Measurement: The
measurement agent should be privileged and in the
right context to access the hypervisor’s code and data,
and to gain full access to the CPU state.

• (SR5) Attestable Output: The measurement output
needs to be securely conveyed to the remote verifier.
The hypervisor should not be able to alter or forge the
measurement output.

4. THE HYPERSENTRY FRAMEWORK
Figure 1 shows the architecture of HyperSentry. Hyper-

Sentry assumes trust in the IPMI channel that is used to
trigger SMIs. (Note that HyperSentry can support any plat-
form that is equipped with an out-of-band channel that can
trigger SMIs.) Moreover, it trusts target platform’s hard-
ware, including the BMC, the TPM, and the SMRAM’s
hardware protection mechanism. HyperSentry is composed
of two software components: (1) the SMI Handler (located
in the SMRAM), and (2) the Measurement Agent (located
in the hypervisor).

HyperSentry’s Out-of-band Channel: Remote users
use the IPMI/BMC out-of-band channel to trigger Hyper-
Sentry to start the hypervisor integrity measurement. The
main challenge for this channel is how to maintain the stealth-
iness required to defend against the scrubbing attack.

HyperSentry’s SMI Handler: We establish trust in
the SMI handler through trusted boot, as shown in Figure 2.
The CRTM, which is a part of the BIOS, measures itself and
the code to be executed next. This process continues until

Hardware

Hypervisor SMI 
handler

BMC

Guest VM

Target platform IPMI 
communication channel

Remote
verifier

Measurement 
agent

Guest VM

Figure 1: HyperSentry’s architecture (Trusted com-
ponents are shown in gray.)

all components in the boot process are measured. During
the trusted boot, an initialization code copies the Hyper-
Sentry SMI handler to the SMRAM and locks the SMRAM
immediately to prevent any code, regardless of its privilege
level, from accessing or modifying it. The initialization code,
along with the SMI handler, is measured and extended into
one of the TPM’s Platform Configuration Registers (PCRs).
The TPM can further attest to the PCR values by signing
them using a protected attestation key.

Measures TPM
CRTM Stores

Measures

SMRAM
Stores

Initialization 
code

BIOS

Stores

Measures

Figure 2: Building trust in SMI handler

Note that the hypervisor is also measured during trusted
boot. However, the trust in the hypervisor cannot be sus-
tained due to its interaction with potential attackers. In
contrast, no software component can modify the SMI han-
dler’s code and data, and the trust in it can be maintained.

HyperSentry’s In-context Measurement Agent: The
main contribution of this paper lies in our novel techniques
to enable an in-context measurement agent. Upon receiv-
ing an integrity measurement request, HyperSentry needs to
access the hypervisor’s code, data, and CPU state to carry
out the measurement process. However, the SMM does not
provide all the contextual information required by integrity
measurement (e.g., the hypervisor’s CPU state, which is not
entirely retrievable in the SMM). To solve this problem, we
develop new techniques that exploit the hardware features
to enable the actual measurement agent to run in the pro-
tected mode in the context of the hypervisor.

In the following, we present the key techniques in Hyper-
Sentry in detail.

4.1 Stealthy Invocation of HyperSentry
Although IPMI/BMC provides an out-of-band channel to

invoke HyperSentry, the stealthiness of this channel is still
threatened by potential attacks. The reason is as follows.
First, the SMIs generated by the BMC can be either dis-
abled or rerouted by the hypervisor. This poses a threat
on both the stealthiness and the availability of HyperSentry.
Moreover, the hypervisor has the ability to trigger SMIs with
different methods (e.g., trapping in or out instructions). As
a result, a compromised hypervisor can mask the original
SMI invocation, scrub attack traces, and then invoke a fake



measurement request. To thwart this attack, it is critical
for HyperSentry to differentiate between SMIs generated by
the out-of-band channel and other fake ones.

To understand how the BMC invokes an SMI, we exam-
ined the architecture of an IBM HS21 blade server as an
example of platforms that rely on a BMC. Figure 3 shows
a high-level block diagram of the components involved in
remote SMI invocation on this platform. The BMC has a
direct connection to the platform’s south bridge (the I/O
control hub), or more specifically, the first General Purpose
Input port (GPI 0). The south bridge is then connected
to the CPU through the north bridge (the memory control
hub) and the Front Side Bus (FSB). Note that recent Intel
and AMD architectures include the memory control hub as
a part of the CPU.

Core 0

FSB

IO Control Hub (South Bridge)

BMC

ALT_GPI_SMI_EN 1

GPI 0

ALT_GPI_SMI_STS 1

SMI_STS 1
0910

GPI_ROUT 10
SMI_EN 1

Core 1 Core nCPU

Memory Control Hub (North Bridge)

Figure 3: Hardware components involved in remote
SMI invocation

In the rest of this subsection, we discuss how to guar-
antee the stealthiness of the out-of-band channel on this
architecture. It is worth mentioning that this method is
generic to all platforms that have a connection between the
platform management module (e.g., BMC, IBM’s Integrated
Management Module (IMM) [8] or Intel AMT’s Manage-
ability Engine (ME) [16]) and GPI ports on the I/O control
hub. However, if the out-of-band SMI is triggered through
a connection to a different hardware component (e.g., the
SMBus), this technique will need to be slightly adapted to
reflect the registers that control this alternative connection.

When the BMC needs to trigger an SMI, it generates a
signal on GPI 0. The south bridge responds to this signal ac-
cording to the values of two registers. The first is GPI_ROUT,
which specifies the interrupt generated by the GPI. When
the two least significant bits have a value of “01”, the signal
triggers an SMI. (Other values either ignore the signal or
trigger other interrupts.) The second register is SMI_EN. A
low value in that register’s least significant bit suppresses
all SMIs. While this bit is lockable by the memory con-
troller’s D_LCK bit, GPI_ROUT is always writable by the CPU
and consequently the hypervisor.

A set of status registers show the reason of an SMI invoca-
tion. Bit 10 of SMI_STS indicates that the SMI was triggered
by a GPI. The exact GPI port that triggers the SMI is iden-
tified by ALT_GPI_SMI_EN and ALT_GPI_SMI_STS. All status
registers are sticky (i.e., they cannot be set by software).

We take advantage of these hardware features to defend
against the above threat. Specifically, the HyperSentry SMI
handler checks the status registers upon invocation. The
measurement process only starts if the SMI is generated by

the GPI connected to the BMC. Furthermore, to avoid con-
fusion with other GPI signals, HyperSentry requires that
GPI_ROUT is configured so that only GPI 0 can generate
SMIs. Since the adversary cannot tamper with the hard-
ware, the source of signals generated on that specific GPI
cannot be changed. Moreover, a compromised hypervisor
cannot fake SMIs triggered by the BMC, because the sta-
tus registers are non-writable. In other words, attempts to
change the SMI generation mechanism will be detected by
HyperSentry. A compromised hypervisor may attempt to
disable SMI by overwriting GPI_ROUT. However, this can be
easily detected by the remote user due to the lack of response
from HyperSentry. As long as GPI_ROUT has the correct
value and SMIs can be triggered, a compromised hypervisor
will not be able to detect the SMI until our SMI handler is
invoked and finishes execution.

4.2 Acquiring Measurement Context
After invoking the SMI, HyperSentry exclusively runs on

the target platform’s CPU. However, this fact does not pre-
pare HyperSentry sufficiently to carry out the measurement
process. Indeed, it is non-trivial to acquire the desired exe-
cution context of the hypervisor to ensure a successful mea-
surement. In the following, we use Intel processors, which
are used on our experimental platform, to illustrate the chal-
lenge and our solution. However, AMD processors have sim-
ilar components and can easily adopt our solution [9].

The challenge comes from the uncertainty of the CPU’s
operation mode when it is interrupted by the SMI. On a
CPU that supports hardware assisted virtualization (e.g.,
Intel VT), when interrupted by the SMI, the CPU may run
in either the hypervisor (VMX root operation) or one of the
guest VMs (VMX non-root operation). In order to mea-
sure the integrity of the hypervisor, the measurement agent
needs to access the hypervisor’s code, data and CPU state.
In particular, it needs the VMX data structures, which con-
tain contextual information essential to integrity measure-
ment (e.g., current VMX operation, the hypervisor’s VM
exit handler and its CR3 register value). However, when
the CPU runs in VMX non-root operation (guest VM) at
the time of the SMI, Intel manuals clearly specifies that all
pointers to VMX data structures are saved internally to the
CPU and cannot be retrieved via software [7].

Although AMD CPUs use the MSR VM_HSAVE_PA to point
to the physical address containing the host state informa-
tion, they suffer from a similar limitation: AMD manuals
clearly specify that software must not rely on the contents
of this state save area because some or all of the host state
can be stored in a hidden on-chip memory [9]. This implies
that integrity measurement cannot be done unless the CPU
is in VMX root operation when interrupted by the SMI.

To overcome this challenge, we develop a novel fallback
technique in HyperSentry, which guarantees that the CPU
falls back to VMX root operation (i.e., the hypervisor con-
text) using two SMIs, even if the first SMI interrupts VMX
non-root operation. HyperSentry acquires the measurement
context without allowing the hypervisor to take control of
or even detect this fallback.

This fallback technique takes advantage of two architec-
tural components: performance counters and Local Advanced
Programmable Interrupt Controller (LAPIC). Performance
counters are used to count certain events (e.g., Last Level
Cache (LLC) misses) for performance evaluation. Once a



performance counter overflows, an interrupt is generated.
The type and destination of this interrupt are determined
by the LAPIC, which is responsible for receiving interrupts
and forwarding them to the CPU. The LAPIC is configured
by a set of registers called the Local Vector Table (LVT);
one of these registers controls the interrupts generated by
the performance counters.
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Figure 4: HyperSentry’s SMI handling workflow

As illustrated in Figure 4, the main idea behind our fall-
back technique is to force one of the CPU cores to jump to
the hypervisor by injecting an instruction that uncondition-
ally causes a VM exit, which is a jump from the guest VM to
the hypervisor. At the same time, performance counters are
used, in coordination with the LAPIC, to guarantee that
only one instruction is fetched before the CPU returns to
the SMM. This technique is carried out by the SMI handler
using the following steps: (1) Store the values of all registers
along with the next instruction and its address; (2) inject
a privileged instruction in place of the next instruction; (3)
set one of the performance counters to count cache misses;
(4) set the performance counter to overflow as soon as one
event is counted; (5) modify the LAPIC so that performance
counter overflows cause an SMI; (6) flush the cache; and (7)
return from the SMM.

After returning from the SMM, the CPU will directly ex-
ecute the injected instruction. If the SMI was triggered in
VMX non-root operation, the instruction will cause a VM
exit. On the other hand, if the SMI was triggered in VMX
root operation, this instruction will simply execute. Due to
the cache flush, looking up any instruction from the memory
will cause a cache miss. In turn, the cache miss will incre-
ment the performance counter, which will cause another SMI
that jumps back to the SMM. Upon this second SMM entry,
the CPU is guaranteed to be in the hypervisor’s context.

To find the location to inject the privileged instruction,
HyperSentry reads the EIP register stored in the SMM’s
state save map, which contains the virtual address of the in-
struction to be executed after the SMI returns. Afterwards,
HyperSentry walks page tables, using the current CR3 value,
to identify its physical address. However, if the SMM inter-
rupted a guest VM that relies on a hardware assisted paging
technique (e.g., Extended Page Tables (EPT)), HyperSentry
can directly modify the EPT entry that corresponds to the
guest-physical address of the current CR3, so that looking up
any instruction from the guest memory causes an uncondi-
tional VM exit (in the form of an EPT fault). In this case,

a pointer to the current EPT can be directly obtained from
the SMM’s state save map.

A subtle issue still needs to be addressed. As mentioned
earlier, all interrupts, including non-maskable ones, are dis-
abled upon entering the SMM. If an interrupt is received
during handling the SMI, its handler will be executed right
after the SMI handler, thus changing the (planned) execu-
tion flow inside the guest VM. To address this issue, Hyper-
Sentry needs to inject another copy of the instruction at each
interrupt handler, and that interrupt handler will have the
same required effect. Interrupt handlers can be located from
the SMM using the LIDT instruction, which retrieves their
virtual addresses. Finally, HyperSentry restores all changes
it does as soon as the measurement operation is done.

The fallback technique is completely transparent to the
hypervisor because only the injected instruction is executed.
Thus, it preserves stealthy invocation (SR1). Moreover, the
hypervisor does not get the chance to interrupt the measure-
ment process. The LAPIC setting is deterministic to invoke
an SMI as soon as the performance counter overflows. The
performance counter overflow is deterministic to occur as
soon as a single instruction is looked-up from the memory.
Both actions solely depend on the trusted hardware and the
hardware configuration.The hardware configuration correct-
ness is guaranteed due to the SMI handler’s control over
the platform during the first SMI invocation. Thus, this
technique preserves deterministic execution (SR3). Finally,
assuring that the CPU is running in the hypervisor context
provides the correct environment for the measurement agent
to provide in-context privileged measurement (SR4).

4.3 In-context Integrity Measurement
The fallback technique discussed above ensures that Hy-

perSentry interrupts the hypervisor’s context in the sec-
ond SMI handling. However, HyperSentry still cannot mea-
sure the hypervisor directly yet. There are several reasons:
First, there is some limitation in reading the CPU state in
the SMM. For example, some of the Intel TXT late launch
registers are hidden from the SMM. Although we do not
need these registers in the present HyperSentry prototype,
this may affect other integrity measurement agents launched
through HyperSentry. Second, the SMM is relatively slow.
Our experience with Intel Xeon CPUs indicates that the
SMM is about two orders of magnitude slower than the pro-
tected mode. This slowdown, which can be contributed to
the fact that the SMM physical memory needs to be un-
cacheable to avoid cache poisoning attacks (e.g.,[11],[37]), is
anticipated to affect the system performance if the measure-
ment agent runs in the SMM.

To overcome these limitations, we develop several tech-
niques to enable HyperSentry’s measurement agent to run
in the protected mode within the same context of the hy-
pervisor. These techniques address the following challenges:
(1) possible tampering with the measurement agent’s code
or data before the measurement session, and (2) control-
flow change that may send the execution back to a potential
adversary controlling the hypervisor.

Measurement Agent Verification: The integrity of
the measurement agent needs to be verified before its invo-
cation. This is done by the SMI handler through calculating
the hash of the measurement agent’s code. HyperSentry lo-
cates the measurement agent using its prior knowledge of
its virtual address range. It walks the hypervisor’s page ta-



bles, using the current CR3 value, to identify its location in
the physical memory. Moreover, completely verifiable be-
havior requires the agent to be developed with the follow-
ing integrity constraints: (1) It should not include execution
jumps to any unmeasured code; (2) its execution path should
not rely on any dynamic data (e.g., function pointers) that
can change its control flow; (3) it should be stateless (i.e.,
it should not rely on the output of any previous execution);
and (4) it should only rely on unchangeable static data that
can be verified through hashing. Fortunately, these require-
ments can be easily verified by static analysis of the mea-
surement agent’s code.

Non-interruptible, Non-modifiable Measurement:
If an interrupt or an exception is triggered during the exe-
cution of the measurement agent, the control flow will di-
rectly jump to the corresponding handler. To retain the iso-
lated execution environment, the SMI handler disables all
maskable interrupts by clearing the corresponding bit in the
EFLAGS register before jumping to the measurement agent.
However, neither exceptions nor Non-Maskable Interrupts
(NMIs) can be blocked by disabling interrupts. Although
the measurement agent code should avoid exceptions, some
exceptions, like those resulting from accessing a non-present
memory page, are not avoidable.

To solve this problem, the SMI handler modifies the Inter-
rupt Descriptor Table (IDT) so that it points to a new set of
handler functions that are part of the measurement agent.
(Note that this modification is done in the SMM via physi-
cal memory and thus not detectable by the hypervisor). The
original IDT, which is measured as a part of our integrity
measurement, is restored as soon as the measurement pro-
cess is done. As interrupts are disabled, this handler will be
only called if an exception or an NMI is called. NMIs are
blocked until the measurement is done, while exceptions or
other interrupts indicate an unexpected behavior that may
require invalidation of the measurement operation.

Malicious DMA writes are another threat that can modify
the measurement agent. This threat is handled by verifying
that the agent is included in the DMA protected memory
ranges provided by Intel VT-d.

Handling Multi-core Platforms: Most today’s com-
puting platforms, including our experimental platform, sup-
port multi-core CPUs. While each core runs a separate ex-
ecution thread, all cores share the same physical memory.
Multi-core architecture introduces a potential threat: When
one core measures the hypervisor, other cores may attempt
to either interrupt the measurement process or manipulate
the memory to hide attack traces.

HyperSentry mitigates the multi-core CPU threat by tem-
porarily freezing all cores other than the one executing the
measurement agent (i.e., keep the non-measurement cores
in the SMM until the measurement is done). As shown in
Figure 3, the south bridge is connected to all cores through
the north bridge and the same FSB. Whenever an SMI is
triggered by the south bridge, all cores are interrupted and
jump to the SMM. As shown in Figure 4, only the Boot
Strap Processor (BSP), denoted as “core 0”, will further ex-
ecute HyperSentry’s measurement task; the other cores will
freeze in an empty loop until the BSP notifies them about
the end of the measurement operation.

The isolated environment provides HyperSentry with the
needed security guarantee to satisfy the following security
requirements: verifiable behavior (SR2), deterministic exe-

cution (SR3) and in-context privileged measurement (SR4).
The checksum of the measurement agent is used by the re-
mote user to identify the binary, and hence the exact be-
havior, of the invoked measurement agent. The interrupt
handling and other CPU cores suspension provide a non-
interruptible (and hence deterministic) execution. Finally,
the code runs in the hypervisor context, the most privileged
CPU execution mode.

4.4 Attesting to the Measurement Output
After the measurement operation is done, the measure-

ment agent calls the SMI handler to securely store its out-
put. This output, along with hash value initially calculated
of the measurement agent, forms the complete output of the
measurement process stored in the SMRAM. The last step
in HyperSentry’s life cycle is to attest to its measurement
output to remote users. Since the out-of-band channel that
starts the measurement is one-way, the main challenge is
how to deal with the absence of a secure communication
channel from the SMM back to remote users.

One approach to handle this challenge is to generate evi-
dence that proves the integrity of the measurement output.
However, the TPM, which is the hardware commonly used to
attest to measurement output, cannot be used in our case.
This is because the hypervisor has direct control over the
TPM except when HyperSentry measures the hypervisor.
Thus, a compromised hypervisor can block HyperSentry’s
invocation, as discussed in Section 4.1, and use the TPM to
generate a forged integrity evidence.

Our solution takes advantage of the following observa-
tions: (1) The system software, including the hypervisor,
is initially trusted at system boot, and (2) The hypervisor
does not have access to the SMRAM.

To exploit these observations, HyperSentry generates a
public/private key pair during the system boot. Before lock-
ing the SMRAM, the initialization code stores the private
key K

−1

smm in the SMRAM and extends the public key Ksmm

to one of the TPM’s static PCRs. The authenticity of the
public key is guaranteed due to the fact that the TPM’s
static PCRs can only be changed by extending (hashing) its
current value with a new value. Thus, the history of values
stored in these PCRs, including the initialization code and
Ksmm, cannot be changed. The confidentiality of the pri-
vate key is guaranteed by locking the SMRAM after storing
K
−1

smm so that it cannot be accessed by the hypervisor.
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Figure 5: HyperSentry’s attestation process

Figure 5 shows the attestation process. To retrieve the
output of the measurement process, remote users send a re-
quest, accompanied with a fresh nonce, to an attestation
agent, which may run anywhere on the target platform.
The attestation agent uses the nonce to generate two dif-



ferent signed values. The first is the static attestation out-
put, signed by the TPM private attestation integrity key
(K−1

AIK
). The AIK is a private key stored inside the TPM,

which can only be used to sign the current values of the
TPM’s PCRs. The second signed value is the output of the
measurement agent, which is signed by the SMI handler’s
private key (K−1

smm). The remote user accepts the measure-
ment output only if the private key (K−1

smm) matches the
public key (Ksmm) extended in the corresponding PCR of
the TPM. In both cases, the attestation agent passes the
nonce to the TPM and the SMM to be included in the sig-
natures to guarantee their freshness.

4.5 Security of the HyperSentry Framework
In this section, we discuss how HyperSentry meets all the

security requirements presented in Section 3.
Stealthy invocation requirement (SR1), which is essential

to protect against the scrubbing attack, is satisfied based on
both the physical security assumption and the invocation
technique presented in Section 4.1. While physical security
provides us with a correctly connected and configured out-
of-band channel, the invocation technique assures that Hy-
perSentry detects faked measurement invocations. During
the measurement process, the control is never given back to
the hypervisor except for the well-controlled context switch-
ing instruction. Thus, a potential adversary that resides
inside the hypervisor will never have the chance to detect
the initiation of the integrity measurement.

As discussed in Section 4.1, a compromised hypervisor can
reroute the SMIs generated by the BMC and consequently
detect HyperSentry’s initiation requests. However, a suc-
cessful scrubbing attack requires initiating the integrity mea-
surement again after the attack traces are cleaned, and thus
will be detected (and ignored) by HyperSentry. The compro-
mised hypervisor may also ignore the BMC-triggered SMIs.
In both cases, a remote verifier will detect such attacks by
the absence of a fresh integrity measurement output.

Verifiable behavior requirement (SR2) is based on transi-
tive trust starting from the CRTM. HyperSentry’s SMI han-
dler is measured as a part of the system boot sequence. Its
integrity can be attested using the TPM’s standard attesta-
tion technique. The measurement agent’s code-base and its
input data are measured and verified by HyperSentry’s SMI
handler. In short, any attempt to modify HyperSentry’s
code or data, regardless of the privilege of the adversary,
will be either unsuccessful or detectable.

Remote users can confidently trust HyperSentry because
it has a small code base, no interaction with any software
running on the target system, and is freshly started every
time the measurement operation is initiated.

The deterministic execution requirement (SR3) is fulfilled
for both the SMI handler and the measurement agent. While
the SMI handler directly benefits from the SMM’s protec-
tion, HyperSentry provides a perfectly isolated environment
for the measurement agent as discussed in Section 4.3. Con-
sequently, any attempt to tamper with the measurement op-
eration will fail because the control-flow remains within the
verified integrity measurement code until the measurement
output is securely stored in the SMRAM.

The in-context privileged measurement requirement (SR4)
is guaranteed by (1) forcing the CPU to return to the VMX
root operation, and (2) running the measurement agent at
the highest privileged level as a part of the hypervisor. Thus,

all attacks that rely on privilege escalation to hide adver-
saries (e.g., Blue Pill or HVM rootkits) are detectable. In
other words, fulfilling this requirement assures that there is
no place to hide attack traces within the measured system.

The attestable output requirement (SR5) is fulfilled by
signing the measurement output as shown in Section 4.4.
Attestation faces two main threats: (1) key leakage, and
(2) replay attacks. Key leakage is prevented by locking the
SMRAM and flushing the cache upon SMI returns. Replay
attacks are prevented by (1) appending a nonce to the signed
value to guarantee freshness, and (2) allowing only one out-
put retrieval per measurement session. The latter constraint
aims at mitigating the risk of an adversary blocking a mea-
surement request and using a fresh nonce to retrieve an old
integrity evidence in the SMRAM.

The only type of attacks that cannot be reliably han-
dled by HyperSentry is transient attacks. This limitation
is generic to all integrity verification tools that rely on pe-
riodic invocations (e.g., [24], [18]). In a transient attack,
the adversary may cause the harm (e.g., stealing data from
the guest memory) and then hide its traces. HyperSentry
only detects attacks that causes a persistent change to the
hypervisor code or data.

The above discussion shows that the security of Hyper-
Sentry relies on various hardware components (e.g., IPMI,
SMI, TPM, IOMMU, APIC). However, this should not be
a concern to the security of the whole framework because
most of these components need to be trusted to preserve
the correctness of most, if not all, security systems.

5. VERIFYING THE INTEGRITY OF THE
XEN HYPERVISOR – A CASE STUDY

In this section, we present a case study of HyperSentry
using Xen [1]. That is, we develop a measurement agent
and use it in HyperSentry to verify the integrity of Xen
at runtime. Note that our main objective is to evaluate
the HyperSentry measurement framework; more research is
needed to develop a complete solution for measuring the
integrity of Xen. Nevertheless, HyperSentry supports any
measurement agent embedded as a part of the hypervisor as
long as it follows the constraints presented in Section 4.3.

Xen is a bare-metal hypervisor that runs directly on the
hardware. All guest VMs run in a less privileged environ-
ment on top of Xen. The integrity of Xen, like any other
piece of software, is proved through verifying the integrity
of both the running code and critical data.

Xen Code Integrity: We calculate the SHA-1 hash of
Xen’s code based on our knowledge of the virtual memory
range where Xen is loaded. The calculated hash, which is
a part of our integrity measurement output, is verified by
the remote verifier. However, this step does not guarantee
that execution will not jump to unmeasured code. To solve
this problem, we adopt the approach previously presented
by Petroni and Hicks [18] to verify persistent control flow
integrity. Similar to their work, we verify the correctness
of all possible jump locations that form entry points to the
hypervisor code. There are three types of dynamic (i.e.,
determined in runtime) control-flow transfers: (1) hardware
control-flow transfers, (2) indirect control-flow transfer (i.e.,
function pointers), and (3) function call returns.

To assure hardware control-flow integrity, we verify (1) the
IDT, (2) segment descriptors, (3) VM exit handlers, and (4)
all MSRs that cause execution jumps (e.g., SYSENTER_EIP).



To verify indirect function calls, we use CodeSurfer [15],
a software static analysis tool, to analyze Xen’s code. Using
CodeSurfer, we developed a program to identify all indirect
function call sites within Xen. We identified 781 such calls
within Xen. Due to CodeSurfer’s limitation, we manually
identified the function pointers and the set of legitimate val-
ues corresponding to each indirect call site. Since our anal-
ysis does not rely on the type information of data variables,
it identifies all variables used as function pointers regardless
of their type definition. Thus, our analysis avoid the limi-
tation of the approach by Petroni and Hicks [18], which can
be misled by ambiguous type definitions (e.g., void*).

Finally, verifying function call returns is not a part of our
prototype, since such an attack does not cause persistent
integrity violation. As discussed in Section 3, HyperSentry
can only discover persistent changes in the hypervisor. More
research is needed to address such integrity violations.

Xen Guest Memory Isolation Integrity – An At-
tempt on Data Integrity: Although data integrity is an
essential part of the integrity of any system, no existing re-
search provides, or even gets close to providing, a complete
solution to this problem. In this case study, we tackle a
subset of this problem. Specifically, Xen has to guarantee
the isolation between the physical memory provided to guest
VMs. In this case study, we use our measurement agent to
verify if Xen indeed achieves this guarantee.

Xen’s memory isolation mechanism mainly relies on the
integrity of dynamic hypervisor data. Memory pages that
belong to each guest VM are stored in a list called page_list.
Each instance of this list is a member of another list called
domain_list, which represents the running guest VMs (i.e,
domains). Xen directly relies on the correctness of these two
lists to provide memory isolation. For instance, Xen’s code
assumes that these lists are securely initiated so that each
memory page exists in only one page list at a time. Thus, if
a memory page concurrently exists in two page lists, legiti-
mate Xen code will violate memory isolation by concurrently
mapping the same memory page to two different guest VMs.

To verify guest memory isolation, our measurement agent
checks if all instances of page_list are mutually exclusive.
We use a bitmap where each bit represents one 4KB mem-
ory page. The measurement agent parses the page list of
each VM and sets a corresponding bit in the bitmap. Any
duplicated usage of a memory page will be detected if we
try to set a certain bit twice.

Besides page lists, there is another data structure that
can affect guest memory isolation, which is the actual guest
page tables. If an entry in a guest VM’s page table points
to a memory page that belongs to another guest VM, then
the memory isolation guarantee is violated. To verify the in-
tegrity of guest page tables, our measurement agent verifies
that the page tables of each guest VM only point to memory
pages that belong to the same guest VM.

Our experiments show that our technique can assure mem-
ory isolation across regular guest VMs. However, Xen’s
management VM (i.e., Dom0) legitimately maps pages of
hardware assisted (HVM) guest VMs to emulate memory
mapped I/O. This behavior limits our agent’s ability to de-
tect memory isolation violations between Dom0 and other
HVM guests. However, this limitation is specific to the
technique Xen uses for device emulation. More research is
needed to provide a verifiable technique to share guest VM
memory pages with Dom0.

6. IMPLEMENTATION AND EXPERIMEN-
TAL EVALUATION

We implemented a HyperSentry prototype on an IBM
BladeCenter H chassis with HS21 XM blade servers [6]. Each
HS21 XM blade server has two 3GHz Intel Xeon 5450 quad-
core processors with Intel-VT support. We use Xen 3.3.1 as
the target hypervisor. Dom0 is a 32-bit Fedora 8 Linux with
2 GB of RAM. We also use two HVM guest VMs: Fedora 10
and Ubuntu 8 with 1 GB and 512 MB RAM, respectively.

Our HyperSentry prototype includes two main compo-
nents: (1) the SMI handler, and (2) the measurement agent.
Both components adhere to the design presented in Sec-
tions 4 and 5. More technical details associated with our
implementation are presented in Appendix A

We perform a set of experiments to evaluate HyperSen-
try’s performance overhead on the target platform. In gen-
eral, hypervisor integrity measurement should not be a fre-
quent operation. On the other hand, HyperSentry freezes
the whole system from the time the measurement is invoked
until it finishes. During this time, all interrupts are disabled
and no other code is allowed to utilize any of the processing
resources. This freeze forces us to pay an extra attention to
HyperSentry’s performance overhead.

We evaluate two aspects of HyperSentry’s performance
overhead: (1) HyperSentry’s end-to-end execution time ,
and (2) the performance overhead imposed on the guest sys-
tem operations if HyperSentry is called periodically.

6.1 End-to-end Execution Time
We measure the execution time using the RDTSC instruc-

tion that reads the CPU’s Time Stamp Counter (TSC). On
our experimental platform, the TSC increments at a con-
stant rate regardless of the current CPU frequency or oper-
ating mode. We convert cycles to milliseconds based on the
TSC speed.

To measure the end-to-end execution time, we invoke the
measurement operation by triggering an SMI through over-
writing a power management register. This technique allows
us to precisely read the TSC before the measurement oper-
ation starts. Writing to power management registers is a
privileged operation that can only be done by the hyper-
visor. Thus, this experiment is limited to interrupting the
hypervisor rather than guest VMs.

Table 1 shows the experimental results. Both the average
and the standard deviation of the execution time are cal-
culated over 15 rounds. The first measurement shows the
time needed by the SMI handler to acquire the hypervisor
context and to prepare the protected environment needed
by the measurement agent. The 2.78 milliseconds average
execution time of the first measurement includes two SMI
invocations, context switching to the hypervisor, verifying
the measurement agent, and modifying the IDT table.

Table 1: End-to-end execution time (in ms)
Average Standard

Operation Time Deviation

Agent Invocation 2.78 0.0616
Checksum Code 8.82 0.0007
Retrieve Hypervisor Checksum 0.85 0.0010
Verify Data (Dom0 and 1 VM) 18.84 0.0162
Verify Data (Dom0 and 2 VMs) 21.39 0.0288
Finalize Measurement Session 1.15 0.1132
Total (Dom0 and 2 VMs) 35.04 0.1648



We also observe that the measured execution time for the
SMI handler has a relatively high standard deviation. This
can be attributed to the non-deterministic nature of the sys-
tem when the SMI is invoked (i.e., the variation of the time
needed to send the command to the hypervisor to write to
the power management register).

The next two operations are hashing the hypervisor code
(around 660 KB in size) and invoking another SMI to se-
curely store the output. The time needed by the two oper-
ations are 8.82 and 0.85 milliseconds, respectively. The low
standard deviation of these two operations indicates that
they run in a highly deterministic environment.

The next operation is to verify the hypervisor data. As
this step depends on the number of running VMs, we per-
form this experiment in two scenarios. We only use a 2GB
Fedora 8 Dom0 and 512MB Ubuntu 8 guest VM in the first
one, and run an additional 1GB Fedora 10 in the second.

In the first scenario, the data verification needed 18.84
milliseconds. After running a second 1GB Fedora guest VM,
the execution time increased by 2.55 milliseconds. We also
observed that data verification shows higher standard devi-
ation, which can be attributed to the dynamic nature of the
data that changes between measurement sessions.

The final step, which includes storing the measurement
output and resuming the operation of halted CPUs, needed
1.15 milliseconds to complete.

6.2 Guest Performance Overhead
Our next experiment is to understand the performance

overhead on the guest system operations if HyperSentry is
invoked periodically. The main purpose is to calculate the
indirect performance overhead, which is imposed by Hyper-
Sentry due to the TLB and cache flushing.

In this experiment, we invoke periodical SMIs every 8 and
16 seconds, respectively. The system performance is calcu-
lated using UnixBench benchmark [33]. We compare the
results of running the benchmark on the Fedora 10 guest
operating system and compare it to the normal guest per-
formance without HyperSentry. We chose to evaluate the
performance overhead on a guest VM because they repre-
sent the overall system performance from the perspective of
the end users in a virtualization environment.
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Figure 6: Performance impact on guest VMs when
HyperSentry is invoked every 8 and 16 seconds

The results of our experiment are shown in Figure 6.
HyperSentry’s end-to-end execution time, which is about
35.04 milliseconds, implies 0.4% and 0.2% direct perfor-
mance overhead if invoked every 8 and 16 seconds, respec-

tively. However, the benchmark output reports an average
overhead of 2.4% if HyperSentry is invoked every 8 seconds,
and 1.3% if HyperSentry is invoked every 16 seconds. The
difference between the anticipated and the actual overhead
can be directly attributed to HyperSentry’s indirect over-
head on the guest system.

As we can see from Figure 6, there is a variation in the
overhead imposed on different tests that compose the bench-
mark. These are mostly due to the difference in the number
of HyperSentry interruptions of each test. We also noticed
that some of the test results obtained while HyperSentry is
interrupting the system are so close to, or even exceeding,
those obtained with no HyperSentry interruption. This can
be attributed to the very low overhead imposed by Hyper-
Sentry, which can be smaller than the normal change in the
dynamic state of the system.

7. RELATED WORK
From the architectural perspective, the concept of integrity

measurement can be handled by different approaches. The
first approach is to measure the static integrity of the sys-
tem as it is loaded (e.g., IMA [26]). However, this approach
cannot protect against runtime attacks (e.g., data attacks)
that can change the system state. The second approach
is to target the runtime system integrity. However, such
systems suffer from the lack of the proper hardware to pro-
vide the needed dynamic root of trust and isolation. In
the introduction, we discussed the difficulties that challenge
Flicker [22], Copilot [24] and HyperGuard [36]. Moreover,
relying on software (e.g., Pioneer [29]) suffers from serious se-
curity problems due to the absence of a strong root of trust.
The third approach is to rely on the multi-level structure
provided by virtualization to ensure the runtime integrity
of VMs. For example, HIMA [3], REDAS [19], Lares [23]
and Patagonix [21] all rely on the hypervisor to monitor the
integrity of VMs. In this paper, we move one step further in
the trust chain to measure the integrity of the hypervisor.

In terms of the techniques used to verify the integrity of
running systems, we benefit from the work done in [18] to
detect persistent kernel control flow attacks. Other work in
this direction (e.g., [10, 4]) can be used to enhance Hyper-
Sentry’s measurement agent.

Two recently proposed systems aim to overcome poten-
tial threats against commodity hypervisors. The first is
seL4 [20], which aims to formally verify certain security
properties in the seL4 micro-kernel implementation, such
as the absence of certain types of software bugs (e.g., buffer
overflows and null pointer dereferences). The second is Hy-
perSafe [35], which aims to extend the hypervisor implemen-
tation to enable its self-protection from control-flow hijack-
ing attacks. Our work complements them by exploring a
stealthy mechanism that is independent of a running hyper-
visor but still allows for in-context measurement of various
hypervisor integrity properties. These approaches can be
integrated to verify and protect commodity hypervisors.

Zimmer and Rasheed filed a patent that describes a method
to measure the checksum of the hypervisor at runtime using
modification to the CPU’s microcode [38]. However, their
hypervisor measurement is triggered by events monitored by
the hypervisor itself, and thus is prone to the scrubbing at-
tack. Moreover, this technique only supports verifying the
checksum of the hypervisor code; it does not provide any
detail on how to support other measurement tasks. In con-



trast, HyperSentry is not vulnerable to the scrubbing attack,
and can support any integrity measurement tasks.

8. CONCLUSION
In this paper, we presented the development of HyperSen-

try, an out-of-band in-context measurement framework for
hypervisor integrity. The key contribution of HyperSentry
is a set of novel techniques to provide an integrity measure-
ment agent with (1) the same contextual information avail-
able to the hypervisor, (2) completely protected execution,
and (3) attestation to its output. To evaluate HyperSen-
try, we implemented a prototype for the framework along
with an integrity measurement agent for the Xen hypervi-
sor. Our experimental evaluation shows that HyperSentry
is a low-overhead practical solution for real world systems.
In general, our research demonstrated the feasibility of mea-
suring the integrity of the highest privileged software layer
on a system without always keeping the highest privileges.

Our future research will be focused on effective and effi-
cient integrity measurement of popular hypervisors (such as
KVM running on Linux) in the HyperSentry framework.
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APPENDIX
A. IMPLEMENTATION DETAILS

In this section, we present more technical details associ-
ated with the implementation of HyperSentry’s prototype.

Switching to the Hypervisor Context: As discussed
in Section 4.2, HyperSentry uses an injected instruction to
assure that the CPU switches to the hypervisor context.
There are two requirements for this instruction. First, if
executed in VMX non-root operation, it should cause an
unconditional VM exit (i.e., regardless of the setting of the
VM execution controls or the interrupted privilege level).
Second, if executed in VMX root operation, it should switch
to the highest privilege level so that HyperSentry can run
its measurement agent in the hypervisor context. Unfortu-
nately, no single instruction meets both requirements.

In our implementation, we first use CPUID because it guar-
antees a VM exit if it is injected in VMX non-root operation.
However, CPUID does not guarantee privilege level switch if
it is injected in VMX root operation. However, the current
privilege level can be detected from the SMM by inspecting
the segment selectors. Thus, if HyperSentry detects that the
system is still running in an unprivileged level after injecting
the first instruction, it can be certain that this system was
originally running in VM root operation. It will then inject
a second instruction (e.g., INVD) to switch the privilege level
and run the measurement agent in the correct context.

Pending Interrupts: If an interrupt is received during
SMI handling, it will be queued. Thus, execution will jump
to its handler right after the SMI handler. As discussed
in section 4.2, HyperSentry handles this case successfully.
However, if the queued interrupt causes a VM exit directly
after returning from the SMM, the first instruction of the
VM exit handler, rather than the injected CPUID, will be ex-
ecuted before the performance counter overflows. Since the
VM exit handler cannot be located, this instruction cannot
be previously known to HyperSentry. However, executing
this instruction does not affect our security because the SMI
will be scheduled, due to the performance counter overflow,
by the time when this instruction is fetched.

Performance Counter Setting: As discussed in sec-
tion 4.2, HyperSentry uses the performance counters and
the LAPIC to assure that a single instruction is executed
by the CPU before returning to the SMM. We configure a
performance counter to count instruction fetches that miss
the Instruction Table Look-aside Buffer (ITLB). We choose
ITLB counting because only one ITLB miss, versus several
misses of other types of cache, occurs per instruction fetch.
To guarantee this behavior, HyperSentry flushes the TLB,
including global pages, before returning from the SMM.

CPU Slow-down in SMM: As mention in section 4.3,

the SMM code runs at a lower speed than protected mode
code. Our preliminary performance evaluation showed that
this slow-down makes hashing the measurement agent in the
SMM cause an unacceptable performance overhead on the
system. To overcome this problem, HyperSentry first veri-
fies a simple checksum code (:1.2KB) whose only job is to
calculate the hash of the hypervisor from the SMM, and then
returns to the hypervisor context to execute this checksum
code in the protected mode. The checksum code verifies the
hypervisor code along with the remaining part of the mea-
surement agent (:8.9KB). The checksum code then issues
an SMI to safely store its output in the SMRAM before ex-
ecuting the measurement agent. This approach reduces the
code to be verified in the SMM, and shortens the total ex-
ecution time by 85%. Figure 7 shows the whole transitive
trust chain from the CRTM up to the hypervisor.
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Figure 7: Building the transitive trust chain down
from the trusted hardware up to the hypervisor

Measurement Invocation: As mentioned in section 6,
the current HyperSentry prototype is implemented using
IBM BladeCenter [6]. IBM BladeCenter consists of a chassis
that provides shared resources for several thin servers called
blades. The chassis is remotely managed by a microcon-
troller called the Advanced Management Module (AMM),
which in turn manages the blades through IPMI and the
BMC on each blade. We use the AMM and the IPMI to
establish the out-of-band channel that invokes HyperSentry.
Remote users connect to the AMM through a SSH connec-
tion and send IPMI commands to the BMC to transparently
issue an SMI on the target blade.

Current BMC firmware only allows periodic SMI gener-
ation on intervals of at least 37.5 seconds. Upon receiving
the IPMI command, the first SMI is delayed until one inter-
val elapses. During this delay, the BMC allows the CPU to
query about the periodic SMI status. In other words, the
hypervisor has a chance to detect if an SMI is scheduled.

To guarantee the stealthiness of the measurement invoca-
tion, the BMC’s firmware should be updated to either allow
immediate SMI generation or to hide the SMI invocation
request from the CPU. Our prototype implementation does
not include this feature yet. Nevertheless, adding this fea-
ture into the BMC would be technically trivial.

Attestation Process: As mentioned in Section 4, the
SMI handler should be a part of the server’s trusted boot.
However, HS21 XM servers are not equipped with a TPM
chip. Due to the lack of a TPM, the attestation process
is not included in our prototype. A HyperSentry session
ends by storing the measurement output in the SMRAM.
Nevertheless, it is worth mentioning that static attestation
using the TPM, signature key generation and signing are all
known techniques that have been implemented previously.


