
Hybrid User-level Sandboxing of Third-party Android Apps

Yajin Zhou†∗, Kunal Patel†, Lei Wu†, Zhi Wang‡, and Xuxian Jiang†?
†North Carolina State University ‡Florida State University ?Qihoo 360

{yajin_zhou,kmpatel4, lwu4}@ncsu.edu, zwang@cs.fsu.edu, xjiang4@ncsu.edu

ABSTRACT
Users of Android phones increasingly entrust personal information
to third-party apps. However, recent studies reveal that many apps,
even benign ones, could leak sensitive information without user
awareness or consent. Previous solutions either require to modify
the Android framework thus significantly impairing their practical
deployment, or could be easily defeated by malicious apps using a
native library.

In this paper, we propose AppCage, a system that thoroughly
confines the run-time behavior of third-party Android apps with-
out requiring framework modifications or root privilege. AppCage
leverages two complimentary user-level sandboxes to interpose and
regulate an app’s access to sensitive APIs. Specifically, dex sand-
box hooks into the app’s Dalvik virtual machine instance and redi-
rects each sensitive framework API to a proxy which strictly en-
forces the user-defined policies, and native sandbox leverages soft-
ware fault isolation to prevent the app’s native libraries from di-
rectly accessing the protected APIs or subverting the dex sandbox.
We have implemented a prototype of AppCage. Our evaluation
shows that AppCage can successfully detect and block attempts to
leak private information by third-party apps, and the performance
overhead caused by AppCage is negligible for apps without native
libraries and minor for apps with them.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access control, Information flow
controls

Keywords
Android; Software Fault Isolation; Dalvik Hooking

1. INTRODUCTION
Android has become the leading mobile platform with nearly

85% market share in the second quarter of 2014 [10]. This trend is

∗Part of the work was done when the first author was an intern at
Qihoo 360.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714598.

accompanied by the vigorous increase of third-party Android apps
that are available for users to download and install. However, recent
studies reveal that third-party apps, including popular ones, could
leak private information without user consent or awareness [12,19].
In light of these serious threats, there is a pressing need to strictly
confine these apps, especially their access to sensitive data and dan-
gerous operations. However, Android’s existing permission system
lacks flexibility for this purpose. An user has to grant all the per-
missions requested by an app in order to install it, and cannot make
any adjustment to those permissions after installation.

To address this limitation, researchers have proposed a number
of systems to enable fine-grained control of Android apps. They
roughly fall into two categories: the first category consists of solu-
tions that extend the Android framework (and even the kernel) to al-
low fine-tuning of the apps’ permissions [5,14–16,27,33,37,45,55].
For example, AppFence [27] and TISSA [55] can be configured to
return a mock location, instead of the real one, to the apps. Frame-
work enhancement appears to be a natural solution. However, the
requirement to update key Android components could strongly im-
pair their practical deployment due to the deep fragmentation of the
Android platform [46]. The second category includes the “in-app”
mechanisms that control the app’s access to sensitive APIs through
(Dalvik) bytecode rewriting [13, 17, 18, 28] or native code inter-
posing [47]. These systems do not require changes to the Android
framework and thus can be readily deployed. Specifically, bytecode
rewriting-based approaches insert inline reference monitors to reg-
ulate apps’ behaviors. However, dynamically loaded classes (e.g.,
classes loaded by DexClassLoader) could pose serious challenges
to these systems since the dynamically loaded bytecode is not avail-
able when statically rewriting the app. On the other hand, Aura-
sium [47] interposes the inter-process communication [2] between
the app and remote Android services. Therefore, it can accom-
modate dynamic classes, but has to bridge the “semantic gap” by
reconstructing high-level semantics from the exchanged raw mes-
sages, overall a tedious and error-prone task. More importantly, all
those systems can be bypassed or subverted by a malicious app us-
ing a native library. For example, the app can leverage native code
to tamper with the instrumented bytecode [1] or bypass security
checks by “restoring the global offset table entries" [47].

In this paper, we present AppCage, a secure in-app mechanism
to regulate the app’s access to sensitive APIs and dangerous oper-
ations (e.g., making phone calls). Like other in-app mechanisms,
AppCage does not need to change the Android framework; nor re-
quires the root privilege, and thus can be readily deployed. Specifi-
cally, AppCage synthesizes a wrapper app for each target app (i.e.,
a third-party app to be confined). The wrapper sets up the dex sand-
box for the app by hooking into its instance of Dalvik virtual ma-
chine and redirecting sensitive framework APIs to their respective

stubs. The stubs interpose the access to those APIs and enforce the
user-defined policies. With API hooking, AppCage naturally sup-
ports dynamically loaded classes because the app eventually needs
to call those APIs to retrieve sensitive data. However, API hooking
alone could be subverted by the app using native code. To address
this challenge, AppCage relies on a second sandbox, native sand-
box, to confine the app’s native code. The native sandbox leverages
software fault isolation (SFI) [42] to ensure that the app’s native
libraries (including the system libraries they depend on) cannot es-
cape from the sandbox or directly modify the code or data outside
the sandbox. The app thus cannot tamper with the dex sandbox
using native code. In addition, native sandbox prevents the app’s
native code from directly requesting sensitive data or performing
dangerous operations via binder, the Android’s ubiquitous inter-
process communication mechanism. Combining those two sand-
boxes, AppCage can comprehensively interpose the app’s access to
key Android APIs and enforce user-defined policies to fine-tune the
app’s permissions.

We have implemented a prototype of AppCage and evaluated
its effectiveness, compatibility, and performance. Our experiments
show that AppCage can successfully detect and block attempts to
leak the user’s private data by both malicious and benign-but-invasive
Android apps, and the security analysis demonstrates that native
sandbox can protect our system from being bypassed or subverted.
Moreover, the prototype is shown to be compatible with the popu-
lar Android apps we downloaded from the Google Play store, and it
incurs negligible overhead for apps without native code and a mild
10.7% overhead for ones with native code. Given the protection
offered by AppCage, we consider the performance of AppCage is
acceptable for most daily uses.

In summary, this paper makes the following contributions:

• We propose hybrid user-level sandboxes to confine two com-
ponents of an Android app – the bytecode and the native
code. Particularly, dex sandbox relies on API hooking to reli-
ably interpose the bytecode’s access to key framework APIs,
while native sandbox applies the proven technology of soft-
ware fault isolation to confine the native code.

• Our native sandbox leverages both dynamic binary rewriting
and static compiler-based binary instrumentation to reduce
performance overhead. They enforce the same set of rules
and can be seamlessly integrated.

• We have implemented and evaluated a prototype of AppCage.
The experiment results show that AppCage is effective and
compatible with popular apps, and it incurs acceptable over-
head for daily use.

2. BACKGROUND AND THREAT MODEL
In this section, we briefly introduce some key concepts in An-

droid to provide necessary background information of the proposed
system, and then present the threat model.

2.1 Dalvik Virtual Machine
Most Android apps are written in the Java programming lan-

guage and compiled into the bytecode for Dalvik VM. Dalvik VM
is a shared library loaded into each running app and is responsible
for executing the app’s bytecode. To support later-binding of Java,
Dalvik VM maintains a data structure for each Java class in the
app (ClassObject) and one for each of its methods (Method). The
Method structure in turn contains a pointer to the method’s byte-
code. Figure 1 shows a simple class and its representation in Dalvik
VM. When Sample.M is called, the VM searches for ClassObject

descriptor

accessFlags

super

...

virtualMethodCount

virtualMethods

...

ClassObject of Sample

ClassObject

accessFlags

...

insns

...

Method for M

6f20 0400 3200

2200 0500

0e00

...

Memory-mapped bytecode

public class Sample {

 public void M () {

 ...

 }

}

Figure 1: ClassObject and Method in Dalvik

of the class and further Method of the target method [11]. It then
retrieves the bytecode of the method to decode and execute it.

Dalvik VM allows an app to dynamically load extra classes us-
ing DexClassLoader. The app can leverage this convenient capa-
bility to change its behavior at run-time. Dynamic class loading
poses serious challenges to systems based on the bytecode rewrit-
ing because those classes are not available when the app is statically
rewritten [17, 18, 28]. AppCage can naturally support this feature
because it is based on the API hooking.

2.2 Java Native Interface
Java Native Interface (JNI) defines a framework for bytecode and

native code to call each other. Android developers can use NDK to
implement part of their apps in native languages such as C/C++.
NDK compiles the source files into shared native libraries that can
be dynamically loaded into the app by Dalvik VM under the request
of the app’s bytecode. Specifically, the VM uses the dlopen func-
tion to load the library into the app, and resolves the address of each
imported library function using dlsym. These addresses are cached
by the VM to avoid duplicated address resolution later. When a
native function is invoked by the bytecode, it passes a special data
structure of type JNIEnv, which allows the native code to interact
with the bytecode [6, 39]. For example, the native function can use
JNIEnv->FindClass("Sample") to locate the Java class Sample and
subsequently call its functions. AppCage needs to interpose those
key JNI related functions to (1) intercept the loading of native li-
braries and prepare the native sandbox for them, (2) and switch the
run-time environment when entering and leaving the native sand-
box.

2.3 Dynamic Loading and Linking
Android implements its own dynamic loader and linker for native

libraries (/system/bin/linker). Unlike its counterpart in the desk-
top, Android’s loader resolves all the external functions eagerly.
For example, if the app’s native code depends on the __android
_log_print function in liblog.so, the loader will promptly load
the library and recursively resolve the function address. Even though
Android does not support lazy address resolution, the PLT/GOT [9]
structure is still used for dynamic linking. More specifically, the
compiler generates a stub in the PLT section for each external func-
tion. All calls to that function in the library are redirect to the stub,
which simply contains an indirect branch to the address in the as-
sociated GOT entry. When a native library is loaded, the loader
resolves the address of the external function and fills it in the GOT
entry.

2.4 Threat Model
Similar to existing solutions [27, 55], we assume an adversary

model where third-party apps are not trustworthy (e.g., they could
leak personal information) but some of their features are desired by
the user. Nevertheless, this privacy-aware user wishes to regulate

App Bytecode Stub Bytecode

Framework Bytecode

Dalvik VM

libhook.so
User Libs

System Libs

Native SandboxDex Sandbox

System Libs

f

stub_f

f stub_f

B
ytecode

N
ative C

ode

Third-party App

Permission
Manager

Figure 2: System architecture of AppCage

the apps’ access to the private data and dangerous operations. Our
system leverages a utility app that runs on the user’s phone to in-
strument the target app, and this utility app is trusted. Moreover,
we assume that the underlying Linux kernel and the Android mid-
dleware are trusted and attackers do not have the root privilege.

3. SYSTEM DESIGN
In this section, we describe the design of AppCage, particularly

its hybrid user-level sandboxes: dex sandbox and native sandbox.

3.1 Overview
The goal of AppCage is to interpose key Android APIs to con-

trol the third-party app’s access to private data and dangerous op-
erations. Android apps consist of Dalvik bytecode and the optional
native libraries. It is necessary to control both components of an
app. AppCage provides dex sandbox and native sandbox for this
purpose, respectively (Figure 2). To confine bytecode, AppCage
hooks into Dalvik VM (libhook.so), and then manipulates its in-
ternal data structures to redirect each important Android API to
its stub provided by AppCage. At run-time, the stub queries the
permission manager whether the operation should be allowed, de-
nied, or prompted to the user for confirmation. If the operation
is allowed, the stub will then call the actual API on behalf of the
original caller. Figure 2 shows how the framework method f is
interposed by stub_f. Native sandbox applies software fault isola-
tion to confine the app’s native code. It prevents the app from using
native code to subvert dex sandbox or directly request system ser-
vices through binder, Android’s lightweight remote procedure call
mechanism [2]. Note that user libraries may depend on some sys-
tem libraries such as libc.so or libm.so. AppCage provides a set
of confined system libraries to the native sandbox. (Dalvik VM is
still linked to the original system libraries.) With both sandboxes,
AppCage has complete control over the app’s access to sensitive
APIs.

Use case: Figure 2 illustrates the run-time state of a confined app.
In the following, we describe the use case of AppCage and how
the sandboxes are initialized. AppCage provides a utility app that
runs on the user’s phone. For each third-party app to be installed,
it generates a wrapper app that carries the whole original app, the
bytecode of the stubs, and libhook.so (Figure 2). If the app has
the native code, it also contains an instrumented copy of the native
code. The wrapper requests the same permissions as the original
app, and its entry point is assigned to a function in AppCage that is
tasked to set up the sandboxes before executing the app [47]. The
utility app also monitors the installation of new apps from the offi-
cial and alternative app stores. For the former, it monitors the direc-
tory where the apps normally reside (/data/app) and prompts the
user to uninstall the original app and replace it with the generated
app. The process is mostly automated and the user only needs to

descriptor
...

virtualMethods
...

SmsManager

ClassObject
...

insns
...

SmsManger.sendTextMessage

Send SMS Message

ClassObject
...

insns
...

SmsHooks.sendTextMessageSmsHooks

descriptor
...

virtualMethods

...
directMethods

Policy Check

SmsHooks.sendTextMessageDirect
2

1

Figure 3: Dalvik hooking of SmsManager.sendTextMessage

click a few buttons when prompted. We cannot intercept the apps
from the official app store because that requires the system privi-
lege. For the latter, it can intercept the installation of the app by
listening to the INSTALL_PACKAGE intent, and generate and install
the wrapper app on-the-fly. The original app is not installed.

3.2 Dex Sandbox
AppCage interposes the app’s access to key framework APIs by

essentially hooking those APIs. In contrast to previous systems that
rewrite the app’s bytecode for the same purpose [17, 18, 28], Ap-
pCage does not require extra efforts to support dynamically loaded
classes and can tolerate obfuscation of the app’s bytecode because
the app eventually needs to call those interposed APIs to be effec-
tive.

AppCage’s API hooking is implemented through direct manipu-
lation of Dalvik VM’s internal data structures. (We will discuss
the compatibility issue raised in Section 5.3.) As mentioned in
Section 2.1, Dalvik VM maintains a ClassObject data structure
for each Java class in the app including those of the framework,
through which we can find all the methods of the class. For each
framework class that has sensitive methods, we manually create
a stub class that contains the same set of stub methods 1. The
stub methods query the permission manager whether the operation
should be allowed, and call the original methods if so.

Figure 3 shows an example of the SmsManager class, which al-
lows an app to send text messages in the background via the prede-
fined sendTextMessage method, possibly to premium numbers. To
interpose this method, AppCage loads SmsHooks, the stub class for
SmsManager, into the app, and manipulates the pointers in their cor-
responding ClassObjects so that SmsManager.sendTextMessage points
to SmsHooks.sendTextMessage and the pointer to the original method
SmsManager.sendTextMessage is stored in SmsHooks’s array of di-
rect methods (arrow 1 and 2 in Figure 3, respectively). As such, the
app will be redirected to SmsHooks.sendTextMessage when it tries
to send a text message and subject to policy check. If the operation
is allowed, SmsHooks.sendTextMessage calls the original method,
which can be found in SmsHooks’s array of direct methods. Un-
like virtual methods, direct methods are called directly without dy-
namic method resolution [11]. Hence, it is guaranteed that the orig-
inal method will be called. By only manipulating method pointers,
our system is compatible with the just-in-time compiling by Dalvik
VM, a key technology to improve the system performance.

3.3 Native Sandbox
Android allows its apps to use native code via the JNI interface

(Section 2.2). Native code is often used to speed up performance-
critical tasks such as rendering of 3D games. However, native code

1Most of this process can be automated. Doing it manually is ac-
ceptable since it is only a one-time effort.

could be exploited to subvert security schemes based on bytecode.
For example, it can revert the changes to Dalvik VM’s data struc-
tures made by AppCage. To address that, we adopt the software
fault isolation (SFI) [42] technology to confine the app’s native
code. AppCage’s native sandbox provides the following security
guarantees: native code cannot write to memory out of the sand-
box so that it cannot tamper with dex sandbox (memory read does
not pose a threat to AppCage because sensitive data are maintained
by Android’s system service app); native code cannot escape from
the sandbox; the access to dangerous instructions such as system
call is regulated. Since source code of the app’s native binary is
not available, we use binary rewriting to implement software fault
isolation.

Binary rewriting of the native code can take place at both instal-
lation time and run-time: AppCage instruments any native libraries
discovered when generating the wrapper app (Section 3.1). It also
hooks into the related JNI API to translate native libraries that are
unknown during the installation, such as the encrypted libraries [3]
or the downloaded ones. Our binary rewriter enforces the same
set of rules as Native Client (NaCl) [38, 48]. Particularly, instruc-
tions are grouped into equal-sized bundles (16 bytes), and indirect
branch instructions such as indirect call and return must target the
boundary of a bundle. Moreover, the instructions inserted by Ap-
pCage (bic and orr) to confine an instruction must be put in the
same bundle as that instruction so that they cannot be bypassed by
indirect branches jumping over them. The rules of NaCl provide
our native sandbox a solid theoretical and practical foundation in
security. However, our binary rewriter needs to handle the app’s
native code in the binary format, while NaCl is a compiler plugin
and thus requires the access to source code. Code generated by
NaCl normally has less overhead than that by our binary rewriter.
As such, AppCage also utilizes a modified NaCl compiler to con-
fine system libraries that the app’s native code rely on since their
source code is readily available.

Even though ARM is a RISC architecture, rewriting ARM bina-
ries is not straightforward: 1.) an ARM binary can mix the ARM
instructions (32 bits) and the THUMB-2 instructions (16 or 32 bits).
2.) Constants are often embedded among instructions. We need to
identify them and prevent them from being executed. 3.) ARM
instructions can directly refer the program counter (pc), often to
read the embedded constants in code. Binary rewriting shifts the
instructions around and may cause the wrong pc to be used. To ad-
dress challenge 2 and 3, AppCage retains the original code section
of the app’s native code but makes it read-only and non-executable.
The translated code section only contains instructions but not con-
stants, which must be loaded from the original code section instead.
AppCage also keeps a mapping between the original pc and the
translated pc and converts them when necessary. To rewrite a bi-
nary, AppCage first disassembles it, breaks it into basic blocks, and
instruments it as required by the native sandbox.
Disassembling Native Code: AppCage recursively disassembles
the app’s native code [50] using the exported functions as the ini-
tial starting points (the binary may be stripped and may not contain
the complete symbol table.) Specifically, it keeps disassembling
instructions from a starting point until a return instruction or other
terminating instructions. Any targets of direct jumps or call in-
structions are added to a work list as the new starting points. After
exhausting the work list, we start disassembling the leftover gaps
with a trial-and-error strategy.

Our disassembler faces two challenges. First, constants are of-
ten embedded in-between instructions because they do not fit in
the instruction (32 bits at most). To address that, we observe that

constants are often collected at the end of functions and referred to
with the pc-relative addressing mode, for example,

ldr r1, [pc, #284]

We accordingly treat the targets of pc-relative load instructions as
constants. However, the heuristic may treat the real code as con-
stants. This is handled at run-time by rewriting those missed in-
structions on demand. The second challenge is that a binary can
consist of functions in the ARM and THUMB/THUMB-2 states.
These states have different instruction length and encoding. Ap-
pCage needs to identify the instruction state to correctly disassem-
ble them. This is solved as follows: first, branch instructions such
as B, BL with an immediate offset, BX, and BLX specify the state of
the target instruction in the encoding. AppCage decodes the targets
accordingly using the target instruction encoding. Second, we use
the context of a gap to infer its state. For example, if the instruc-
tions before and after a gap are in the THUMB state, the gap likely
is also in that state. Third, if the previous heuristics fail to decide
the instruction state, we assume the instructions are in the ARM
state and start to disassemble them. We will restart the process in
the THUMB state if errors are encountered, for example, if there
are invalid instructions or the data flow in a peephole is inconsis-
tent [44].

Note that the instruction mode which is determined by the heuris-
tic, e.g., the branch target of an indirect branch instruction, may be
wrong during statically disassembling. AppCage records the in-
struction mode for such instructions and compare it with the actual
instruction mode at run-time. If there is a mismatch, then these
instructions will be re-disassembled and instrumented at run-time.
Native Code Instrumentation: To rewrite the app’s native code,
AppCage breaks the disassembled instructions into basic blocks
and then instruments each of them according to the instruction
types. Figure 4 shows a concrete example for each such case.

a.) Memory write instructions: AppCage requires that memory
write instructions can only target addresses within the sandbox. To
this end, we position the native sandbox at an address that is 2n-
byte aligned with a length of 2n . Consequently, we can confine
memory writes by fixing the top 32 − n bits of the target address
to that of the sandbox. For example, if the sandbox is located at
the range of [0x40000000, 0x5FFFFFFF], we can use the following
two instructions to confine memory writes (assuming r0 is the base
register):

bic r0, r0, #0xa0000000 /* clear bits 31,29 */
orr r0, r0, #0x40000000 /* set bits 30 */

Moreover, we put two guard pages around the sandbox, one at each
end, to accommodate addressing modes with an immediate offset,
which is always less than 4,096 in the ARM architecture (see case
1 in Figure 4 for an example). If the target address is calculated
from several registers, we first save the address to a scratch register
(spill one if necessary) and apply the same instructions as above to
confine it. The memory write instruction is then patched to use the
scratch register as the target (case 2 in Figure 4).

AppCage normally instruments every memory write instruction.
One exception is those instructions with sp as the base register and
an immediate offset. They are frequently used to update local vari-
ables. To reduce overhead, we do not instrument this type of in-
struction (case 3 in Figure 4), but instead instrument all instructions
that update the sp register to guarantee that sp is within the sandbox
(case 4 in Figure 4.)

b.) Branch instructions: the second category of instructions to
rewrite consists of branch instructions, used for jumps and calls.
Branch instructions can address the target with an immediate off-
set (direct branch) or with registers (indirect branch). Both types

(1) memory write: immediate offset

before:
 e2b8: e5840008 str r0, [r4, #8]

after:
 f8b0: e3c4420e bic r4, r4, #0xe0000000
 f8b4: e5840008 str r0, [r4, #8]

Before writing data into memory,we mask off some bits
of the target address. Since the immediate offset is within
the 4K range, we can confine it by adding a guard page
before and after the native sandbox.

(2) memory write: register offset

before:
 f054: e784e10c str lr, [r4, ip, lsl#2]

after:
 1004: e084310c add r3, r4, ip, lsl#2
 1008: e3c3320e bic r3, r3, #0xe0000000
 100c: e583e000 str lr, [r3]

For instructions using the register offset,we allocate
a scratch register (r3 in this case) first to store the
target address of memory write, and then we mask
off the related address bits. The original instruction
is replaced by one using the scratch register.

(3) memory write: SP as the base register with
 immediate offset

before:
 114a0: e58d11d0 str r1, [sp, #464]

after:
 12f5c: e58d11d0 str r1, [sp, #464]

For instructions using the SP register as the base with
immediate offset, we do not instrument them but instead
ensure that SP is always within the sandbox by rewriting
the instructions that update SP.

(4) computation : update SP

before:
 1c284: e084d005 add sp, r4, r5

after:
 10200: e084d005 add sp, r4, r5
 10204: e3cdd20e bic sp, sp, #0xe0000000

We instrument instructions that update SP to make sure
SP is always within the native sandbox.

(5) direct branch

before:
 dca4: 1affffbf bne 0xdba8

after:
 f068: 1affffb3 bne 0xef3c

We need to patch the target of the direct branch instructions to its
corresponding translated target.

(6) indirect branch: branch address on the stack

before:
 164f8: e8bd8002 pop {r1, pc}

after:
 18e10: e8bd0002 pop {r1}
 18e14: e59ff718 ldr pc, [pc, #1816] ;0x19534
 ...
 19534: 0001aae4

The registers other than PC will be popped first, and then it jumps to the
indirect branch trampoline at offset 0x1aae4 (this address is patched
by AppCage according to whether the PC is on the stack or in the
reigster.) The trampoline fecthes the branch address from the stack and
check whether it is valid. If so, it will jump to the address for execution.

(7) indirect branch: branch address in a register

before:
 164bc: e12fff1e bx lr

after:
 18dcc: e59ff75c ldr pc, [pc, #1884] ;0x19530
 ...
 19530: 0001aa88

Similar to case 6, it jumps to the indirect branch trampoline. This
trampoline validates the branch target in the register and jumps to it
for execution, if valid.

(8) using PC as the source register in non-branch instructions

before:
 14e80: e08f1001 add r1, pc, r1

after:
 1748c: e52d3004 push {r3}
 17490: e59f331c ldr r3, [pc, #796] ;0x177b4
 17494: e0831001 add r1, r3, r1
 17498: e49d3004 pop {r3}
 ...
 177b4: 00014e88

We allocate a scratch register (r3 in this case), spill it when necessary,
and load the original PC stored at address 0x177b4 into it. The original
instruction is transformed to use this scratch register.

Figure 4: Instrumentation of native code by AppCage
(for simplicity, we assume the native sandbox is at the [0x0, 0x1FFFFFFF] address space range.)

of branch instructions need to be instrumented to ensure that the
app’s native code cannot escape from the sandbox. Direct branches
can be handled completely during binary rewriting because their
targets are known statically. We only need to verify that they tar-
get legitimate instructions in the sandbox and patch the immediate
offsets accordingly (case 5 in Figure 4). Indirect branches require
validation of the branch targets at run-time because they are un-
known during translation. The address of the target may be on the
stack (case 6 in Figure 4) or in a register (case 7 in Figure 4). Ap-
pCage uses a trampoline to handle the indirect branch instruction.
The original instruction is replaced with a direct branch to its as-
sociated trampoline. The trampoline retrieves the original branch
address and verifies that it lies within the sandbox. If so, the tram-
poline further converts the address to the translated target, with the
help of the mapping between the original pc and the translated pc,
and branches to it.

c.) Instructions using pc as a general register: in ARM, pc (pro-
gram counter) can be directly accessed as a general register. In-
structions using pc as the destination operand are in fact indirect
branch instructions. This case has been discussed in b). If pc is
used as the source operand, its value is decided by the address of
the currently executing instruction, and thus is different from the
original and intended value. For example, the following instruction
at address 0x14e80 is relocated to 0x1748c by the binary rewriter.
When the app runs, the pc register has a value of 0x17494, instead
of the expected value of 0x14e88 (for historic reasons, pc in ARM
is the address of the current instruction plus 8.)
14e80: add r1, pc, r1 --> 1748c: add r1, pc, r1
PC: 0x14e88 PC: 0x17494

To address this, we allocate a scratch register, load the original pc
into it, and patch the instruction to use the scratch register instead
of the current pc (case 8 in Figure 4).

d.) System call instruction: uncontrolled system calls can be ex-
ploited to subvert our system, for example, by tampering with the
memory protection or calling system services through binder. As
such, AppCage disallows direct system calls in the app’s native li-
braries. The app instead has to access the kernel services through
the APIs of the system libraries (e.g., libc). This is barely restric-
tive because very few apps, if any, rely on direct system calls. To
prevent those libraries from being misused, AppCage provides a
confined copy of the necessary system libraries to the native sand-
box. During rewriting, direct system call instructions in the app’s
native code are replaced by branches to a function that terminates
the current app.
System Libraries Instrumentation: the app’s native code often
relies on system libraries for service (e.g., libc.so). For perfor-
mance reasons, AppCage uses the NaCl compiler for ARM [38] to
sandbox the system libraries. Those libraries are loaded into the
native sandbox by a custom loader and linked with the app’s na-
tive code (Dalvik VM uses an unconfined version of the system li-
braries). Those libraries are subjected to the same constraints as the
app’s native code: memory writes and branch instructions must tar-
get locations within the native sandbox. However, NaCl compiler
assumes that the lower 1GB memory is reserved for the sandbox.
This cannot be guaranteed by AppCage because the location of na-
tive sandbox is unknown until it is initialized at run-time. Hence,
we need to customize the NaCl compiler for our purpose.

NaCl uses the bic instruction to clear the most significant two
bits of a branch target to ensure it is within the first 1GB of the
address space. The last four bits of the target are also cleared to
prevent the instrumented code from branching to the middle of an
instruction bundle (16 bytes):

bic r0, r0, 0xc000000f /*clear top 2 and the last 4 bits*/

For memory store instructions, NaCl uses the tst and streq in-
structions to conditionally execute the memory write if the address
is inside the sandbox.

tst r0, #0xc0000000 /* within the first 1GB? */
streq r1, [r0, #12] /* store to memory if so*/

Because native sandbox is not guaranteed to start at address 0,
we modify the NaCl compiler to emit bic and orr instructions to
confine sensitive instructions, similar to the binary rewriter. How-
ever, we have to keep the immediate values of those instructions
undefined during translation because the location of native sand-
box is unknown until it’s initialized at run-time. AppCage’s cus-
tom loader patches those instructions with the actual location of
the sandbox.
JNI Interface: the app’s bytecode and native code can call each
other through the JNI interface. However, Dalvik VM and na-
tive sandbox have different contexts under AppCage such as stack,
heap, and the code section. AppCage needs to intercept the JNI
calls and switches the context accordingly. This has to be per-
formed in both directions, from bytecode to native code and vice
versa.

Bytecode can load and resolve native functions via Android’s dy-
namic linker (/system/bin/linker) and call it through the JNI
interface. To intercept those calls, we hook the dlopen and dlsym
functions in Dalvik VM. The dlopen hook allows us to rewrite na-
tive libraries unseen during the installation (e.g., a newly down-
loaded library). Moreover, when dlsym is called to resolve a native
function, we return its associated gate function in place of the target
function. The gate prepares the execution context for the sandbox
by copying over the parameters and switching the stack and regis-
ters. It then enters the sandbox to execute the target function. When
the function returns, the gate switches the context back to Dalvik

Table 1: Confined operations by the current prototype
Operation Permissions

Send SMS SEND_SMS
Read SMS READ_SMS
Delete SMS WRITE_SMS
Phone call CALL_PHONE
Read contacts READ_CONTACTS
Write contacts WRITE_CONTACTS
Read call logs READ_CALL_LOG

Get location
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

Network INTERNET
Read IMEI READ_PHONE_STATE

VM. Meanwhile, native code can also call exported bytecode func-
tions through the JNIEnv structure. To intercept those calls, we re-
place the functions in JNIEnv with their stubs in the sandbox. The
stub switches the execution environment to that of Dalvik VM and
then calls the actual JNIEnv functions [39]. The direct reference to
Java heap is processed through the copy-in and copy-out mecha-
nism [39].

4. IMPLEMENTATION
We have implemented a prototype of AppCage. In particular,

dex sandbox is implemented in the Java and C++ programming
language, while native sandbox is implemented in C and the ARM
assembly. In this section, we discuss the concrete implementation
of this prototype.

4.1 Dex Sandbox
AppCage generates a wrapper app for a third-party app. The

wrapper app consists of the original app and the additional compo-
nents for the sandboxes. AppCage features both a dex sandbox for
the bytecode and a native sandbox for native code. Dex sandbox
hooks into the sensitive framework APIs to enforce the user-define
policies. These policies are managed by a separate app (permis-
sion manager in Figure 2). Only permission manager can update
the user policy database; other apps can read the database through
an exported content provider interface. Table 1 lists the operations
that our prototype can interpose. It is relatively easy to extend this
list by adding more stubs. Permission manager can respond to a
request with three verdicts: allow, deny, and prompt-to-user. It can
be enhanced to return mock results (e.g., fake location) to improve
its compatibility with third-party apps [27, 55].
Original App Loading: AppCage loads the embedded app into
dex sandbox for execution. It leverages the DexClassLoader class
for this purpose. However, this class loader is different from the
class loader used by Dalvik VM to load the wrapper app and the
stubs (PathClassLoader), and only classes loaded by the same class
loader can refer to each other (this is also true for apps without Ap-
pCage). Therefore, classes in the original app cannot communicate
with the stubs. To address this, we change the value of pathList of
PathClassLoader to that of DexClassLoader. After that, the classes
of the original app will behave like that they are loaded by the same
loader as the stubs.

4.2 Native Sandbox
Native sandbox confines the app’s native code into a continuous

block of memory space. Figure 5 shows the layout of the app’s ad-
dress space at run-time. The memory for native sandbox is 256MB
aligned so that we can use the simple bic and orr instructions to
control memory access. AppCage has a custom loader for the na-
tive code. It intercepts the app’s requests to load the native code
to sandbox it. Specifically, the loader will load both the original
code section and the translated code section. The former is marked

Wrapper App's Data,
Heap, Stack,

System Libraries

Sandbox Library

Trampolines

User Libraries

System Libraries

Stack

Heap

Low

High

Native Sandbox

Figure 5: Memory layout of the native sandbox

as read-only and non-executable. We keep this section so that pc-
relative instructions can access the correct memory. The loader also
needs to fix various addresses in the translated code, such as those
of the indirect jump trampolines.
Link to System Libraries: the app’s native code is linked to NaCl-
compiled system libraries. NaCl requires that branch targets aligned
at the boundary of a bundle (16 bytes). This alignment ensures that
the sandboxed code cannot jump into the middle of a bundle and
bypass security checks. As such, we need to align return addresses
of the native code at the boundary of a bundle. For example, the in-
struction at offset 0x4ae8 calls __android_log_print@plt, which
eventually jumps to the __android_log_print function in the sys-
tem library. When this function in the system library returns, the
last 4 bits of the lr register are masked out by NaCl [38]. When
translating this instruction, we need to add padding instructions
(nop) to ensure that the return address is 16 bytes aligned (0x22b0
in the example).

4ae8: ebfff8de bl 2e68 <__android_log_print@plt>
-->
22a4: e320f000 nop {0}
22a8: e320f000 nop {0}
22ac: ebfff772 bl 0x7c <__android_log_print@plt>

/*lr = 0x22b0 */

Changes of System Libraries: AppCage provides the NaCl-compiled
system libraries to the native sandbox. It makes the following ad-
ditional changes for them to safely run in the sandbox:

First, the heap management functions in libc such as malloc
are changed to allocate memory from the heap of the native sand-
box, instead of the default heap. Second, we add security checks
in some library functions. For example, the app should not be able
to use mprotect to make the code section writable. Another exam-
ple is the ioctl function in libc, which may be misused to send
commands to the key Android services through the binder interface
(/dev/binder), bypassing AppCage’s policy check. Third, we re-
locate the thread local storage (TLS) to the native sandbox. Partic-
ularly, we allocate a special region inside the sandbox for TLS and
change the __get_tls function accordingly. Last, callback func-
tions may pose a problem for AppCage. For example, the app can
register a callback function to the qsort function in libc. When
qsort calls this function, a segmentation fault will be raised be-
cause the function is a part of the original code section, which is
non-executable (Section 3.3). To address this, we register a signal
handler to capture segmentation faults caused by those functions.
In the signal handler, we lookup the translated callback function
and dispatch to it.
Indirect Branch Trampolines: the indirect branch trampoline is
fairly involved. It first saves the scratch registers and the status reg-
ister, and retrieves the branch target from the stack or the register.
The branch target (in the original code section) is then converted

1a544: e24dd004 sub sp, sp, #4 ; 0x4

1a548: e92d400f push {r0, r1, r2, r3, lr}

1a54c: ea000000 b 0x1a554

1a550: e1200070 bkpt 0x0000

1a554: e10f2000 mrs r2, CPSR //move status to r2

1a558: e92d0004 push {r2} //save status register on stack

1a55c: ea000000 b 0x1a564

1a560: e1200070 bkpt 0x0000

1a564: e1a03000 mov r3, r0 //move jump target (r0) to r3

1a568: e59f25a8 ldr r2, [pc, #1448] ; 0x1ab18

1a56c: ea000000 b 0x1a574

1a570: e1200070 bkpt 0x0000

1a574: e12fff32 blx r2 // retrieve the pc

1a578: e8bd0004 pop {r2} //pop status register to r2

1a57c: ea000000 b 0x1a584

1a580: e1200070 bkpt 0x0000

1a584: e129f002 msr CPSR_fc, r2 //restore status register

1a588: e58d0014 str r0, [sp, #20] //put new PC on stack

1a58c: ea000000 b 0x1a594

1a590: e1200070 bkpt 0x0000

1a594: e8bd400f pop {r0, r1, r2, r3, lr}

1a598: e49df004 pop {pc} //jump to new PC

..

/* patch it to the function to get pc from stack or register*/

1ab18: 00000000

Figure 6: An example of indirect branch trampoline

to the translated pc. At last, the trampoline restores the registers
and branches to the target pc. Figure 6 shows a concrete exam-
ple of the indirect branch trampoline. The trampoline has a non-
trivial design because we cannot simply spill the scratch registers
to the stack. For example, if the indirect branch instruction calls
a function, some parameters may be saved on the stack. Chang-
ing the stack passes wrong values to those parameters. If the in-
direct branch instruction returns from a function, it could return
to a wrong location, even out of the sandbox. The trampoline in
Figure 6 guarantees the stack is not changed before branching.

Since the indirect branch trampoline is in the native sandbox, we
need to prevent it from being misused by the native code. Binary
rewriting guarantees that the app’s native code cannot jump to the
middle of a trampoline. This is because branches in the translated
code can only target addresses in the mapping table of the original
and translated pcs, and only the beginning of the trampoline is in
this table. However, the native code may achieve the same goal by
leveraging the indirect branches in the system libraries since they
can target any bundles. To this end, we put the bkpt instruction
at the code boundaries of the trampoline, and use b instruction to
skip bkpt inside the trampoline [48]. Any attempts to jump into the
trampoline from the NaCl-compiled system libraries will be cap-
tured because they can only target those boundaries (the bkpt in-
structions in the trampoline), a security rule enforced by the NaCl
compiler.

4.3 Native Sandbox Optimizations
To reduce performance overhead, we apply several optimization

techniques to the native sandbox.
Redundant Check Removal: when translating memory write in-
structions, we can analyze the register usage in an instruction bun-
dle and remove redundant safety checks. For example, we only
need to apply the confinement instructions to the first memory write
instruction in the following case:

3324: str r3, [r4, #8]
3328: str r3, [r4, #20]
-->
/* native sandbox: [0x40000000, 0x5FFFFFFF] */
4400: bic r4, r4, #0xa0000000
4404: orr r4, r4, #0x40000000
4408: str r3, [r4, #8]
440c: str r3, [r4, #20]

Calls of System Library Functions: compilers use the PLT/GOT
structure to support dynamic linking. Specifically, calls to an exter-

(a) Gone60 malware: read-
ing contacts

(b) FakePlayer: sending
SMS to a premium number

Figure 7: AppCage detects malicious behaviors

nal function are patched to the function’s stub in the PLT section,
which indirectly branches to the function address in the associated
GOT entry. The GOT entry is normally filled in by the dynamic
linker after it resolves the address of the external function. In Ap-
pCage, the GOT entries are patched by our own custom loader and
are guaranteed to be in the sandbox. Therefore, we do not need to
rewrite the indirect branch instructions inside the PLT section (the
GOT section is set to read-only after initialization.)
Function Return Optimization: ARM binaries often use the pop
instruction to return from a function. Our binary rewriter treats the
pop instruction using pc as the target operand as an indirect branch,
which has a relatively heavy instrumentation (Section 4.2). Con-
sidering function return is highly frequent, we need to avoid the
time-consuming indirect branch trampoline. To this end, we fetch
the branch target into the lr register and add instructions to confine
the value of lr before jumping to it. In particular, we mask off the
last four bits of the return address to align it with the NaCl instruc-
tion bundle. The following instructions illustrate this optimization:

pop {r3, r4, pc}
-->
pop {r3, r4]
pop {lr}
/* native sandbox: [0x40000000, 0x5FFFFFFF] */
bic lr, lr, #0xa000000f
orr lr, lr, #0x40000000
bx lr

Address Cache in Indirect Branch Trampolines: indirect branch
trampolines need to look up the mapping between old pc and trans-
lated pc. Before looking up the table, we first search a small cache
of the previously converted pcs (8 entries). This simple optimiza-
tion has a high hit rate (90% for the nbench [7] benchmark.)

5. EVALUATION
In this section, we evaluate the effectiveness, compatibility, and

performance of our prototype. The experiments are based on a
Google Nexus S phone running Android 4.1.2 (build number JZ054K).

5.1 Effectiveness of AppCage
We used samples from 15 malware families obtained from the

Android Malware Genome Project [52] and online malware [8]
repository to evaluate the effectiveness of AppCage. Specifically,
we try to trigger their malicious behaviors and check whether our
prototype can capture all of them. However, some samples can
only be triggered by commands from the defunct remote command
and control (C&C) servers. For example, GoldDream waits for the

commands to send SMS or make phone calls to premium num-
bers in the background. To address this, we redirect the traffic to
the C&C servers to our local machines at the network level and
send commands to these malware samples. Similarly, some mal-
ware samples need to be triggered by particular SMS messages.
Table 2 lists these samples and the attempted malicious operations
by them. AppCage successfully captures all the attempts by them
to leak private information and perform dangerous operations. In
the following, we present the details of the experiment with the
Gone60 malware.

Gone60 was first discovered from the official Android Market
in September 2011. When executed, it immediately reads the call
logs, contacts and SMS messages in the phone and sends them to
the remote server. We sideload this app on our test phone, Ap-
pCage intercepts the installation and installs a confined version of
it. When the app is started, AppCage detects its attempts to read
the sensitive information. Since we have not specified any policy
for this app yet, AppCage prompts us to choose whether to allow
or deny the access. Figure 7(a) shows the prompt generated by
AppCage regarding Gone60’s access to the contacts. Figure 7(b)
shows a similar prompt when FakePlayer tries to send SMS to a
premium-rated number.

In addition to malware, we also experimented with some benign
but invasive apps. These apps are not malicious, but may aggres-
sively access the private information, say, for targeted ads. In our
evaluation, AppCage can detect all the accesses and provide users
an option to block them. For example, the BestBuy app requests
the permissions to access location, send SMS, and make phone
calls. The user can leverage AppCage to disallow this app to send
SMS, but allow it to access location (e.g., to find the local BestBuy
stores.)

5.2 Security Analysis
In this paper, we assume a threat model in which third-party apps

are untrusted or even malicious. In this section, we explore possi-
ble attacks to bypass or subvert AppCage and the countermeasures
built into our system.
Java Obfuscation: the bytecode of Android apps are often ob-
fuscated. Java-based obfuscation does not affect the effectiveness
of our system because dex sandbox is implemented in Dalvik VM
unreachable to the bytecode (tamper-resistance), and the app still
needs to call the interposed APIs to get private information. For
example, Java reflection is often used to hide the actual framework
APIs called by the app. AppCage can interpose this behavior be-
cause the function call will eventually be dispatched through the
Method structure in Dalvik VM, where AppCage places its hook.
Dynamic Bytecode: Android apps can dynamically load external
bytecode for execution. For example, they can download the byte-
code from a remote server and use DexClassLoader or other load-
ers to execute it. This poses a threat to bytecode-rewriting systems
because the new bytecode is not available during rewrite. This at-
tack is not effective against our system for the same reason as Java
obfuscation. AppCage is positioned to interpose the dynamically
loaded bytecode.
Direct Calls to System Services: In Android, sensitive data are
maintained by separate system service daemons and exported to
third-party apps through the binder interface. An app can directly
access those services through the IBinder interface (in Java) [26]
or the raw IPC (in native code). For example, the app can obtain
the IBinder interface of the location service to get the current loca-
tion without using the high-level LocationManager class. AppCage
can defeat such attacks by preventing the app from obtaining the
IBinder instance of known system services (most legitimate apps

Table 2: AppCage successfully blocks malicious behaviors of samples in 15 malware families

Malware Send SMS Read/Delete SMS Phone Calls Location Call Logs Contacts Internet IMEI
FakePlayer

√

YZHC
√ √

GoldDream
√ √

TapSnake
√

NickiBot
√ √ √ √ √ √

DroidKungFu
√ √

BeanBot
√ √ √ √

Gone60
√ √ √ √

SndApps
√

HippoSMS
√ √ √ √

Zitmo
√ √ √

Zsone
√ √

Spitmo
√ √

DroidLive
√ √ √ √

Geinimi
√ √ √ √ √ √

Table 3: Some apps used in compatibility test (†: in seconds)

App Size Package Name Time†
Job Search 474K com.indeed.android.jobsearch 5.7
Comics 3.7M com.iconology.comics 13.5
chase 1.8M com.chase.sig.android 10.6
Domino’s Pizza 7.2M com.dominospizza 18.6
Early Detection Plan 4.6M com.nbcf.edp 13.7
Super-Bright
LED Flashlight 1.5M com.surpax.ledflashlight.panel 4.8

Ebay 9.6M com.ebay.mobile 37.9
The Weather Channel 7.2M com.weather.Weather 27.9
Bug Rush Free 13M com.fourpixels.td 22.2
Solitaire 8.7M com.mobilityware.solitaire 18.6
Average 5.7 M - 17.3

do not do this anyway). Moreover, the app can use native code
to open the binder device and send commands to the system ser-
vices using the ioctl system call. AppCage adds security checks
in the ioctl function of libc to prevent it, and it disallows the na-
tive code to issue system calls directly (Section 3.3). Note that we
only block the ioctl system call directly issued from user native
libraries or the (confined) system libraries linked with user native
libraries. The original communication channels to remote system
services through the binder interface remain unchanged since they
are going through original system libraries.
Tampering with Dalvik VM: the app may tamper with Dalvik
VM using native code since they share the same address space [1].
For example, it can remove all the hooks of AppCage in Dalvik
VM to disable the policy check. This attack can be foiled by our
system because the app’s native code is sandboxed and cannot write
memory out of the sandbox. In addition, it cannot escape from the
sandbox to execute untranslated code.
Attacking Native Sandbox: the app may also try to attack the na-
tive sandbox. For example, it may try to load unsandboxed native
code or break out of the sandbox. Our system design is secure
against those attacks. First, AppCage hooks into the Android’s dy-
namic loader. It intercepts any attempt to load a native binary and
ensures that all the loaded user binaries are instrumented and sand-
boxed. Second, even though AppCage uses both a binary rewriter
and the customized NaCl compiler to instrument native code, they
enforce the same set of rules as the Native Client, which has been
proved to be reliable and secure [38,48], despite a few fixed imple-
mentation issues.
Synthetic Attack: to further evaluate the security of the native
sandbox, we create several synthetic attacks that violate the native
sandbox rules. The first one is to change the loaded app bytecode
at run-time, i.e., by writing to the memory mapped bytecode. Our
system can capture such an attempt since this attack invokes the

Table 4: Code size increase (†: sizes in kilobytes before and after
instrumentation ‡: percentage of code size increased. ∗:

percentage of padding.]: time in seconds.)

App Native Library Size† Size† %Inc.‡ %Pad∗ Time]
Ebay libredlaser.so 529.2 709.7 34.1 15.9 12.2
AngryBirds libangrybirds.so 1, 283.4 1, 639.8 27.8 16.6 27.7

MiBench

libjpeg6a.so 213.7 283.5 32.3 12.5 5.4
liblame.so 260.1 347.7 33.7 15.8 5.7
libmad.so 115.7 147.5 27.5 7.9 2.6
libtiff.so 195.4 257.0 31.5 10.1 5.2

Nbench libnbench.so 82.2 103.3 29.2 13.1 2.2
Average - - - 30.9 13.1 8.7

mmap system calls (Section 3.3) to remap the memory space con-
taining the bytecode as readable and writeable. The second one is
to manipulate the Dalvik internal data structure to change the con-
trol flow of the app code using the native library at run-time. For
instance, it manipulate the method pointer inside the Dalvik VM to
invoke the sensitive APIs. Our system blocks this attack since it
writes to the memory space outside the native sandbox.

5.3 Compatibility of AppCage
AppCage may cause compatibility issues for two reasons: first,

some apps may not be accommodating to constraints imposed by
AppCage’s sandboxes, particularly the native sandbox. For exam-
ple, AppCage disallows the app’s native code to directly issue a
system call. Meanwhile, dex sandbox should pose few problems
because it is, in essential, a set of hooks. Overall, we expect this
category of compatibility issues not to be serious because currently
not many apps contain native code that has legitimate reasons to
directly issue system calls 2. These system calls usually go through
the linked system library (libc for example). In fact, we do not find
a case during our evaluation that legitimate user native libraries is-
sue system calls directly. Second, our prototype permission man-
ager only supports three coarse responses: allow, deny, and prompt-
to-user. It is known that many apps will not fail gracefully when
permissions are removed [25, 27]. Issues in this category can gen-
erally be remedied by returning mock results, such as a mock lo-
cation, instead of an error [27, 55]. However, resources such as
network are hard to reconcile this way.

To test the compatibility of our current prototype, we down-
loaded 50 popular apps from the Google Play store. Some of the
apps we tested are shown in Table 3. We first evaluate the com-
patibility issues caused by the sandboxes by configuring permis-
sion manager to always return allow. All the apps can run un-
der AppCage and we have not met any glitches even with exhaus-

2Nevertheless, we still need to sandbox native code. Otherwise,
malicious apps can easily subvert our system using a native library.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

sieve loop logic string float method overall

C
af

fe
in

eM
ar

k
 3

.0
 S

co
re

 Without AppCage

 With AppCage

Figure 8: CaffeineMark with and without AppCage

tive interactions with the app (the result may not be definitive be-
cause we may have missed some code paths). We then evaluate
the worst case of compatibility by configuring permission man-
ager to always return deny. Under this stringent setting, some
apps can only function partially but can still run. Only two apps
crashed during our evaluation: Bug Rush Free and Super-Bright
LED Flashlight. They immediately crashed when the access to the
network and IMEI was denied, respectively. As aforementioned,
the compatibility in this case can be improved by returning mock
results if and when applicable.

We also evaluate the compatibility of the dex sandbox on dif-
ferent Android versions. We use five different Android versions,
i.e., 2.3.6, 4.0.4, 4.1.2, 4.2.2, 4.3 in our test. Our experiments
show that the dex sanbox can tolerant the changes of the Dalvik
VM in different versions. We only need to slightly change the off-
set of the Dalvik VM data structure that needs to be hooked. This
is implemented by maintaining a mapping table between the ver-
sion numbers and the offsets of the Dalvik VM data structure that
the dex sandbox are interested. Fortunately, this is a one time effort
and the number of interested data structures is small (less than 10).

5.4 Performance Evaluation
We also evaluated the overhead introduced by AppCage includ-

ing its impact to the code size, the installation time and the perfor-
mance overhead.
Code Size: for each target app, AppCage generates a wrapper app
that consists of the original app and other components to set up
the sandboxes. This adds about 50KB of size to the original app
(33KB for the stubs and 18KB for the library). Considering the av-
erage size of apps we tested is 5.7MB, the code size increase is less
than 1%. There is additional code size increase due to the binary
instrumentation for apps with native libraries. Table 4 shows the
effect of binary instrumentation on the native code of two Android
apps (Ebay and Angry Birds) and two benchmarks (MiBench and
Nbench). The average increase is around 30%, and 13.1% of it can
be contributed to the padding instructions to align code (Section 4).
Installation Time: AppCage will also increase installation time.
For example, it needs to generate a wrapper app and sign it. Table 3
shows that the increase to the installation time is about 17 seconds
for apps without native code. Moreover, binary rewriting could be
time-consuming for large libraries. For example, AppCage spends
about 27 seconds to rewrite the 1.2MB native code of Angry Birds
(Table 4). Considering that native libraries are normally small and
the binary rewriting is performed only once during installation, this
increased installation time is acceptable, but maybe frustrating, in
the practical deployment.
Performance Overhead: We also evaluated the run-time perfor-
mance overhead introduced by AppCage. For bytecode, AppCage
interposes its calls to some framework APIs. We used Caffeine-
Mark, the standard Java benchmark to measure this overhead. The
results in Figure 8 show that AppCage’s dex sandbox only intro-

 −5%

 0%

 5%

 10%

 15%

 20%

 25%

 30%

N
um

eric Sort

String Sort

B
itfield

Fp Em
ulation

Fourier

A
ssigm

ent

Idea
H

uffm
an

A
verage

Figure 9: Normalized overhead of the native sandbox

duces negligible performance overhead to the bytecode. We ob-
tained the similar results with an evaluation app that intensively
invokes the confined framework APIs. Moreover, AppCage needs
to communicate with permission manager (see Figure 2) to retrieve
the policies. To measure the overhead introduced by this opera-
tion, we develop an app which continuously retrieves the policy
for 10,000 times. It costs about 3.9 seconds in total for this app to
complete. That is, the average time for each policy retrieval is about
0.39 millisecond. We believe this time introduced by AppCage is
negligible that users cannot actually perceive it.

For native code, AppCage adds instructions to confine memory
write and branches. To measure the overhead of native sandbox, we
used Nbench [7], a computation-intensive benchmark of the CPU,
FPU, and memory system performance. The average overhead of
native sandbox is about 10.7% (Figure 9). The string sort bench-
mark has higher performance overhead because it heavily uses the
memmove function in libc to move large blocks of data. Libc is
built by a modified NaCl compiler and is the main source of the
overhead for this benchmark. This is confirmed by the fact that
the overhead will reduce dramatically if the benchmark is linked to
a plain libc. This overhead can be reduced (to that of the origi-
nal NaCl for ARM) if we position the sandbox in the same way as
NaCl. This is not feasible unless we can change the default An-
droid loader, a design we avoid for easy deployment. Similar to
NaCl, there are three tests in Nbench perform better than the native
execution. This is probably due to the caching effects of the code
bundles [48].

6. DISCUSSION
First, compared to the systems that target the same problem [5,

14–16, 27, 33, 45, 55], AppCage is a more comprehensive and se-
curer solution with its hybrid sandboxes. The ideal solution is for
Google to officially support adjustment of permissions after instal-
lation [5]. However, there are two major issues that encumber this
solution. First, Android is heavily fragmented with many versions
and incompatible customization by major vendors [46]. It is not
clear whether and when such update will be deployed to most of the
users. In contrast, solutions such as AppCage can be immediately
deployed. More importantly, as an official solution, the user would
expect it to be compatible with all the apps in Google Play. It is a
daunting task to update those millions of apps. It is questionable
whether Google will ever deploy such a system (the experimen-
tal official permission manager has since been removed in a recent
update to Android KitKat 4.4.2 [4].) Users likely have higher tol-
erance to the (inevitable) incompatibility of third-party solutions.

Second, AppCage prompts the user to choose to allow or deny
the app’s access to sensitive resources if no policy has been set
(Figure 7). Compared to the prompt during installation, this in-
context prompt is more effective and users are less likely to ignore
it. Particularly, the research by Felt et al. shows that only 12% of

the participants pay attention to the permission request at installa-
tion time [20], while 85% of them denied the location request for
at least one app [21]. The system can also be extended to sup-
port community-based policy definition [35]. Moreover, the sig-
nature of the installed wrapper app is different from the original
app, which may break the automatic update feature provided by the
Google Play. Our system can monitor the version history of the
apps on the Google Play and generate the wrapper app if a newer
version is available.

Third, our current prototype only supports ARM, the dominate
architecture for smartphones and tablets. Intel’s x86 is an emerg-
ing architecture for mobile platforms. Our native sandbox can be
extended to support x86 using similar techniques. In addition, our
prototype does not support self-modify code. We leave it as a future
work. Moreover, the indirect branch trampoline temporarily stores
the target pc on the stack and branches to it using a pop instruc-
tion (Figure 6). This introduces a race condition where the target
pc could be manipulated by another thread. The race condition can
be avoided with an extra scratch register, and instructions to spill
and restore the register. It would further complicate the design of
the trampoline. However, the window of vulnerability is only four
instructions, and the chance of successfully attacking it in practice
is low. In fact, this race condition also affects other similar sys-
tems [32, 49].

At last, since Android version 5.0, it uses a new runtime (ART)
which leverages the ahead of time optimization to convert dex byte-
code to a native binary. AppCage could be extended to support the
ART runtime since this runtime still has the corresponding data
structures to represent the Java classes and methods as the Dalvik
VM (Figure 1). Accordingly, our system could take similar meth-
ods to hook these data structures in the ART runtime (libart.so). We
take the ART support as one of the future work.

7. RELATED WORK
Android App Security: the first category of related work includes
systems that expose privacy risks of third-party apps and systems to
confine those apps. For example, researchers discover that private
information could be leaked by benign apps [19], ad libraries [23],
vulnerable apps [43], and malicious apps [52]. To mitigate this
threat, researchers have proposed solutions to detect malicious or
privacy-leaking apps. DroidRanger [54] and RiskRanker [24] are
two systems to detect malicious apps on the official and alternative
Android markets. Those systems can detect malicious app behav-
iors before they are installed on the user devices. However, they
usually suffer from false negatives and false positives. On con-
trast, the interposition of AppCage cannot be bypassed by third-
party apps.

There are also systems that extend the Android framework to
provide fine-grained control of third-party apps at run-time [14–16,
27,33,55]. For example, AppFence [27] and TISSA [55] can return
mock results of the sensitive resources such as the location. User-
driven access control is a promising solution to provide in-context
and non-disruptive permission granting [36]. While these systems
may solve the problem in theory, the requirement to modify the
Android framework significantly limits their practical deployment.
In contrast, our system does not have such requirement and can be
readily deployed. From another perspective, researchers have pro-
posed to monitor and confine third-party apps in the user space with
bytecode rewriting [17, 18, 28] or native library interposing [47]
(Similar system also exists on other platforms [31].) For instance,
AppGuard [13] is a closely-related system that instruments the tar-
get app and detours security-relevant methods to their guards func-
tions through virtual machine internal data structure manipulation,

a similar design as our dex sandbox (Section 3.2). Unfortunately,
like other systems, it could be subverted by leveraging the native
code. The native sandbox in AppCage is specifically designed to
prevent this attack.
Software Fault Isolation AppCage leverages the software fault
isolation (SFI) technology to sandbox native code. SFI has been
widely researched and deployed [22, 29, 32, 34, 38, 42, 48, 50, 51].
Most of these systems target the x86 architecture [22, 29, 32, 34,
48, 50]. AppCage is designed for the ARM architecture, which
has a different set of challenges (Section 3.3). ARMor [51] is a
system providing SFI for the ARM architecture. However it does
not support dynamic linking, and has a high performance overhead
unsuitable to our system. Native Client for ARM [38] provides a
customized compiler to generate confined ARM binaries. It thus
requires source code access which is not available for the app’s na-
tive code. ARMlock [53] implements an efficient fault isolation
solution. However it requires the support from kernel space and
thus cannot be used without the change to the phone’s firmware.
AppCage’s native sandbox uses static binary translation to enforce
the same proven rules of NaCl.

Robusta [39] and Arabica [40] are two closely related systems.
They leverage Native Client and the JVMTI (JVM Tool Interface)
to sandbox the native libraries of JVM, respectively. They have
different assumptions than AppCage: Robusta requires to recom-
pile the source code of the native libraries, and Arabica needs the
support of JVMTI that is unavailable in Dalvik VM. Klinkoff et al.
propose a SFI mechanism to protect managed code and the .NET
run-time from the unmanaged code (or native code) [30]. They iso-
late unmanaged code in a separate process. Similarly, the NativeG-
uard [41] leverages the process boundary to isolate untrusted native
libraries. AppCage takes a different design by isolating native code
in the same process. While process-based isolation could be used in
our system, one disadvantage is that every JNI call is transformed
to a RPC call cross the process boundary, which is expensive and
thus infeasible for our use cases.

8. CONCLUSION
We have presented the design, implementation, and evaluation

of AppCage, a system to interpose and regulate third-party An-
droid apps with hybrid user-level sandboxes, dex sandbox and na-
tive sandbox. Together, they enable AppCage to securely interpose
the app’s access to key APIs and services. We have implemented
a prototype of AppCage. Our evaluation shows that AppCage can
successfully detect and block the attempts to leak private data or
perform dangerous operations by malware and invasive apps, and it
also has an acceptable overhead, especially for apps without native
code.

Acknowledgements The authors would like to thank the anony-
mous reviewers for their insightful comments that helped improve
the presentation of this paper. This work was supported in part by
the US National Science Foundation (NSF) under Grants 0855036
and 0952640. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

9. REFERENCES
[1] Android Security Analysis Challenge: Tampering Dalvik Bytecode During

Runtime.
https://bluebox.com/technical/android-security-analysis-
challenge-tampering-dalvik-bytecode-during-runtime/.

[2] Binder. http:
//developer.android.com/reference/android/os/Binder.html.

[3] DroidKungFu Malware.
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html.

https://bluebox.com/technical/android-security-analysis-challenge-tampering-dalvik-bytecode-during-runtime/
https://bluebox.com/technical/android-security-analysis-challenge-tampering-dalvik-bytecode-during-runtime/
http://developer.android.com/reference/android/os/Binder.html
http://developer.android.com/reference/android/os/Binder.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

[4] Googler: App Ops Was Never Meant For End Users, Used For Internal Testing
And Debugging Only.
http://www.androidpolice.com/2013/12/11/googler-app-ops-was-
never-meant-for-end-users-used-for-internal-testing-and-
debugging-only/.

[5] Hidden Permissions Manager Found in Android 4.3, Lets You Set the Rules.
http://www.engadget.com/2013/07/26/hidden-permissions-
manager-android-4-3/.

[6] JNI Tips.
http://developer.android.com/training/articles/perf-jni.html.

[7] Linux/Unix nbench. http://www.tux.org/~mayer/linux/bmark.html.
[8] Mobile Malware Minidump. http://contagiominidump.blogspot.com/.
[9] PLT and GOT - the Key to Code Sharing and Dynamic Libraries.
https://www.technovelty.org/linux/plt-and-got-the-key-to-
code-sharing-and-dynamic-libraries.html.

[10] Smartphone OS Market Share, Q2 2014.
http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[11] The Java Virtual Machine Specification.
http://docs.oracle.com/javase/specs/jvms/se7/html/.

[12] Your Apps Are Watching You. http://online.wsj.com/news/articles/
SB10001424052748704368004576027751867039730.

[13] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky.
AppGuard - Enforcing User Requirements on Android Apps. In Proceedings of
19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2012.

[14] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. MockDroid: Trading
Privacy for Application Functionality on Smartphones. In Proceedings of the
12th International Workshop on Mobile Computing System and Applications,
2011.

[15] S. Bugiel, S. Heuser, and A.-R. Sadeghi. mytunes: Semantically linked and
user-centric fine-grained privacy control on android. Technical Report
TUD-CS-2012-0226, Center for Advanced Security Research Darmstadt,
November 2012.

[16] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and Fine-Grained Mandatory
Access Control on Android for Diverse Security and Privacy Policies. In
Proceedings of the 22nd USENIX Security Symposium, 2013.

[17] B. Davis and H. Chen. RetroSkeleton: Retrofitting Android Apps. In
Proceedings of the 11th International Conference on Mobile Systems,
Applications and Services, 2013.

[18] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen. I-ARM-Droid: A
Rewriting Framework for In-App Reference Monitors for Android
Applications. In Proceedings of the IEEE Mobile Security Technology, 2012.

[19] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, 2010.

[20] A. P. Felt, E. Hay, S. Egelman, A. Haneyy, E. Chin, and D. Wagner. Android
Permissions: User Attention, Comprehension, and Behavior. In Symposium on
Usable Privacy and Security, 2012.

[21] D. Fisher, L. Dorner, and D. Wagner. Short Paper: Location Privacy: User
Behavior in the Field. In Proceedings of the 2nd Annual ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices, 2012.

[22] B. Ford and R. Cox. Vx32: Lightweight User-level Sandboxing on the x86. In
Proceedings of the USENIX 2008 Annual Technical Conference, 2008.

[23] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe Exposure Analysis of
Mobile In-App Advertisements. In Proceedings of the 5th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2012.

[24] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable and
Accurate Zero-day Android Malware Detection. In Proceedings of the 10th
ACM International Conference on Mobile Systems, Applications and Services,
2012.

[25] E. Gustafson, K. Kennedy, and H. Chen. Quantifying the Effects of Removing
Permissions from Android Applications. In IEEE Mobile Security Technologies,
2013.

[26] H. Hao, V. Singh, and W. Du. On the Effectiveness of API-Level Access
Control Using Bytecode Rewriting in Android. In Proceedings of the 8th ACM
Symposium on Information, Computer and Communications Security, 2013.

[27] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These Aren’t the
Droids You’re Looking For": Retroffiting Android to Protect Data from
Imperious Applications. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, 2011.

[28] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and
T. Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions in Android
Applications . In Proceedings of 2nd ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices, 2012.

[29] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution via Program
Shepherding. In Proceedings of the 11th USENIX Security Symposium, 2001.

[30] P. Klinkoff, E. Kirda, C. Kruegel, and G. Vigna. Extending .NET Security to
Unmanaged Code. In International Journal of Information Security, 2007.

[31] B. Livshits and J. Jung. Automatic Mediation of Privacy-Sensitive Resource
Access in Smartphone Applications. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[32] S. McCamant and G. Morrisett. Evaluating SFI for a CISC Architecture. In
Proceedings of the 15th USENIX Security Symposium, 2006.

[33] M. Nauman, S. Khan, M. Alam, and X. Zhang. Extending Android permission
model and enforcement with user-deïňĄned runtime constraints. In
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, 2010.

[34] M. Payer and T. R. Gross. Fine-Grained User-Space Security Through
Virtualization. In Proceedings of the 7th International Conference of Virtual
Execution Environments, 2011.

[35] B. Rashidi, C. Fung, and T. Vu. RecDroid: A Resource Access Permission
Control Portal and Recommendation Service for Smartphone Users. In
Proceedings of the ACM MobiCom workshop on Security and privacy in mobile
environments, 2014.

[36] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, and H. J. Wang. User-Driven
Access Control: Rethinking Permission Granting in Modern Operating
Systems. In Proceedings of the 33rd IEEE Symposium on Security and Privacy,
2012.

[37] G. Russello, A. B. Jimenez, H. Naderi, and W. van der Mark. FireDroid:
Hardening Security in Almost-Stock Android. In Proceedings of the 29th
Annual Computer Security Applications Conference, 2013.

[38] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. S. Yee, K. Schimpf,
and B. Chen. Adapting Software Fault Isolation to Contemporary CPU
Architectures. In Proceedings of the 19th USENIX Security Symposium, 2010.

[39] J. Siefers, G. Tan, and G. Morrisett. Robusta: Taming the Native Beast of the
JVM. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, 2010.

[40] M. Sun and G. Tan. JVM-Portable Sandboxing of Java’s Native Libraries. In
Proceedings of the 17th European Symposium on Research in Computer
Security, 2012.

[41] M. Sun and G. Tan. NativeGuard: Protecting Android Applications from
Third-Party Native Libraries. In Proceedings of the 7th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2014.

[42] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
Software-based Fault Isolation. In Proceedings of the 14th ACM symposium on
Operating systems principles, 1993.

[43] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized Origin Crossing on
Mobile Platforms: Threats and Mitigation. In Proceedings of the 20th ACM
Conference on Computer and Communications Security, 2013.

[44] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. SigFree: A Signature-free Buffer
Overflow Attack Blocker. In Proceedings of the 15th IEEE Symposium on
Security and Privacy, 2006.

[45] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang. AirBag: Boosting
Smartphone Resistance to Malware Infection. In Proceedings of the 21st
Network and Distributed System Security Symposium, 2014.

[46] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The Impact of Vendor
Customizations on Android Security. In Proceedings of the 20th ACM
Conference on Computer and Communications Security, 2013.

[47] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical Policy Enforcement for
Android Applications. In Proceedings of the 21th USENIX Security Symposium,
2012.

[48] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In Proceedings of the 30th IEEE Symposium on Security and
Privacy, 2009.

[49] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou. Practical control flow integrity & randomization for binary executables.
In Proceedings of the 34th IEEE Symposium on Security and Privacy, 2013.

[50] M. Zhang and R. Sekar. Control-Flow Integrity For COTS Binaries. In
Proceedings of the 22rd USENIX Security Symposium, 2013.

[51] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor: Fully Verified Software
Fault Isolation. In Proceedings of the 11th International Conference on
Embedded Software, 2011.

[52] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and
Evolution. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy, 2012.

[53] Y. Zhou, X. Wang, Y. Chen, and Z. Wang. ARMlock: Hardware-based Fault
Isolation for ARM . In Proceedings of the 21st ACM Conference on Computer
and Communications Security, 2014.

[54] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In
Proceedings of the 19th Network and Distributed System Security Symposium,
2012.

[55] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming Information-Stealing
Smartphone Applications (on Android). In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing, 2011.

http://www.androidpolice.com/2013/12/11/googler-app-ops-was-never-meant-for-end-users-used-for-internal-testing-and-debugging-only/
http://www.androidpolice.com/2013/12/11/googler-app-ops-was-never-meant-for-end-users-used-for-internal-testing-and-debugging-only/
http://www.androidpolice.com/2013/12/11/googler-app-ops-was-never-meant-for-end-users-used-for-internal-testing-and-debugging-only/
http://www.engadget.com/2013/07/26/hidden-permissions-manager-android-4-3/
http://www.engadget.com/2013/07/26/hidden-permissions-manager-android-4-3/
http://developer.android.com/training/articles/perf-jni.html
http://www.tux.org/~mayer/linux/bmark.html
http://contagiominidump.blogspot.com/
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://online.wsj.com/news/articles/SB10001424052748704368004576027751867039730
http://online.wsj.com/news/articles/SB10001424052748704368004576027751867039730

	Introduction
	Background and Threat Model
	Dalvik Virtual Machine
	Java Native Interface
	Dynamic Loading and Linking
	Threat Model

	System Design
	Overview
	Dex Sandbox
	Native Sandbox

	Implementation
	Dex Sandbox
	Native Sandbox
	Native Sandbox Optimizations

	Evaluation
	Effectiveness of AppCage
	Security Analysis
	Compatibility of AppCage
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	References

