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Abstract

Hosted hypervisors (e.g., KVM) are being widely deployed.

One key reason is that they can effectively take advantage of

the mature features and broad user bases of commodity oper-

ating systems. However, they are not immune to exploitable

software bugs. Particularly, due to the close integration with

the host and the unique presence underneath guest virtual

machines, a hosted hypervisor – if compromised – can also

jeopardize the host system and completely take over all

guests in the same physical machine.

In this paper, we present HyperLock, a systematic ap-

proach to strictly isolate privileged, but potentially vul-

nerable, hosted hypervisors from compromising the host

OSs. Specifically, we provide a secure hypervisor isolation

runtime with its own separated address space and a restricted

instruction set for safe execution. In addition, we propose

another technique, i.e., hypervisor shadowing, to efficiently

create a separate shadow hypervisor and pair it with each

guest so that a compromised hypervisor can affect only

the paired guest, not others. We have built a proof-of-

concept HyperLock prototype to confine the popular KVM

hypervisor on Linux. Our results show that HyperLock has a

much smaller (12%) trusted computing base (TCB) than the

original KVM. Moreover, our system completely removes

QEMU, the companion user program of KVM (with >

531K SLOC), from the TCB. The security experiments and

performance measurements also demonstrated the practical-

ity and effectiveness of our approach.

Categories and Subject Descriptors D.4.6 [Operating Sys-

tems]: Security and Protection—Security kernels

General Terms Design, Security

Keywords Virtualization, Hypervisor, KVM, Isolation
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1. Introduction

Recent years have witnessed the accelerated adoption of

hosted or Type-II hypervisors (e.g., KVM [19]). Compared

to bare-metal or Type-I hypervisors (e.g., Xen [5]) that run

directly on the hardware, hosted hypervisors typically run

within a conventional operating system (OS) and rely on

this “host” OS to manage most system resources. By doing

so, hosted hypervisors can immediately benefit from various

key features of the host OS that are mature and stable,

including abundant and timely hardware support, advanced

memory management, efficient process scheduling, and so

forth. Moreover, a hosted hypervisor extends the host OS

non-intrusively as a loadable kernel module, which is ar-

guably much easier to install and maintain than a bare-metal

hypervisor. Due to these unique benefits, hosted hypervisors

are increasingly being adopted in today’s virtualization

systems [28].

From another perspective, despite recent advances in

hardware virtualization (such as Intel VT [18]), virtualizing

a computer system is still a complex task. For example,

a commodity hosted hypervisor, such as KVM, typically

involves a convoluted shadow paging mechanism to virtu-

alize the guest memory (including emulating five different

modes of operation in x86: paging disabled, paging with 2,

3, or 4 levels of page tables, and hardware assisted memory

virtualization, including EPT/NPT [18]). For performance

reasons, many hypervisors also support an “out-of-sync”

(OOS) shadow paging scheme that synchronizes the shadow

page table with the guest only when absolutely necessary. In

addition, hosted hypervisors still suffer from a large attack

surface, because they take many untrusted guest virtual

machine (VM) states as input. For example, shadow paging

needs to read guest page tables for synchronization, while

instruction emulation – another complicated component

of a hypervisor – involves fetching guest instructions for

interpretation and execution.

Due to inherent high complexity and broad attack surface,

contemporary hosted hypervisors are not immune to serious

security vulnerabilities. A recent study of the National

Vulnerability Database (NVD) [25] indicates that there were

24 security vulnerabilities found in KVM and 49 in VMware

Workstation over the last three years. These vulnerabilities



can be potentially exploited to execute arbitrary code with

the highest privilege, putting the whole host system at

risk. In fact, successful attacks against both KVM [12] and

VMware Workstation [21] have been publicly demonstrated

to escape from a guest VM and directly attack the host OS.

Worse, a compromised hypervisor can also easily take over

all the other guests, leading to disruption of hosted services

or stealing of sensitive information. This can have a devas-

tating effect in the scenario where a single physical machine

may host multiple VMs from different organizations (e.g.,

in a cloud setting). In light of the above threats, there is a

pressing need to secure these hosted hypervisors and protect

the host system – as well as the other guest VMs – from a

compromised hypervisor.

To address the need, researchers have explored a number

of approaches. For example, seL4 [20] takes a formal

approach to verify that a small micro-kernel (∼8.7K source

lines of code or SLOC) is secure including the absence of

certain software vulnerabilities (e.g., buffer overruns and

NULL pointer references). However, it is not scalable or still

incomplete in accommodating commodity hypervisors (e.g.,

KVM) that have a much larger code base and support various

complex x86 CPU/chipset features [30]. HyperSafe [39]

enables self-protection for bare-metal hypervisors to enforce

their control flow integrity. Unfortunately, as admitted in

[39], the proposed approach cannot be applied for hosted

hypervisors due to different design choices in the commodity

host OS (e.g. frequent page table updates) from bare-metal

hypervisors. Other approaches [32, 42] take a layer-below

method to isolate untrusted device drivers, which is also

not applicable because hosted hypervisors already run at the

lowest level on the system.

In this paper, we present HyperLock, a system that is

able to establish a tight security boundary to isolate hosted

hypervisors. Specifically, we encapsulate the execution of

a hosted hypervisor with a secure hypervisor isolation

runtime, which has its own separate address space and a

reduced instruction set for safe execution. By doing so, the

host system is not accessible to the hypervisor. Instead, it

must go through a well-defined interface, which is mediated

and sufficiently narrowed-down by HyperLock to block

any unexpected side-effects. Moreover, we further propose

a hypervisor shadowing technique, which can efficiently

create a separate shadow hypervisor for (and pair it with)

each guest so that a compromised hypervisor can affect only

the paired guest, not others. By exploiting recent memory

de-duplication techniques, these shadow hypervisors can be

created without incurring additional resource overhead.

We have implemented a proof-of-concept HyperLock

prototype for the popular KVM hypervisor (version kvm-

2.6.36.1 and qemu-0.14.0). Our experience shows that Hy-

perLock can be implemented with a small code base (∼4K

SLOC). We demonstrate its effectiveness and practicality

by performing additional security analysis and performance

measurement. To summarize, this paper makes the following

contributions:

• To address the imperative need to confine commodity

hosted hypervisors, we propose a secure hypervisor iso-

lation runtime with a dedicated address space and a

reduced instruction set to strictly confine their execution.

To the best of our knowledge, the proposed hypervisor

isolation runtime is among the first to isolate hosted

hypervisors and protect the host OSs from being jeop-

ardized by them.

• To effectively prevent a compromised hosted hypervisor

from taking over all guests in the same physical ma-

chine, we propose another key technique, i.e., hypervisor

shadowing, to create a guest-specific shadow hypervisor

without additional resource overhead. By doing so, we

ensure that a compromised hypervisor will only affect the

corresponding guest, not others.

• We have developed a HyperLock prototype and used it

to protect the popular KVM hypervisor. Our prototype

introduces a very small TCB (∼4K SLOC) to the current

OS kernel while completely removing the original KVM

code (∼33.6K SLOC) as well as the companion QEMU

program (∼531K SLOC) from the TCB of the host

OS. The security analysis and evaluation with standard

benchmark programs shows that our prototype is not

only effective, but also lightweight (< 5% performance

slowdown).

The rest of the paper is structured as follows: we first

present the design of HyperLock with a focus on the

KVM hypervisor in Section 2. After that, we discuss the

implementation and evaluation of HyperLock in Sections 3,

and 4, respectively. Issues and possible improvements are

discussed in Section 5. Finally, we describe related work in

Section 6 and conclude the paper in Section 7.

2. Design

Before presenting our system design, we first briefly review

the basic architecture of existing hosted hypervisors and

the associated threat model. For simplicity, we use KVM

as the representative example throughout the paper. As a

popular, open-source hypervisor, KVM is incredibly simple

to deploy and run. It can be dynamically loaded as a kernel

module on Linux and once loaded, it instantly extends the

host OS with virtualization support (based on hardware

virtualization extensions such as Intel VT [18]). KVM

uses a companion user program, i.e., a QEMU variant, to

cooperatively emulate hardware devices for a guest (e.g.,

hard disks). In Figure 1(a), we show the main execution flow

of a KVM-powered guest, which involves close interaction

between KVM and QEMU. For example, when QEMU

issues an ioctl command (e.g. KVM RUN – arrow 1) to

KVM, KVM proceeds by switching into the guest mode for

the VM execution (arrow 2), which means the guest code
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Figure 1. Traditional KVM Execution vs. “HyperLocked” KVM Execution

can run natively on the CPU. The guest mode continues until

certain events (e.g., an I/O port access – arrow 3) happen to

cause a VM exit back to KVM. Based on the VM exit reason,

KVM may directly resolve it or delegate it to QEMU (arrow

4). After the VM exit is resolved, the guest can now enter the

guest mode again for native VM execution (arrow 2).

In this work, we assume an adversary model where

an attacker can successfully subvert the underlying hosted

hypervisor from a malicious guest. To do that, the at-

tacker can choose to exploit vulnerabilities either in the

hypervisor itself (e.g., memory corruption in KVM) or in

its companion user-level program (e.g., vulnerabilities in

device emulation). As part of the exploitation process, the

attacker may attempt to execute arbitrary malicious code in

the compromised hypervisor or the user-level program [8].

In other words, by assuming the presence of exploitable

software vulnerabilities in hosted hypervisors, we aim to

deal with the threats from an untrusted guest so that the

hosted hypervisor, even compromised, cannot take over the

host and other guests.

Figure 1(b) illustrates the high-level architecture of Hy-

perLock. To isolate hosted hypervisors, it has two key

components, i.e., a hypervisor isolation runtime and a hy-

perlock controller. With these two components, unlike the

traditional case of directly running KVM in the host OS

(Figure 1(a)), HyperLock confines the KVM execution in

a secure hypervisor isolation runtime with its own separate

address space, where only unambiguous instructions from a

reduced instruction set will be allowed to execute. Further,

one isolation runtime is bound to one particular guest. That

is, every guest logically has its own separate copy of the

hypervisor code and data. Therefore, guests are completely

isolated from each other. To confine KVM’s user-level

companion program, i.e., QEMU, HyperLock limits its

system call interface and available resources with system

call interposition. By doing so, HyperLock can mediate the

runtime interaction between QEMU and KVM by acting as

a proxy to forward commands from QEMU to KVM or relay

requests from KVM on the opposite direction. The controller

is also designed to provide runtime services to KVM as some

tasks cannot be entrusted or delegated to KVM.

2.1 Hypervisor Isolation Runtime

Our first component – the hypervisor isolation runtime – is

designed to safely isolate or confine the privileged hosted

hypervisor so that even it is compromised, our host can

still be protected. Isolation is achieved through two main

mechanisms: memory access control and instruction access

control. In the following, we describe each mechanism in

detail.

2.1.1 Memory Access Control

To confine the privileged KVM module, we create a separate

address space based on the CPU paging mechanism. Before

permitting KVM to run, HyperLock switches to the KVM-

specific address space by loading the CR3 register with

the corresponding page table base address. The KVM-

specific page table is maintained by HyperLock and cannot

be changed by KVM because we map it read-only inside

the KVM address space to facilitate the guest page table

update (Section 3.3). We stress that it is critical to make

the KVM page table unmodifiable to KVM. Otherwise,

a compromised KVM can take advantage of it to access

or modify the host OS memory and corrupt the whole

system. In our design, we further enforce W⊕X [2] in the

KVM address space. That is, there is no memory page

in the isolated KVM address space that is simultaneously

executable and writable. Also, as there is no legitimate need

for KVM to execute any of the guest code, the whole guest

memory is marked as non-executable in the KVM address

space. In fact, within this address space, only the KVM

module contains the executable code (one exception is the

trampoline code we introduced to switch the address space

from KVM back to the host – Section 2.1.2). By doing

so, HyperLock guarantees that no code inside the isolation

runtime can alter its memory layout or change the memory

protection settings.

Within the isolation runtime, KVM can directly read from

or write to the guest memory as usual. For performance



reasons, it is important to allow KVM access to the guest

memory. Specifically, if an I/O instruction executed by

the guest is trapped and emulated by KVM, it requires

several guest memory accesses for I/O emulation: It has

to first traverse the guest page table to convert the guest

virtual address to its corresponding guest physical address

(which can further be converted to a host address usable

by KVM); After that, KVM can then read or write the

guest memory again to actually emulate the I/O operation.

Because physical memory for the guest is linearly mapped

inside the isolation runtime (starting at address zero), guest

physical addresses can be directly used by KVM to access

guest memory without further conversion.

There also exists a trampoline code inside the isolation

runtime to switch the context back to the host, which will be

discussed in the second isolation mechanism (Section 2.1.2).

2.1.2 Instruction Access Control

In addition to a separate address space for the hosted KVM

hypervisor, we further restrict the instructions that will

be allowed to execute within it. This is possible because

KVM does not contain any dynamic code, and our memory

access control removes the possibility of introducing any

new additional code in the isolation runtime. However,

challenges arise from the need of executing privileged in-

structions (of hardware virtualization extension) in the KVM

module. For example, KVM needs to execute VMWRITE, a

privileged instruction that updates the VM control structure

(or VMCS [18]). Though we could potentially replace these

VMWRITE instructions with functions to enlist help from Hy-

perLock, the performance overhand could be prohibitively

high due to context switching between the isolation runtime

and the host kernel.

Existing hardware does not allow granting privileges to

individual instructions. Therefore, while still running the

KVM code at the highest privilege, there is a need to

prevent this privilege from being misused. Specifically, our

instruction access control scheme guarantees that no priv-

ileged instructions other than explicitly-allowed ones can

be executed within the isolation runtime. In our prototype,

we permit only two privileged instructions, i.e., VMREAD and

VMWRITE, for direct execution while re-writing other privi-

leged instructions to rely on the trusted supporting routines

in HyperLock (Section 3.3). Note that these two permitted

privileged instructions could be executed frequently (e.g.,

tens of times per VM exit) and it is thus critical to execute

them directly to avoid unnecessary context-switching over-

head. Moreover, to avoid the highest privilege from being

abused, we need to prune the KVM instructions to remove

any other “unexpected” privileged ones. Specifically, due

to x86’s variable length instruction set, it is still possible

to uncover “new” or unintended instructions, including

privileged ones (e.g., by fetching or interpreting the same

memory stream from different offsets [8]). To remove these

unintended instructions, we enforce the same instruction

instinst instinst inst inst... inst

INT3 INT3 INT3INT3

JMPIDT Entry JMP

Figure 2. Trampoline Code Layout: Each code fragment

starts with a one-byte INT3 and ends with a short JMP, which

skips over the next INT3 of the following code fragment. The

starting address of the trampoline code is loaded into an IDT

entry as the interrupt handler.

alignment rules as in PittSFIeld [23] and Native Client

(NaCl) [43] to allow for unambiguous, reliable disassembly

of KVM instructions. Specifically, in our prototype, the

KVM code is organized and instrumented into equal-length

fragments (32 bytes). As a result, no instruction can overlap

the fragment boundary. Also, computed (or indirect) control

transfers are instrumented so that they can only transfer to

fragment boundaries. These two properties ensure that all the

instructions that are executable inside the isolation runtime

are known at compile time [43]. With that, we can then scan

the instrumented code to verify that KVM can only contain

the two explicitly-allowed privileged instructions, and not

any other privileged ones.

In addition to effectively restricting the instructions al-

lowed to execute within the isolation runtime, our scheme

also provides a way to safely return back to the host kernel.

This is needed as KVM is now strictly confined in its own

address space and will enlist HyperLock for the tasks that

cannot be delegated to itself. To achieve that, we design a

trampoline that will safely load the CR3 register with the host

kernel page table base address. For isolation purposes, the

trampoline code also needs to switch a number of critical

machine registers, including x86 segment descriptor table

(GDT/LDT), interrupt descriptor table (IDT), and task state

segment (TSS) [18], which means that a number of critical

state registers need to be accessible to KVM. Fortunately,

from the trampoline’s perspective, these registers are static

across the context switches. Therefore, we simply collect

them in a separate memory page, mark it read-only to KVM,

and make it available to the trampoline code. In other words,

as long as we stay inside the isolation runtime, this critical

state becomes write-protected.

Because critical hardware state is updated by the trampo-

line code, we take a step further by ensuring the atomicity of

its execution, thus preventing the partial loading of hardware

state. Specifically, we ensure that the trampoline code can be

entered only from a single entry point inside the isolation

runtime, and its execution cannot be interrupted. In our

prototype, KVM has to issue a software interrupt (using

the INT instruction) to execute the trampoline code and exit

the isolation runtime. Hardware interrupts are automatically

disabled by the hardware to run the interrupt handler (i.e.,

the trampoline code) and will not be enabled until it has

returned to the host. The handler for this software interrupt is



the entry point to the trampoline code. To further make sure

it is the only entry point, we need to foil any attempts that

jump to the middle of the trampoline code. In our design,

we arrange the trampoline akin to the service runtime call in

NaCl for this purpose (Figure 2). Specifically, we put a single

byte INT3 instruction at the beginning of each code fragment

in the trampoline. If executed, this INT3 instruction will

immediately cause a debug exception. As mentioned earlier,

HyperLock enforces instruction alignment rules for any code

running inside KVM. This guarantees that indirect control

flow transfers (that may be controlled by the attacker) can

only jump to code fragment boundaries. By putting an INT3

instruction at these locations, HyperLock can immediately

catch any attempts to subvert the trampoline code (since

there is no legitimate code in the original KVM to call the

trampoline). On the other hand, legitimate invocation of the

trampoline code will not be interrupted by INT3 because a

short jump is placed at the end of each code fragment to skip

over them. As such, we can effectively ensure a single entry

to the trampoline code and the atomicity of its execution.

2.2 HyperLock Controller

Our second component is designed to accomplish three tasks

complementary to the first one. Specifically, the first task is

to achieve complete guest isolation by duplicating a KVM

hypervisor (running inside an isolation runtime) for each

guest. Traditionally, a compromised KVM hypervisor im-

mediately brings down all the running guests. By duplicating

the hypervisor for each guest and blocking inter-hypervisor

communication, we can ensure that a compromised KVM

can only take over one guest, not all of them. However,

instead of simply duplicating all the hypervisor code and

data, which unnecessarily increases memory footprint of our

system, we propose a hypervisor shadowing technique by

assigning each guest a shadow copy. The shadow copy is

virtually duplicated to segregate the hypervisor instances;

there is only a single physical copy. This is possible because

all the shadow copies share identical (static) hypervisor

code, which means we can apply classic copy-on-write or

recent memory de-duplication techniques [1] to maintain

a single physical copy, thus avoiding additional memory

consumption overhead. Each shadow copy still runs within

a hypervisor isolation runtime and can legitimately access

the memory space of one and only one guest within its own

address space.

The second task is to act as a proxy connecting QEMU

and the isolated KVM. On one hand (arrow 2 in Fig-

ure 1(b)), it accepts ioctl commands from QEMU (e.g.

CREATE VM, CREATE VCPU, and KVM RUN) and passes them

to KVM via remote procedure calls (RPCs). Our system

maintains the same ioctl interface and thus supports the

same companion QEMU program without any modification.

On the other hand (arrow 3 in Figure 1(b)), HyperLock

provides runtime services for tasks that either require in-

teraction with the host OS (e.g. to allocate memory for

the guest), or that cannot be safely entrusted to KVM (e.g.

to update shadow page tables). Because HyperLock relies

on the host OS to implement these runtime services, it is

critical to understand the possible impact should KVM be

compromised or these services be misused. To proactively

mitigate these consequences, our prototype defines a narrow

interface that exposes only five well-defined services, which

are sufficient to support commodity OSs (including both

Linux and Windows XP) as VMs. These five services

include (1) map gfn to pfn to convert a guest physical

page number (gfn) to the physical page number (pfn) of its

backing memory, (2) update spt/npt to batch-update the

shadow page table (spt) or the nested page table (npt), (3)

read msr to read x86 machine-specific registers (MSRs),

(4) write msr to write MSRs, and (5) enter guest to

switch the guest execution into guest mode. In our prototype,

we scrutinize possible arguments to these services and block

any unexpected values. Furthermore, resources allocated by

HyperLock on behalf of each guest will be accounted to that

guest to foil any attempts to deplete or misuse resources.

The third task is to reduce the exposed system call

interface to the user-level companion program, i.e., QEMU.

Specifically, we manually obtain the list of system calls that

will be used in QEMU and then define a stand-alone system

call table for it. This system call table is populated with only

those allowed entries to prevent QEMU from being abused.

In addition, we also limit the allowed parameters for each

system call and deny anomalous ones. As this technique has

been well studied [16, 27], we omit the details here.

3. Implementation

We have implemented a HyperLock prototype to isolate the

KVM hypervisor (version 2.6.36.1 with ∼ 33.6K SLOC)

and QEMU (version 0.14.0 with > 531K SLOC). Our

prototype runs on Linux/x86 and has ∼ 4.1K SLOC.

Specifically, our prototype contains 862 lines of C code for

the hypervisor isolation runtime and 270 lines of assembly

code for the trampoline that manages the context switches

between the host and KVM. The five runtime services take

569 SLOC. The remaining code (∼ 2.3K SLOC) is primar-

ily helper routines to manage the host state, confine QEMU,

and support its interaction with KVM. Our current prototype

is implemented and evaluated based on a Dell machine (with

an Intel Core i7 920 CPU and 3GB memory) running

Ubuntu 10.04 LTS and a Linux 2.6.32.31 kernel. In the

rest of this section, we present details about our prototype

based on the Intel VT [18] hardware virtualization extension.

Note that our prototype is implemented on the 32-bit x86

architecture. As we will explain in the paper, new features

of the 64-bit x86 architecture (e.g., the interrupt stack table)

actually make the implementation less challenging than on

the 32-bit architecture.



3.1 Memory Access Control

HyperLock confines the KVM memory access by creating

a separate paging-based address space. Within this address

space, there are three components: KVM itself, guest mem-

ory, and the trampoline code for host and KVM context

switches. Among these three components, the memory lay-

out for KVM and our trampoline code do not change

after initialization, while the page table entries (PTEs) for

guest memory have to be updated on demand (because

the guest memory layout and mapping might be changed

frequently when the guest is running). To set up these PTEs,

KVM needs to notify HyperLock (via the map gfn to pfn

service), which then checks whether a page of memory can

be successfully allocated for the guest. If it can, HyperLock

fills in the corresponding PTE. Otherwise, it returns failure

back to KVM. Notice that from the host OS’s perspective,

the guest is just a normal process, i.e., the QEMU process.

Therefore, the guest memory may be swapped out or in

by the host OS when under certain memory pressure. To

accommodate that, HyperLock needs to synchronize the

KVM page table when such events happen. In our prototype,

we register an MMU notifier [11] with the host kernel in

order to receive notifications of these events. Upon every

notification, our prototype will update the affected page table

entries in the notification handler and further forward these

events to KVM so that KVM can synchronize the SPT/NPT

for the guest.

HyperLock’s paging based memory access control is

relatively straightforward to implement. However, there is

one subtlety related to TLB (translation lookaside buffer)

in the x86 paging mechanism. To illustrate, TLB is known

as a fast cache of virtual to physical address mapping; if

a mapping is already cached in TLB, CPU directly returns

the mapping without bothering to traverse page tables again

to translate it. Also, reloading the CR3 register flushes all

TLB entries except those for global pages [18], which

are being used by Linux to retain TLB entries for kernel

memory during the task switching. However, global pages

could lead to serious security vulnerabilities in HyperLock.

More specifically, because of these global pages, memory

mappings for the host kernel will remain in the TLB cache

even after switching to the isolation runtime for KVM,

which means KVM can exploit the stale cache to access

the mapped host OS kernel memory or instructions. As

such, the host kernel’s memory would be exposed to the

untrusted KVM code. In our prototype, we had to disable

the global page support in CPU by clearing the PGE bit in the

CR4 register before entering the isolation runtime for KVM

execution. By doing so, we can ensure that CPU flushes all

TLB entries when switching to the KVM address space, thus

making host kernel pages inaccessible to KVM. Although

disabling the global page support leads to more frequent

TLB reloading for kernel memory, the Linux kernel’s use

of large pages (2MB) for kernel memory relieves some

performance overhead. In our prototype, we also considered

using the VPID (virtual-processor identifier) feature [18] of

Intel-VT. However, we found that the feature cannot be used

to avoid disabling global page support, because it is always

set to zero in the non-guest mode.

3.2 Instruction Access Control

In addition to memory access control, HyperLock also con-

fines the available instructions inside the isolation runtime.

Specifically, we first enforce instruction alignment [23, 43]

on the KVM and our trampoline code by compiling them

through the Native Client (NaCl) compiler, a customized

gcc compiler developed by Google. With the help of in-

struction alignment, we can then reliably disassemble avail-

able code inside the isolation runtime with the assurance

of no unintended instructions. As mentioned earlier, our

prototype blocks all privileged instructions that can be

executed inside the isolation runtime, except VMREAD and

VMWRITE for performance reasons. To remove disallowed

instructions, we further create a small script to scan the

(reliably-disassembled) instructions of KVM and replace

every privileged instruction (except VMREAD and VMWRITE)

with a call to the corresponding runtime service.

Based on Intel VT, each guest is associated with a

VMCS memory page that contains 148 fields to control

the behavior of both the host and the guest. These fields

can be roughly divided into four categories: host state, VM

execution control, guest state, and VM exit info. Generally

speaking, the first two categories need to be handled by

trusted code because they can critically affect the host

behavior. For example, HOST RIP specifies the instruction

CPU will return to after a VM exit; and EPT POINTER

stores the address of EPT/NPT table for the guest. In our

prototype, we directly handle them outside the isolation

runtime. Our development experience indicates that KVM

handles these VMCS fields in a rather simple way: Most of

these fields involve just loading the host state directly into its

corresponding VMCS field, and will never change after the

initial setup. Fields belong to the latter two categories can

be safely delegated to untrusted KVM since they reflect the

guest VM’s state. For example, VM EXIT REASON gives the

reason that caused the VM exit; and GUEST CS SELECTOR

contains the current CS segment selector for the guest.

Unlike host state and VM execution control fields, these

fields are frequently retrieved and updated by KVM during

each VM exit. For performance reasons, we would like

to grant KVM direct access to guest state and VM exit

information while preventing it from touching any other

fields relating to host state or VM execution control. That

is also the reason why our prototype makes an exception for

the VMREAD and VMWRITE instructions.

To avoid these two instructions from being misused, our

prototype takes the following precautions: First, we prevent

KVM from directly accessing VMCS memory. Specifically,

Intel VT requires that physical address of VMCS must



movl          $GUEST_EIP,           %edx 

vmwrite     %eax,                         %edx  

movl          $0xc00195d7,            %eax 

Figure 3. A VMWRITE macro-instruction that writes

0xc00195d7 into the GUEST EIP VMCS field.

be loaded to CPU before software can access its fields

with VMREAD and VMWRITE. However, nothing prevents

attackers from directly overwriting its fields if the VMCS

is virtually mapped in the KVM address space. As such,

HyperLock allocates VMCS for the guest outside of the

isolation runtime, and loads its physical address to CPU

before entering the KVM. The VMCS structure itself is not

mapped inside the KVM address space, therefore attackers

cannot manipulate its fields by directly changing the VMCS.

Meanwhile, the CPU has no problem executing the VMREAD

and VMWRITE instructions because it uses a physical address

to access the VMCS. Second, both the VMREAD and VMWRITE

instructions take a VMCS field index as a parameter. Our

prototype ensures that only fields belonging to guest state

and VM exit information can be passed to them. More

specifically, we define two macro-instructions (similar to

nacljmp in NaCl [43]) for VMREAD and VMWRITE as shown

in Figure 3. Each macro-instruction first fetches the hard-

coded field index from KVM’s code section (which is read-

only, because it is protected by W ⊕ X) into a register,

then passes the register directly to VMREAD or VMWRITE.

Further, we verify that the macro-instructions (each 17 bytes

long) cannot overlap a fragment boundary (32 bytes) to

block attackers from jumping into the middle of macro-

instructions. There is a subtlety here: if an attacker is

able to interrupt the CPU right before a VMWRITE, he

might maliciously modify the register content saved by

the interrupt handler. When the interrupt handler returns,

registers are restored and the malicious field index gets

used by VMWRITE. HyperLock avoids this problem because

the trampoline handles the interrupt context, so it is not

accessible to KVM. Finally, our script to scan KVM’s

assembly code also makes sure that only fields pertaining to

guest state and VM exit information can be passed to these

two macro-instructions.

The trampoline code for host and KVM context switches

is also worth mentioning. To prevent KVM from monopo-

lizing the CPU and to ensure a timely response to hardware

interrupts, we need to enable interrupt delivery while KVM

is running. Specifically, the trampoline code contains a

handler for each exception or interrupt. The handler for a

hardware interrupt first switches to the host OS and redirects

control to the host OS’s corresponding interrupt handler

(defined in the host IDT table). Execution of the KVM will

resume after host interrupt handler returns. The handler for

an exception, which is caused by error conditions in the

KVM, instead switches to the host OS and then immediately

terminates the VM after dumping the KVM’s state for

auditing and debugging purposes. Under normal conditions,

KVM should never cause exceptions, in particular, page

faults: updates to the guest memory mapping by the host OS

(e.g., paging out a block of memory) are synchronized to

KVM through an MMU notifier [11]. When the need arises

for KVM to access guest memory, it proactively calls the

map gfn to pfn service to read in the page, thus avoiding

page faults.

At first glance, enabling interrupt delivery while KVM

runs may only require setting up the IDT (Interrupt Descrip-

tor Table). However, one quirk of the x86 architecture makes

this more complicated than it should be: when an interrupt

happens, the CPU will save the current state (such as EIP,

ESP, and EFLAGS) to the stack so that it can resume the

execution of the interrupted task. Because the sandbox is

running at the highest privilege (ring 0), this state is saved

to the current stack, which could then be manipulated by the

attacker to launch a denial of service attack on the 32-bit

x86 platform. For example, a double fault will be triggered

if the attacker manages to set the stack pointer ESP to an

invalid (unmapped or write-protected) memory address and

then write to the stack. The first write to the stack will cause

a page fault. To handle the page fault, CPU tries to push

more content to the invalid stack, which will lead to a second

page fault. This time, CPU throws a double fault instead

of more page faults. However, the stack pointer remains

invalid for the double fault handler. Eventually, the CPU

can only be recovered by power-cycling the machine. An

astute reader may point out that we can switch to an interrupt

task (thus a known-good stack) through task gate for an

interrupt handler, and it has been used by Linux to handle

double faults. Unfortunately, task gate cannot be securely

deployed inside the isolation runtime where untrusted code

runs. Specifically, to switch to an interrupt task, CPU uses a

data structure called the TSS (task state segment) descriptor

that specifies where to load CPU state information from,

including CR3, EIP and ESP. Therefore, it is critical to write-

protect the TSS descriptor. However, this structure cannot be

write-protected in this case because CPU needs to change the

descriptor’s B (busy) bit from zero to one before switching to

the interrupt task. Write-protecting the TSS descriptor will

lead to another undesirable situation where the CPU can only

be recovered by a hardware reset.

To accommodate that in 32-bit x86 architecture, our

system always keeps a valid ESP to foil such attacks.

Specifically, we allocate three continuous memory pages

(12KB total) at a fixed location in the KVM address space:

the middle page is used for the stack itself (the same size as

the stack in recent Linux kernels), while the top and bottom

pages are used as overflow space. At the compiling time,

we instrument the instructions that change ESP to maintain

the stack location invariant by replacing the page number

part (top 20 bits) of ESP to that of the pre-allocated stack

(the middle page). This can be implemented with an AND



Runtime Service SLOC

map gfn to pfn 84

update spt/npt 251

read msr, write msr 156

enter guest 78

Table 1. The breakdown of HyperLock’s runtime service

implementation. read msr and write msr are implemented

together. enter guest includes 53 lines of inline assembly

code and 25 lines of C code.

instruction (6 bytes) and an OR instruction (6 bytes). Both of

them take a 4-byte constant and ESP as operands. As such,

no scratch registers are required for this instrumentation.

Moreover, to prevent the check from being circumvented,

the check and its related instruction are kept in the same

fragment (A similar inline software guard to prevent stack

overflow was also explored in XFI [13].) HyperLock support

for 64-bit x86 architecture will not suffer from the same

issue because the CPU can be programmed to always switch

to a known-good stack for interrupt handling with the help

of a new feature called IST (interrupt stack table) [18].

3.3 Others

To properly isolate the KVM hypervisor, HyperLock also

exposes a narrow interface to five well-defined runtime

services to KVM. All these five services were implemented

in a small number of lines of source code (Table 1). Among

them, update spt/npt is the most involved as it is directly

related to the memory virtualization in KVM. For a concrete

example, we use hardware assisted memory virtualization

(NPT) to describe how update spt/npt is implemented.

With NPT support, the CPU uses two page tables to trans-

late a guest virtual address to the corresponding physical

address: a guest page table (GPT) to convert a guest virtual

address to a guest physical address, and a nested page table

(NPT) to further convert a guest physical address to the

(actual) physical address. The guest kernel has full control

over GPT, while KVM is responsible for maintaining the

NPT. Since NPT maps physical memory into the guest,

only the trusted NPT should be loaded to CPU for guest

address translation. In HyperLock, KVM still maintains its

own NPT for the guest. However, this NPT is not used

for address translation. Instead, HyperLock creates a mirror

of the NPT outside the hypervisor isolation runtime to

translate guest addresses. The NPT table and its mirror

are synchronized via update npt calls. In update npt,

HyperLock ensures that only physical pages belonging to

this guest will be mapped to the guest. Noticing that the guest

memory is mapped in the hypervisor isolation runtime with

the (HyperLock-maintained) KVM page table, this guaran-

tee can be efficiently achieved using the KVM page table.

More specifically, KVM provides a guest physical page

number and its memory protection attributes as parameters

to update npt. In this function, HyperLock traverses the

KVM page table to find the physical page for this guest

physical page and combine it with the memory protection

attributes to update the corresponding page table entry in

the NPT mirror. Moreover, the KVM page table is made

available to KVM (by mapping it read-only in the KVM

address space) so that KVM can use it to maintain its own

NPT in the same way.

Overall, to isolate KVM with the proposed hypervisor

isolation runtime, our prototype re-organizes KVM in a

slightly different way. However, our modification to KVM

is minor and focuses on three areas. First, the original

ioctl based communication interface between KVM and

QEMU is replaced by our RPC calls through HyperLock,

which results in changing six ioctl functions in KVM (e.g.,

kvm dev ioctl, kvm vm ioctl, etc.). Second, we replace

certain dangerous KVM calls with RPCs to runtime services,

which results in changing eight functions in KVM. As an

example, the original KVM’s function ( set spte) that

writes directly to shadow page table entries is replaced by the

update spt service. Third, we also need to reduce one file,

i.e., vmx.c, to avoid changing host state and VM execution

control fields of VMCS in KVM. Instead, functions that

access these two categories are moved to HyperLock while

the rest stays the same. Our experience shows these changes

(1) are mainly one-time effort as they essentially abstract the

underlying interaction with hardware, which remains stable

over the time, and (2) do not involve the bulk KVM code,

which could undergo significant changes in future releases.

4. Evaluation

In this section, we present our evaluation results by first

analyzing the security guarantees provided by HyperLock.

After that, we report the performance overhead with several

standard benchmarks.

4.1 Security Analysis

Based on our threat model (Section 2), an attacker starts

from a compromised guest and aims to escape from Hy-

perLock’s isolation and further take over the host OS or

control other guests (by exploiting vulnerabilities in KVM

or QEMU). In HyperLock, we create a separate system

call table for the QEMU process to constrain system calls

available to it and validate their parameters. The security

guarantee provided by such a system call interposition

mechanism has been well studied [16, 27, 40]. In the

following, we focus our analysis on the threats from a

(compromised) KVM hypervisor when it aims to break out

of HyperLock confinement.

Breaking Memory Access Control The first set of

attacks aims to subvert memory protection in the isola-

tion runtime to inject malicious code or modify important

data structures, especially (read-only) control data in the

trampoline. Since W ⊕ X is enforced in the isolation

runtime, any attempt to directly overwrite their memory



will immediately trigger a page fault and further cause the

guest to be terminated by HyperLock. Having failed direct

memory manipulation, the attacker may try to disable W⊕X

protection by altering the KVM page table. Since the KVM

page table is not directly changeable in the isolation runtime,

the attacker has to leverage the trusted HyperLock code to

manipulate the KVM page table. Fortunately, HyperLock

will never change memory attributes for the (static) tram-

poline and KVM after initial setup, and the whole guest

memory is marked as non-executable. Another possibility

is for the attacker to trick HyperLock to map the host or

HyperLock memory (e.g. host page table) into the isolation

runtime or a malicious guest as (writable) guest memory.

Sanity checks in the map gfn to pfn and update spt/npt

service would prevent this from happening.

Subverting Instruction Access Control Since the hy-

pervisor isolation runtime has the highest privilege, it is crit-

ical to prevent attackers from executing arbitrary privileged

instructions. With the protection of W ⊕ X and instruction

alignment, the attackers cannot inject code or uncover “new”

instructions based on legitimate ones. Instead, they would

have to target existing legitimate privileged instructions in

the isolation runtime, for example, to maliciously modify

host state or VM execution control fields in the VMCS

by exploiting the field index parameter of the VMWRITE

instruction (Figure 3). Notice that hard coding the field

index (GUEST EIP in Figure 3) and instruction alignment

alone can not prevent misuse of the VMWRITE instruction.

This is because that the second (fetching the field index

into a register) and third instructions (executing VMWRITE)

can be separated by an instruction fragment boundary. In

other words, VMWRITE is the first instruction in an instruction

fragment. With the capability to jump to any instruction

fragment boundary under the instruction alignment rule, the

attacker can directly jump to the VMWRITE instruction after

loading the edx register with a malicious field index. This

attack is prevented in HyperLock by ensuring that the three-

instruction sequence (17 bytes) in Figure 3 cannot overlap

any fragment boundary, thus ensuring VMWRITE and VMREAD

always receive the fixed known-good field index parameters.

Another source of legitimate privileged instruction is the

trampoline code (to load CR3 etc). Similar to the VMWRITE

instruction, it is necessary for HyperLock to prevent the

attacker from jumping to the middle of the trampoline code.

Unfortunately, the trampoline code (about 4K bytes) cannot

fit in a single instruction fragment. In HyperLock, we set up

a one-byte INT3 instruction at each fragment boundary of

the trampoline code to capture direct jumps to the middle of

the trampoline. Moreover, the execution of the trampoline

cannot be disrupted by KVM because interrupts are disabled

by the hardware and will not be enabled until the trampoline

has safely returned to the host.

The attacker may also try to perform a denial of service

attack by corrupting the interrupt stack (Section 3.2). Such

Name Version Configuration

Bonnie++ 1.03e bonnie++ -f

Kernel (61MB) build 2.6.32.39 make defconfig;make

SPEC CPU 2006 1.0.1 reportable int

Ubuntu desktop 10.04.2 LTS Linux-2.6.32.31

Ubuntu server 10.04.2 LTS Linux-2.6.32.28

Table 2. Software Packages used in Our Evaluation

attempts will be foiled by the runtime check before the ESP-

changing instructions. Similar to the VMWRITE instruction,

the runtime check and its following instruction that modifies

ESP cannot overlap the fragment boundary. Therefore, the

runtime check cannot be bypassed by the attacker.

Misusing HyperLock Services Another set of targets

for the attacker is the five services provided to KVM by

HyperLock. Since they can directly access the host OS, we

have sanity checks in place to prevent these services from

being misused. For example, we validate that only guest

memory can be mapped by the update spt/npt services,

and map gfn to pfn can never allocate more memory than

that specified by the user when starting the VM. Moreover,

as shown in Table 1, these services have a small code base

(569 SLOC) and therefore can be thoroughly reviewed and

verified to remove vulnerabilities.

Case Studies To better understand the protection

provided by HyperLock, we examine several real-world

vulnerabilities from NVD [25] and show how HyperLock

could mitigate these threats. The first vulnerability we

examined is CVE-2010-3881, a kernel-level bug in KVM in

which data structures are copied to user space with padding

and reserved fields uninitialized. This bug could potentially

lead to leaking of sensitive content on the kernel stack.

Under HyperLock, the host OS is not directly accessible to

KVM and each guest is paired with its own KVM instance.

Therefore, only data related to the guest itself could be

leaked to it. The second vulnerability we examined is CVE-

2010-0435, in which a malicious guest can crash the host

by causing a NULL pointer dereference in KVM’s x86

emulator. Under HyperLock, this vulnerability could be

similarly exploited by the guest and trigger an exception.

However, instead of crashing the host, HyperLock would

terminate only the KVM instance paired with this guest

(Section 3.2). The last vulnerability we examined is CVE-

2011-4127, a bug related to device emulation in QEMU in

which a guest can gain access to the data of other guests

that reside on the same physical device due to insufficient

checks of the SCSI ioctl commands. Under HyperLock, this

vulnerability could be mitigated by system call introspection

on QEMU.

4.2 Performance Evaluation

To evaluate the performance overhead caused by Hyper-

Lock, we test the guest performance with several standard

benchmarks, including SPEC CPU 2006 [33], Bonnie++ (a
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Figure 4. Normalized Overhead of HyperLock

file system performance benchmark) [9], and two applica-

tion benchmarks (Linux kernel decompression and compi-

lation). Our test platform is based on the Dell XPS studio

desktop with a 2.67GHz Intel CoreTM i7 CPU and 3GB

memory. The host runs a default installation of Ubuntu 10.04

LTS desktop with the 2.6.32.31 kernel. The guest is based

on the standard Ubuntu 10.04 LTS server edition. Table 2

lists the software packages and configurations used in our

experiments. Among these benchmarks, SPEC CPU 2006,

kernel decompression are CPU intensive tasks, while the

other two tests (kernel compilation and Bonnie++) are more

intensive in I/O accesses. For the kernel decompression and

compilation test, we run the tests in the guest with the time

command, and reported the sum of system and user time. As

a result, these two experiments are based on the virtual time

and due to the difficulty of keeping exact time in the guest

OS [37], they could be less accurate. However, we did not

observe clock drift during our experiments.

In our evaluation, we repeated the experiments with three

different KVM configurations: the vanilla KVM, the gcc-

compiled KVM under HyperLock, and the NaCl-compiled

KVM under HyperLock. Comparing the performance of

gcc- and NaCl-compiled KVM allows us to separate the

effects of memory access control (switching between ad-

dress spaces) and instruction access control (instruction

alignment). As shown in Figure 4, the overall performance

overhead introduced by HyperLock is less than 5%. More-

over, the gcc-compiled system has better performance than

the NaCl-compiled system in most tests except mcf and

Bonnie++ write. Generally speaking, instruction alignment

will increase the binary size and reduce the performance

because of additional code (mostly NOPs) inserted to align

instructions. For example, the NaCl-compiled KVM in Hy-

perLock contains 99, 695 instructions, 265% more than the

gcc-compiled version’s 37, 553 instructions. Also, 91.2%

(56, 713 out of 62, 142) of the added instructions are NOPs.

Meanwhile, due to complex interaction of instruction align-

ment, instruction cache and TLB, the NaCl-compiled system

may actually perform better than the gcc-compiled sys-

tem [43].

To better understand the performance of HyperLock, we

measured the latency of context switching between the host

OS and hypervisor isolation runtime in HyperLock. Specifi-

cally, we created a null RPC in the isolation runtime that did

nothing but returned directly back to the host, then called this

function 1, 000, 000 times from the host OS and calculated

the average latency of round trip to the isolation runtime.

Our results show that each round trip to the isolation runtime

costs about 953 ns, or 45% of that to the guest mode (2, 115

ns). The performance overhead of HyperLock is directly

related to the frequency of context switches to the isolation

runtime, which is further determined by the frequency of

VM exits as illustrated by Figure 1 (at runtime, arrows 3,

4, 5, and 2 form the most active execution path). Advances

in both hardware virtualization support (e.g., EPT [18])

and hypervisor software (e.g., para-virtualized devices [29])

have significantly reduced the number of necessary VM

exits. For example, the average number of VM exits for the

kernel compilation benchmark is 4, 913 per second. Also,

the latency of address space switch in 64-bit x86 architecture

could be significantly reduced by using a new CPU feature

called process-context identifier (PCID) [18]. When PCID

is enabled, the CPU tags each TLB entry with the current

process-context id, thus rendering it unnecessary to flush all

the TLB entries during an address space switch. However,

we must still disable global page support (Section 3.1)

because TLB entries for global pages are shared by all the

address spaces even though PCID is enabled.

5. Discussion

In this section, we re-visit our system design and explore

possible alternatives for either enhancement or justification.

First, HyperLock confines KVM with its own paging-based

memory space, not segmentation. Though segmentation

could potentially provide another viable choice (especially

in 32-bit x86 architecture), in HyperLock, we are in favor

of paging for two reasons. (1) The 64-bit x86 architecture

does not fully support segmentation [18]. Using paging can

make HyperLock compatible with both the 32-bit and 64-bit

x86 architectures. (2) Paging provides more flexible control

over the layout and protection (e.g., readable, writable,

or executable) of our isolation runtime. For example, our

system maps the guest physical memory starting at address

zero, which allows a guest physical address to be directly

used by KVM to access guest memory without further

address translation. While segmentation may limit memory

access to a continuous range, unnecessary components (e.g.,

system libraries) could be loaded in the middle of this range

and cannot be excluded from the segment.

Second, for performance reasons, HyperLock allows

KVM to retain and execute two privileged instructions,

i.e., VMREAD and VMWRITE. This design choice significantly

affects the design of hypervisor isolation runtime for KVM

confinement. Particularly, because KVM is still privileged,

it is critical to prevent it from executing any unwanted

privileged instructions, either intended or unintended [8].



Also, certain x86 architecture peculiarities complicate the

design for safe context switches between the host and

KVM, which will be invoked by the unsafe KVM. If it

runs non-privileged, the design would be much simpler and

straightforward. On the other hand, we may choose to run

KVM at ring-3 by further replacing these two privileged

instructions with runtime services. The use of runtime

services is necessary because Intel VT mandates accessing

the VMCS with the VMREAD and VMWRITE instructions as

the format of the VMCS is not architecturally defined [18].

Thus, it is not feasible to simply map the VMCS in the KVM

address space and use memory move instructions to access

it. The overhead of frequent VMCS access through runtime

services could potentially be reduced though pre-fetching

VMCS reads and batch-processing VMCS writes. As such,

this design and HyperLock offer different design trade-offs.

We leave further consideration of the implications of this

choice to future work.

Third, HyperLock enforces instruction alignment [23, 43]

to prevent unintended instructions from being generated out

of legitimate ones. Alternatively, we can enforce control-

flow integrity (CFI) [3, 39] on KVM inside the isolation

runtime to provide a stronger security guarantee, especially

in eliminating recent return-oriented programming (ROP)-

based code-reuse attacks [8]. However, one challenge behind

CFI enforcement is the lack of an accurate and complete

points-to analysis tool that could be readily applied to

KVM. From another perspective, the lack of CFI does

not weaken our security guarantee because by design the

isolation runtime is not trusted and has been strictly confined

within its own address space. In HyperLock, for ease of

implementation, we choose to enforce the instruction align-

ment and combine it with other instruction/memory access

control mechanisms to meet our design goal of isolating

hosted hypervisors.

Finally, our current prototype defines a narrow interface

that exposes five runtime services to support guests with

virtual devices. A few more runtime services could be

added to incorporate new functionality. For example, our

current prototype does not support multi-core VMs, which

could be accommodated by adding a new service to handle

Inter-Processor Interrupts (IPIs). For the current lack of

hardware pass-through support, we can develop a new

service to request and release a PCI device on demand

and accordingly manage IOMMUs [18] to enforce hardware

isolation (e.g., to block DMA-based attacks). Further, a

service to release guest memory back to the host OS might

also be needed to support a balloon driver for cooperative

memory management. However, as mentioned earlier, the

number of added services should be kept to a minimum

and scrutinized to avoid being abused (as they will be

considered as part of the HyperLock TCB). Furthermore,

our prototype implements update spt/npt by mirroring

the corresponding KVM data structure. This makes the

prototype relatively simpler to implement by trading off

extra memory. This additional memory could be reclaimed

in future enhancements to the prototype by sharing the

SPT/NPT between HyperLock (readable and writable) and

KVM (read-only).

6. Related Work

Hypervisor Integrity The first area of related work is

recent efforts in enforcing or measuring the hypervisor

integrity. By applying formal verification, seL4 provides

strong security guarantees that certain types of vulnera-

bilities can never exist in a micro-kernel. However, its

application to protect commodity hypervisors that run on

complex x86 hardware still remains to be demonstrated [30].

HyperSafe [39] enables the self-protection of bare-metal

hypervisors by enforcing CFI. However, certain design

choices in the host OS make it difficult to be applied

to hosted hypervisors. For example, HyperSafe implicitly

assumes infrequent updates to page tables in the supported

bare-metal hypervisors, which is not the case in commodity

OSs (and hosted hypervisors). Moreover, it is important

for HyperLock to isolate memory writes from untrusted

hypervisors, which cannot be achieved by CFI alone because

CFI can only regulate the control data access. NoHype [36]

removes the (type-I) hypervisor layer by leveraging the

virtualization extension to processors and I/O devices. Due

to tight coupling between the host OS and the (hosted)

hypervisor, NoHype cannot be directly applied to protect

hosted hypervisors. The Turtles project [6] and Graf et

al. [17] implement nested virtualization support for KVM.

However, in these systems, KVM, particularly the (lowest-

level) L0 hypervisor, is still tightly integrated with the host

(including the sharing of the same address space). As such,

HyperLock can be used in these systems to better achieve

the isolation of the lowest-level L0 hypervisor. From another

perspective, HyperSentry [4] measures the hypervisor for

integrity violations using the system management mode

(SMM), which has a different goal from HyperLock.

There also exist related efforts in reducing the hypervi-

sor TCB, often adopting the micro-kernel principles. For

example, NOVA [34] applies the micro-kernel approach

to build a bare-metal hypervisor. Xoar [10] also applies

the approach to partition the control domain (of type-I

hypervisors) into single-purpose components. Xen disag-

gregation [24] shrinks the TCB for Xen by moving the

privileged domain builder to a minimal trusted component.

KVM-L4 [26] extends a micro-kernel with CPU and mem-

ory virtualization to efficiently support virtual machines.

Compared to these systems, HyperLock focuses on the

isolation of hosted hypervisors by replacing the hypervisor’s

TCB in the host kernel with the smaller (12%) and simpler

HyperLock code.

Device Driver Isolation The second area of related

work includes systems that isolate faults or malicious be-



haviors in device drivers. For example, Nooks [35] improves

OS reliability by isolating device drivers in the light-weight

kernel protection domain. Nooks assumes the drivers to be

faulty but not malicious. Accordingly, the Nooks sandbox by

design lacks instruction access control and malicious drivers

cannot be completely isolated by Nooks. A closely related

system is SUD [7] that can securely confine malicious device

drivers in the user space. SUD relies on IOMMU, transaction

filtering in PCI express bridges, and IO permission bits in

TSS to securely grant user space device drivers direct access

to hardware. However, SUD cannot be applied to the hosted

hypervisors such as KVM simply because that hardware

virtualization extension (e.g., Intel VT) is not constrained by

the IOMMU or other hardware mechanisms that SUD relies

on. Microdrivers [15] reduces device driver’s TCB in the

kernel by slicing the driver into a privileged performance-

critical kernel part and the remaining unprivileged user part.

RVM [41] executes device drivers in the user space and

uses a reference monitor to validate interactions between

a driver and its corresponding device. In HyperLock, we

securely confine the privileged KVM code in the hypervisor

isolation runtime. Gateway [32], HUKO [42], and SIM [31]

are systems that use a hypervisor (e.g., KVM) to isolate

kernel device drivers or security monitors. We did not take

this approach because otherwise we will face the recursive

question of how to isolate the hypervisor that runs at the

lowest level.

Software Fault Isolation The third area of related

work is a series of prior efforts [3, 13, 14, 23, 38, 43] in

implementing SFI to confine untrusted code in a host appli-

cation. For example, PittSFIeld [23] and Native Client [43]

both apply instruction alignment to enable the reliable

disassembly of untrusted code. CFI [3] constrains runtime

control flow to a statically determined control flow graph.

Among them, Native Client is closely related but with a

different application domain in leveraging user-level SFI

to web plugins. As a kernel-level isolation environment,

HyperLock needs to address challenges that arise from the

needs of enforcing access control of privileged instructions

and supporting x86 hardware architecture peculiarities (Sec-

tion 3). XFI [13] and LXFI [22] are two closely related

works. Based on CFI and data sandboxing, XFI combines

inline software guards and a two-stack execution model

to isolate system software. LXFI ensures API integrity

and establishes module principals to partition and isolate

device drivers. In comparison, HyperLock focuses on the

secure isolation of hosted hypervisors and needs to address

additional challenges that are unique to virtualization, such

as how to prevent VMWRITE from being misused or how

to securely support memory virtualization. To the best of

our knowledge, HyperLock is the first system that has been

designed and implemented to confine hosted hypervisors so

that the host OS and other guests can be protected.

7. Conclusion

We have presented the design, implementation and evalua-

tion of HyperLock, a system that establishes secure isolation

of hosted hypervisors. Specifically, we confine the hyper-

visor execution in the isolation runtime with a separated

address space and a constrained instruction set. Moreover,

we create a logically separated hypervisor for each guest,

thus ensuring a compromised hypervisor can only affect its

own guest. We have implemented a prototype of HyperLock

for the popular open source KVM hypervisor. The prototype

is only 12% of KVM’s code size, and further completely

removes QEMU from the TCB (of the host and other guests).

Security analysis and performance benchmarks show that

HyperLock can efficiently provide the intended isolation.
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