
gSparsify: Graph Motif Based Sparsification
for Graph Clustering

Peixiang Zhao
Department of Computer Science

Florida State University, Tallahassee, FL 32306
zhao@cs.fsu.edu

ABSTRACT
Graph clustering is a fundamental problem that partitions
vertices of a graph into clusters with an objective to opti-
mize the intuitive notions of intra-cluster density and inter-
cluster sparsity. In many real-world applications, however,
the sheer sizes and inherent complexity of graphs may render
existing graph clustering methods inefficient or incapable of
yielding quality graph clusters. In this paper, we propose
gSparsify, a graph sparsification method, to preferentially
retain a small subset of edges from a graph which are more
likely to be within clusters, while eliminating others with
less or no structure correlation to clusters. The resultant
simplified graph is succinct in size with core cluster struc-
tures well preserved, thus enabling faster graph clustering
without a compromise to clustering quality. We consider a
quantitative approach to modeling the evidence that edges
within densely knitted clusters are frequently involved in
small-size graph motifs, which are adopted as prime features
to differentiate edges with varied cluster significance. Path-
based indexes and path-join algorithms are further designed
to compute graph-motif based cluster significance of edges
for graph sparsification. We perform experimental studies
in real-world graphs, and results demonstrate that gSparsify
can bring significant speedup to existing graph clustering
methods with an improvement to graph clustering quality.

Categories and Subject Descriptors
I.5.3 [Clustering]: Algorithms; G.2.2 [Graph Theory]:
Graph Algorithms

Keywords
Graph Sparsification; Graph Clustering; Graph Motif

1. INTRODUCTION
Recent years have witnessed a growing trend in business

intelligence and scientific exploration that models and in-
terprets structured data as graphs [1, 9]. As a ubiquitous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c⃝ 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806543.

abstraction depicting relationships among entities, graphs
have become an increasingly common focus of data sciences,
and have fused a wide range of applications in social net-
works, biological networks, and the Web. Out of many graph
analytical and mining tasks, graph clustering is a fundamen-
tal building block with extensive applications in community
detection [13], network visualization [31], ranking [38], and
keyword search [11], to name a few. The objective of graph
clustering is to partition vertices of a graph into clusters such
that vertices within the same cluster are densely connected,
while those in different clusters are sparsely interlinked. As
a result, there have been an array of graph clustering meth-
ods toward optimizing the intuitive notions of intra-cluster
density and inter-cluster sparsity for graph clusters [14, 33].

However, the problem of graph clustering remains chal-
lenging due in particular to the following reasons. First,
graphs drawn from real-world applications become massive
in scale. The sheer sizes of graphs may hinder a direct appli-
cation of existing graph clustering methods that are mainly
applicable to small or medium-size graphs. Second, and
more interestingly, when graphs get larger and more com-
plex, a great percentage of interactions (edges) have been
witnessed accompanying redundant and spurious informa-
tion [32]. The existence of extremely tangled, noisy edges
can easily obfuscate intrinsic properties of graphs, thus lead-
ing to low-quality graph clusters on the one hand, and in-
ducing fruitless computation on the other.

To address the aforementioned issues, we design in this
paper a new graph sparsification method, gSparsify. The
goal of gSparsify is to simplify a graph G in a way that the
cluster-significant edges (w.r.t. the graph clustering objec-
tives) are well retained, while edges with little or no clus-
ter structure insight can be filtered without sacrificing the
clustering quality significantly. This way, the salient struc-
tures of G are approximately preserved, or even enhanced,
in the sparsified graph G′, which is much smaller and more
amenable to effective graph clustering. gSparsify can be em-
ployed as a pre-processing step for existing graph clustering
methods with significant speedup (2x to 37x in our experi-
mental studies) and no compromise on the quality of graph
clusters. gSparsify is also of practical interest as an indi-
vidual tool in many graph analytical tasks, such as graph
summarization, graph backbone detection, and large-scale
graph visualization.

Example 1. Figure 1a illustrates the famous karate club
social network with 34 vertices and 78 edges. We further
add random edges to complicate the graph structure with
127 edges in total. The graph exhibits a “hair-ball” structure

(a) Karate Club Network (b) The Sparsified Graph

Figure 1: Sparsifying the Karate Club Network with 34 Ver-
tices and 127 Edges into a Simplified Graph with 48 edges
Exhibiting 4 Clusters.

which is hard to cluster. After applying the proposed graph
sparsification method, gSparsify, we get a sparsified graph
(Figure 1b) with 48 edges (62.2% edge reduction). It is im-
mediately clear that there exist 4 clusters in the graph.

To accurately identify cluster-significant edges that need
to be retained during graph sparsification, we propose a
quantitative approach to associating each edge e = (u, v)
with structure-aware weights denoting the degrees of rel-
evance of two constituent vertices, u and v, to be in the
same cluster. We start our reasoning with an important
observation that vertices of an intra-cluster edge e are usu-
ally densely connected within a cluster. As a result, e is
frequently involved in many basic, localized graph primi-
tives, termed as graph motifs. Graph motifs are small, con-
nected subgraphs occurring in significantly higher frequen-
cies than would be expected in random graphs [28], and
thus play a key role in uncovering structural design princi-
ples from real-world graphs. We examine a series of small-
size graph motifs, and select short-length cycles as prime
features to quantify cluster significance for edges. Specif-
ically, a vector of cluster-significance scores is associated
with each edge e ∈ E, with each component representing the
number (or ratio) of every pre-selected cycle motif e lies in.
Cluster-significance scores can be further aggregated to syn-
thesize the collective significance of e in participating in and
forming all specified graph motifs. The higher the cluster-
significance scores of e, the more occurrences of e witnessed
in graph motifs, and thus more probably e is an intra-cluster
edge that should be preserved in graph sparsification.
To compute the cluster-significance scores of an edge e =

(u, v) in terms of short-length cycle motifs, we need enumer-
ate all cycles encompassing e as a constituent edge, which
turns out to be very time-consuming. We design a path-
based indexing approach to maintaining short-length paths
emanating from vertices. This way the cycle-motif enumer-
ation problem boils down to a set of path-join operations
on all indexed paths originated from u and v, respectively.
We further use another level of inverted index to facilitate
path-join evaluation, thus resulting in fast enumeration of
cycle motifs in large graphs. Specifically, the contribution
of our work is summarized as follows,

1. We propose a graph sparsification principle based on
graph motifs with an objective to improve the effi-
ciency and quality for graph clustering in real-world
graphs. We justify the effectiveness of graph motifs,
more specifically short-length cycle motifs, in encod-
ing local cluster information of graphs, and propose a
motif-based approach to computing cluster significance
of edges in graphs (Section 4);

2. We design a path-based indexing approach to enumer-
ating all short-length cycles for the computation of
cluster-significance scores of edges in graphs. This ap-
proach is efficient and can be extended to enumerate
other graph motifs in large graphs (Section 5);

3. We design the motif-based graph sparsification algo-
rithm, gSparsify, to simplify real-world graphs. The
experimental studies demonstrate that gSparsify can
improve state-of-the-art graph clustering methods, in
terms of clustering efficiency and quality (Section 6,7).

The remainder of this paper is organized as follows. We
first elaborate on the related work in Section 2, then define
preliminary concepts and notations in Section 3. Section 4
examines graph motifs, more specifically short length-cycles,
in quantifying cluster significance of edges in graphs. In Sec-
tion 5 we discuss a path-based indexing approach to enumer-
ating short-length cycles for computing cluster significance
of edges. Section 6 summarizes the graph sparsification al-
gorithm, gSparsify. We discuss experimental studies in Sec-
tion 7, and provide concluding remarks in Section 8.

2. RELATED WORK
In this section, we discuss related work for graph cluster-

ing, graph sparsification, and graph motifs. We then brief
an existing graph sparsification method, L-Spar [32], with
similar goals as gSparsify.

Graph clustering, also referred to as community detec-
tion in the social network community, has been extensively
studied, and there exist rich literature on a wide range of
graph clustering methods, including network flow based ap-
proaches [29], spectral clustering approaches [25], modular-
ity based approaches [34], hierarchical graph partitioning
approaches [21, 12], and local clustering approaches [10, 36,
16] (see surveys [14, 33] for a comprehensive list of graph
clustering algorithms). Most of existing graph clustering so-
lutions aim to optimize intra-cluster density, or inter-cluster
sparsity, or both, based on various definitions of “density”
and “sparsity” of graph clusters. Note that gSparsify is not
restricted to any specific graph clustering method. Instead,
it is to complement existing graph clustering methods.

Graph sparsification is to approximate a graph G =
(V,E) by another sparse graph G′ = (V,E′) in achieving
desired graph metrics within reasonable error bounds. As
|E′| ≪ |E|, the computation cost of related problems upon
G′, as opposed to G, is expected to be cheaper. Cut spar-
sifiers [15] are simplified graphs in which the weight of ev-
ery cut agrees up to a multiplicative factor of (1 ± ϵ) with
that of the corresponding cut in the original graph. Graph
spanners [7] are sparsified graphs to approximate pairwise
distances of vertices. Spectral sparsifiers [3, 35] are to ap-
proximate eigenvalues to an arbitrarily small multiplicative
error. SPINE [26] is to identify backbones of graphs for infor-
mation propagation. However, existing graph sparsification
methods are not primarily proposed to optimize graph clus-
tering, which is the goal of our work.

Graph motifs, also known as graphlets, are small sub-
graphs defined as interaction patterns occurring at numbers
significantly higher than those in randomized graphs [28].
As elementary structures of complex networks, graph motifs
carry out key functionalities and represent a broad range of
natural phenomena. Triangles [4] and related clustering co-
efficients [23] are used to detect the presence of spamming ac-

G = (V,E) An input graph
G′ = (V,E′) The sparsified graph

C = {c1, c2, . . . , ck} A clustering of k graph clusters
l0 The user-specified length threshold

l-path A path with l edges
l-cycle A cycle with l edges
du The degree of the vertex u ∈ V
d The maximum degree of vertices in G

F(·) An aggregate function
γ The local sparsification exponent

φ(c) The graph conductance of the cluster c

Table 1: A Primer of Notations

tivities in large-scale Web graphs. The distribution of graph
motifs in which a vertex is part of is used as an indicator
for network classification [27]. Graph motifs are also used
to analyze protein-protein interaction networks [8]. How-
ever, to the best of our knowledge, there is no existing work
that considers graph motifs for promoting the efficiency and
effectiveness of graphs clustering.
Enumerating graph motifs is nontrivial in large graphs [18].

Both exact and approximate solutions have been proposed
under various paradigms including exact counting [41], sam-
pling [28], frequent pattern mining [8], and color coding [17].
Specifically, triangle enumeration has been extensively stud-
ied, including memory-resident algorithms [24] with the op-

timal complexity of O(|E|3/2) in the worst case, and disk-
resident algorithms [30, 22] for massive graphs. Counting
the number of short-length cycles can be accomplished in
O(|V |ω) where ω < 2.376 is the exponent for matrix mul-
tiplication [2]. Enumerating maximal cliques from a graph

has proven to be optimal in O(3|V |/3) in the worst-case [39].
L-Spar [32] (short for Local Sparsifier) is most similar

to our method, gSparsify, for graph sparsification. L-Spar
takes advantage of a similarity-based heuristic that an edge
e = (u, v) that is a part of many triangles is probably an
intra-cluster edge [19]. L-Spar adopts Jaccard coefficient,
|Γ(u) ∩ Γ(v)|/|Γ(u) ∪ Γ(v)|, where Γ(·) is the adjacency list
of a given vertex, to model this heuristic and uses minwise
hashing [5] to approximate Jaccard coefficient, thus achiev-
ing excellent scalability for graph sparsification. The key
difference between gSparsify and L-Spar is two-fold. First,
instead of using a single triangle motif, gSparsify considers
a group of short-length cycle motifs including triangles (a
special kind of cycle motif of length 3), to model cluster
significance of edges. Evaluation based on multiple graph
motifs can help identify intra-cluster edges that are not nec-
essarily involved solely in triangles, and will significantly
enhance the effectiveness of graph sparsification. From this
perspective, L-Spar is just a special case of gSparsify. Sec-
ond, the modeling of Jaccard coefficient and minwise hash-
ing in L-Spar fails to generalize if non-triangle motifs are
considered for graph sparsification. As a result, we propose
a path-based indexing approach in gSparsify to enumerate
all short-length cycles based on path-join operations. This
path-join method can also be extended to enumerate other
graph motifs in large graphs.

3. PRELIMINARIES
We consider in this paper the graph sparsification prob-

lem on simple, undirected, and connected graphs, while the
proposed algorithms can be easily extended to other types
of graphs.

(b) Triangle(a) 2-Path (c) 3-Path (d) Tree

(e) Rectangle (f) Paw (g) Kite (h) Clique

A B A A B B A

B

A

B B

B B

A

C A

B A

B

Figure 2: Graph Motifs with 3 and 4 Vertices. Different Non-
isomorphic Positions of Vertices in Graph Motifs are Marked by
Different Alphabet Letters.

Given a graph G = (V,E), we consider some basic struc-
tures that are of special interest for graph motifs and graph
sparsification. A path p = (v1, . . . , vl+1) is a sequence of
vertices where (vi, vi+1) ∈ E, 1 ≤ i ≤ l. When the con-
text is clear, we consider p a simple path in which all ver-
tices are distinct and can be indexed and represented by
p[i], 1 ≤ i ≤ l+1. A path containing l+1 vertices, or l edges,
is of length l, denoted as an l-path for brevity. If v1 = vl+1,
the path p is closed and it turns out to be a cycle. A cycle
containing l vertices (edges) is denoted as an l-cycle. The
shortest cycles are 3-cycles, also known as triangles. Table 1
summarizes the key notations in this paper.

4. GRAPH MOTIF-BASED CLUSTER SIG-
NIFICANCE

The goal of graph sparsification towards optimizing graph
clustering is to preferentially retain intra-cluster edges of a
graph, such that cluster structures can be well preserved in
the resultant spersified graph. The critical problem is to
accurately identify edges that are more likely to be intra-
cluster edges. In this section, we discuss how graph motifs
can be used as prime features to encode cluster structures
of graphs and help identify intra-cluster edges from a graph.

In comparison to global features of graphs, such as de-
gree distributions, diameters, and community structures [6],
graph motifs are small, connected graphs captured in the lo-
cal vicinity of vertices or edges, and are primarily used as el-
ementary features representing key functionalities of graphs.
Figure 2 illustrates graph motifs with 3 and 4 vertices, which
can be broadly classified into two categories. The position-
sensitive graph motifs contain vertices in different equiv-
alence classes w.r.t. graph isomorphism. For example, in
Figure 2, paths ((a) and (c)), tree (d), paw (f), and kite
(g) are position-sensitive motifs, and the alphabet letters
denote different equivalence classes of vertices w.r.t. graph
isomorphism. In contrast, in position-insensitive graph mo-
tifs, all vertices are isomorphic to each other. For example,
in Figure 2, cycles ((b) and (e)) and clique (h) are position-
insensitive motifs.

Based on the intuitive definition of graph clustering, we
note that clusters of a graph are relatively dense subgraphs.
Therefore, the chances of small-size graph motifs occurring
in a graph cluster are high. Equivalently, an intra-cluster
edge e ∈ E is very likely to lie frequently in different graph
motifs. As a result, we evaluate the cluster significance of e
by examining the distribution of graph motifs that include
e as a constituent edge. The higher the cluster-significance
value of e is, the more probably e is involved in a closely
knitted local structure, and hence e is more likely to be an
intra-cluster edge in the graph.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
ig

ni
fi

ca
nc

e
w

.r
.t.

 C
ou

nt

Vertex ID

Intra-cluster Edge Inter-cluster Edge

(a) Cluster Significance w.r.t. Count

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35

C
lu

st
er

 S
ig

ni
fi

ca
nc

e
w

.r
.t.

 R
at

io

Vertex ID

Intra-cluster Edge Inter-cluster Edge

(b) Cluster Significance w.r.t. Ratio

Figure 3: Cluster Significance Scores of Edges in the Karate
Club Network.

However, not all graph motifs play an equal role in repre-
senting local cluster structures of graphs. Path motifs (Fig-
ure 2(a) and (c)) are often used to identify cuts in sparse
regions of graphs [20]. Similarly, all the edges of tree mo-
tifs (Figure 2(d)) and the singular edge (A,C) of the paw
motif (Figure 2(f)) are likely to be cuts straddling different
clusters. We therefore consider short-length cycle motifs as
prime features for cluster significance evaluation in that:

1. Graph clusters are characterized by a high density of
edges, so it is reasonable to expect that intra-cluster
edges form a significant number of closed graph struc-
tures like short-length cycles. In contrast, edges across
different clusters are hardly part of cycles. It turns out
that edges within many cycles are more likely to be
intra-cluster edges than inter-cluster ones;

2. Cycles are the simplest position-insensitive graph mo-
tifs, so edges within a cycle can be treated uniformly
w.r.t. graph isomorphism. We thus can design graph
sparsification algorithms irrespective of the exact po-
sition an edge lies in cycles;

3. For other complex position-insensitive graph motifs
such as cliques, they can be treated approximately as
a composition of cycle motifs. For instance, the fact
that an edge e is in a 4-clique can be simulated as e
is both in two triangles (length-3 cycles) and in two
rectangles (length-4 cycles).

Example 2. We consider the four clusters in the karate
club network in Example 1 (Figure 1). Each edge in the orig-
inal graph G can be classified as intra-cluster edges if two
end-vertices are in the same cluster, or inter-cluster edges
otherwise. We quantify the cluster significance of an edge e
in two different ways: (1) Count: we compute the absolute
number of 3-cycles (triangles), 4-cycles (quadrangles) and 5-
cycles (pentagons) in the graph containing e in these cycles;
(2) Ratio: we compute the accumulative ratio of 3-cycles, 4-
cycles, and 5-cycles containing e relative to 3-paths, 4-paths,
and 5-paths, respectively, which go through e. For each ver-
tex in G, its incident edges are sorted non-increasingly in

terms of cluster-significance scores, and results are shown
in Figure 3a and Figure 3b, respectively. Note that intra-
cluster edges (blue circles) are consistently ranked higher
than, and well separated from, inter-cluster edges (red di-
amonds), because intra-cluster edges are more frequently in-
volved in short-length cycles. Therefore, short-length cycle
motifs lend themselves well as representative candidates to
model cluster significance of edges in graphs.

Henceforth, we focus on short-length cycles as prime graph
motifs to evaluate the cluster significance of edges. We first
define the notion of “cluster significance” upon which edges
can be ranked w.r.t. short-length cycle motifs. Given a graph
G = (V,E) and an edge e ∈ E, if cl(e) denotes the number
of l-cycles (l ≥ 3), each of which includes e as a constituent
edge, we define the cluster significance of e w.r.t. the l-cycle
motif as

CSl
C(e) = cl(e) (1)

Here the subscript C stands for absolute counting. Given a
user-specified cycle length threshold l0 ≥ 3, we can further
maintain a cluster-significance vector for the edge e as

CSVC(e) = (CS3
C(e), . . . , CSl0

C (e)) (2)

CSVC(e) is a vector of (l0−2) cluster-significance scores of e
w.r.t. a set of cycles of lengths ranging from 3 up to l0. We
further define the cluster significance of e w.r.t. counting as

Definition 1 (CS w.r.t. COUNTING). Given e ∈
E and a cycle length threshold l0, the cluster significance of
e w.r.t. counting is an aggregation of CSVC(e):

CSC(e) = F(CS3
C(e), . . . , CSl0

C (e)) (3)

where F(·) is an aggregate function like SUM or AVG.

Alternatively, if pl(e) denotes the number of l-paths, each
of which passes through the edge e, and we allow closed
paths, i.e., vertices within paths can occur repeatedly, we
define the cluster significance of e w.r.t. l-cycle motif as

CSl
R(e) =

cl(e)

pl(e)
(4)

Here the subscript R stands for ratio. Analogously, we can
define the cluster-significance vector CSVR(e) as

CSVR(e) = (CS3
R(e), . . . , CSl0

R (e)) (5)

The cluster-significance w.r.t. ratio can be defined as

Definition 2 (CS w.r.t. RATIO). Given e ∈ E and
a cycle length threshold l0, the cluster significance of e w.r.t.
ratio is an aggregation of CSVR(e):

CSR(e) = F(CS3
R(e), . . . , CSl0

R (e)) (6)

Example 3. We consider a sample graph shown in Fig-
ure 4, the cycle motif length threshold l0 = 5, and the ag-
gregate function is SUM(·). For the edge (1, 2), the cluster-
significance vector w.r.t. counting is CSVC(1, 2) = (2, 4, 4),
meaning that the edge (1, 2) is contained in two 3-cycles,
four 4-cycles, and four 5-cycles. So the cluster significance
of (1, 2) w.r.t. counting, CSC(1, 2), is 10. Similarly, the
cluster-significance vector w.r.t. ratio is CSVR(1, 2) = (0.167,
0.1, 0.036), and the cluster significance of (1, 2) w.r.t. ra-
tio, CSR(1, 2), is 0.303. If we consider the edge (5, 6), both

1

2

3 4

5 6

7

8

9

Figure 4: A Sample Graph G

CSC(5, 6) and CSR(5, 6) are 0. It means that this edge is
not contained in any cycle motifs, and most probably it is
an inter-cluster edge.

5. COMPUTING CLUSTER SIGNIFICANCE
In this section, we discuss the computation of cluster-

significance scores for edges in a graph. For either the count-
based model, CSC(e), or the ratio-based model, CSR(e),
we need enumerate all short-length cycles that contain e
as a constituent edge. However, even enumerating the sim-
plest triangle motifs turns out to be time-consuming in large
graphs. We thus design an efficient path-based indexing ap-
proach to facilitating the computation.
Consider an edge e = (u, v) ∈ E, any cycle including e as

a constituent edge can be decomposed into three sub-parts:
a path p1 = (u, . . . , w) originating from u, another path
p2 = (v, . . . , w) originating from v, and the edge e = (u, v),
where p1 and p2 are two vertex-disjoint paths except that
they share one common end-vertex w ∈ V . Specifically, we
choose w as the median point to u and v in the cycle, such
that either |p1| = |p2| or |p1| = |p2|±1. As a result, an l-cycle
that contains the edge e = (u, v) can be identified as follows.
We enumerate every path p1 of length ⌈ l−1

2
⌉ emanating from

u, and every path p2 of length ⌊ l−1
2
⌋ emanating from v,

respectively. if p1 and p2 share no common vertices except
the end-vertex other than u and v, a cycle is identified from
the graph. We formulate this idea based on the notion of
path join, as follows,

Definition 3 (PATH JOIN). For an edge e = (u, v),
l-cycles containing e can be identified by joining two paths
p1 and p2, p1 ◃▹θ p2, where the join condition θ is

1. |p1| = ⌈ l−1
2
⌉, |p2| = ⌊ l−1

2
⌋;

2. p1[1] = u, p2[1] = v (p1 and p2 originate from u and
v, respectively);

3. p1[⌈ l−1
2
⌉] = p2[⌊ l−1

2
⌋] (p1 and p2 share one common

end-vertex, other than u and v);

4. p1[i] ̸= p2[j] for 1 < i < ⌈ l−1
2
⌉, 1 < j < ⌊ l−1

2
⌋ (p1 and

p2 are vertex-disjoint).

Theorem 1. All cycle motifs of length l containing the
edge e = (u, v) ∈ E as an constituent edge can be enumerated
based on path join, as defined in Definition 3.

Example 4. Figure 5 illustrates two examples for enu-
merating cycle motifs that contain the edge (u, v) (in thick
black color), based on path join. In Figure 5a, we enumerate
all 4-cycles. The 2-paths emanating from u (color in red),
and 1-paths enumerating from v (color in blue) are joined
together, thus resulting in three 4-cycles. In Figure 5b, we
enumerate all 5-cycles. The 2-paths emanating from u and

u v

a b

m n

(a) 4-cycles

u v

a b c d e

w

(b) 5-cycles

Figure 5: Enumerating Cycle Motifs for the Edge (u, v)

Algorithm 1: Computing CSl
C(e)

Input: An edge e = (u, v) ∈ E, the motif length l
Output: The cluster-significance score CSl

C(e)
1 begin
2 for w ∈ V do
3 H1(w)← ∅; H2(w)← ∅;
4 for pi ∈ P⌈ l−1

2
⌉(u) do

5 H1(pi[⌈ l−1
2
⌉])← H1(pi[⌈ l−1

2
⌉]) ∪ {i};

6 for pj ∈ P⌊ l−1
2

⌋(v) do

7 H2(pj [⌊ l−1
2
⌋])← H2(pi[⌊ l−1

2
⌋]) ∪ {j};

8 CSl
C(e)← 0;

9 for w ∈ V do
10 if H1(w) ̸= ∅ and H2(w) ̸= ∅ then
11 for i ∈ H1(w) do
12 for j ∈ H2(w) do
13 if θ : (pi ◃▹θ pj) then
14 CSl

C(e)← CSl
C(e) + 1;

15 return CSl
C(e);

v, respectively, are considered for path join, thus resulting
in seven 5-cycles. Note that the paths (u, d, w) and (v, d, w)
fail to join as both share a common intermediate vertex d,
so the path-join condition does not hold.

To this end, we design a path-based indexing approach
to computing cluster significance of edges in G. Given the
motif length threshold, l0 ≥ 3, we maintain, for each vertex
v ∈ V , all distinct l-paths emanating from v into a vector,
Pl(v), where 1 ≤ l ≤ ⌈ l0−1

2
⌉. Specifically, P1(v) is just the

adjacency list of v. If the maximum degree of vertices in G
is denoted d, both the time and space complexity for path-

based index construction are O(d⌈
l0−1

2
⌉·|V |). Note that real-

world graphs often follow power-law degree distributions, so
in practice a majority of vertices have degrees that are sig-
nificantly smaller than d. Another important factor is that,
the length threshold of cycle motifs, l0, is often set small,
as longer cycles in cluster-significance evaluation will bring
marginal improvement for graph sparsification. Therefore,
this path-based index can be pre-built offline effectively in
the index construction phase.

Based on Theorem 1, in order to enumerate all cycle
motifs of length l (l ≤ l0) containing an edge e = (u, v),
we employ all pre-indexed paths pi ∈ P⌈ l−1

2
⌉(u) and pj ∈

P⌊ l−1
2

⌋(v) to perform a path join, pi ◃▹θ pj , as detailed in

Algorithm 1. To facilitate the evaluation of path join, we
maintain an inverted index H1(·) : V 7−→ 2N, such that
for each vertex w ∈ V , if w is the last end-vertex (other

Algorithm 2: gSparsify

Input: Graph G = (V,E), the motif length threshold
l0, the local sparsification exponent γ, an
aggregate function F(·)

Output: Sparsified graph G′

1 begin
2 G′ ← ∅;
3 for e = (u, v) ∈ E do
4 CSC(e)← 0; CSP(e)← 0;
5 foreach l : 3 ≤ l ≤ l0 do
6 compute CSl

C(e) (Algorithm 1);

7 compute CSl
R(e) (Equation 7);

8 CSC(e)← F(CS3
C(e), . . . , CSl0

C (e));

CSR(e)← F(CS3
R(e), . . . , CSl0

R (e));

9 foreach u ∈ V do
10 Sort all incident edges e = (u, v) ∈ E by CSC(e)

(or by CSR(e));
11 Add top dγu edges to G′;

12 return G′;

than u) of a path pi ∈ P⌈ l−1
2

⌉(u), then w together with the

path index i of pi are stored into H1(w). This way, all the
paths of P⌈ l−1

2
⌉(u) that share a common end-vertex, w, are

grouped together. Analogously, we build another inverted
indexH2(·), in which all paths of P⌊ l−1

2
⌋(v) sharing common

end-vertices (other than v) are grouped together. Both in-
verted indexes are first initialized (Lines 2-3), and updated
in terms of the last end-vertex of each path in P⌈ l−1

2
⌉(u) and

P⌊ l−1
2

⌋(v), respectively (Lines 4-7). To compute the cluster

significance w.r.t. counting, CSl
C(e), we consider the paths

pi ∈ P⌈ l−1
2

⌉(u), and pj ∈ P⌊ l−1
2

⌋(v), both of which sharing a

common end-vertex (Line 10). If pi and pj satisfy the path-
join condition θ, as defined in Definition 3, we successfully
identify an l-cycle from the graph (Lines 13-14).
Assume paths originating from u may end at any vertex

of G, then |H1(·)| = |P⌈ l−1
2

⌉(u)|/|V |. Similarly, |H2(·)| =
|P⌊ l−1

2
⌋(v)|/|V |. The time complexity of Algorithm 1 turns

out to be O(|P⌈ l−1
2

⌉(u)|·|P⌊ l−1
2

⌋(v)|·((l−1)/2)
2/|V |), where

the term ((l−1)/2)2) denotes the time to evaluate the path-
join condition θ for pi and pj . Note that |P⌈ l−1

2
⌉(u)| is the

number of (⌈ l−1
2
⌉)-paths originating from u, bounded up

by d⌈
l−1
2

⌉, so the worst-case complexity of Algorithm 1 is

O(dl

|V |).

Once the cluster significance w.r.t. counting, CSl
C(e), has

been computed, it is straightforward to derive the cluster sig-
nificance w.r.t. ratio, CSl

R(e), which is to normalize CSl
C(e)

by considering all possible paths passing through e:

CSl
R(e) =

CSl
C(e)

|P⌈ l−1
2

⌉(u)| · |P⌊ l−1
2

⌋(v)|
(7)

Note that all (⌈ l−1
2
⌉)-paths originating from u are main-

tained in the index P⌈ l−1
2

⌉(u), and analogously all (⌊ l−1
2
⌋)-

paths originating from v are maintained in P⌊ l−1
2

⌋(v). Once

CSl
C(e) is known, CSl

P(e) can be computed in O(1).

1

2

3 4

5 6

7

8

9

Figure 6: The Sparsified Graph, G′

6. GRAPH SPARSIFICATION: gSparsify
In this section, we detail our graph motif-based sparsifica-

tion method, gSparsify, which uses short-length cycle motifs
to model the cluster significance of edges. The edges with
highly ranked cluster-significance scores are preferably re-
tained. This way, the core cluster structures can be well
preserved in the sparsified graph.

Algorithm 2 describes the whole process for graph spar-
sification. The sparsified graph, G′, is first initialized as an
empty graph (Line 2). For each edge e ∈ G, we compute
its cluster-significance scores, CSC(e) and CSR(e), based on
Algorithm 1 (Lines 3-8). We further choose an aggregate
function, F, to synthesize cluster-significance scores of edges
based on a series of cycle motifs. After that, a localized,
vertex-centric sparsification approach is employed to retain
edges with high cluster significance in the neighborhood of
vertices. Specifically, for each vertex u of the graph G, we
select the top dγu (0 ≤ γ < 1) incident edges, ranked on
either CSC(e) or CSR(e), where du is the degree of u, into
G′ for sparsification (Lines 9-11). In principle, we sparsify
high-degree vertices more aggressively than low-degree ones,
because high-degree vertices are more likely to be hubs that
tend to connect multiple clusters. As a result, their incident
edges are likely to be inter-cluster edges. In implementation,
we choose a strictly concave function, dγu, for graph sparsifi-
cation. When γ → 0, the sparsified graph G′ contains very
few edges but each vertex u still preserves at least one edge,
making the resultant cluster containing u connected. When
γ → 1, the sparsified graph G′ is almost identical to G as
most edges are retained.

The complexity of Algorithm 2 is formulated with two
components. The first is to compute cluster significance
of edges in the graph, which is O(dl0 |E|/|V |). The sec-
ond is to sort, for each vertex, its incident edges based
on cluster-significance scores, which is

∑
u O(dulogdu) ≤∑

u O(dulogd) = O(logd · |E|). So the overall complexity

of Algorithm 2 is O(dl0 |E|/|V |+ logd · |E|).

Example 5. We apply the graph sparsification algorithm,
gSparsify, on the sample graph G shown in Figure 4 by set-
ting l0 = 5, γ = 0.1, and F =SUM. The sparsified graph G′

is illustrated in Figure 6. G′ contains 11 edges, so 5 edges
of G are filtered out during graph sparsification. It can be
witnessed that there are two clusters (colored in red and blue,
respectively) in the sparsified graph G′.

7. EXPERIMENTS
In this section, we present our experimental studies for

gSparsify. We make use of gSparsify as a pre-processing step
to sparsify a series of real-world graphs, and examine both
the benefit and cost of gSparsify toward improving the ef-
fectiveness and efficiency of state-of-the-art graph clustering
methods. We implement gSparsify in C and compile it with
GCC 4.4.7. All experiments were carried out in a Linux ma-
chine running RedHat Enterprise Server 6.5, with 12 AMD
Opteron 2.3GHz CPUs and 96GB of memory.

7.1 Datasets
We consider three real-world graphs in our experimental

studies, including a protein-protein interaction network, a
co-authorship network, and a social network:

1. Yeast PPI Network: This is a protein-protein in-
teraction (PPI) network in the BioGrid database [37].
This graph contains 4, 531 vertices representing yeast
genes, and 22, 736 edges depicting protein interactions.
The average degree of vertices is 10 and the maximum
degree is 1, 549. We cluster this graph into 450 clus-
ters, each of which contains approximately 10 vertices
in average, because the sizes of most protein complexes
are in the range of 5 to 15;

2. DBLP1: This is a co-authorship graph where two au-
thors are connected if they publish as co-authors at
least one paper. This co-authorship graph contains
317, 080 vertices and 1, 049, 866 edges. The publica-
tion venues, e.g., journals or conferences, define the
ground-truth clusters. We consider 5, 000 clusters in
the experiments;

3. Orkut2: This is an online social network where ver-
tices represent anonymized individuals, and edges il-
lustrate friendship relations between individuals. The
graph has 3, 072, 441 vertices and 117, 185, 083 edges.
Orkut allows users to form groups, which are used as
ground-truth clusters. We consider 5, 000 clusters in
the experiments.

7.2 Graph Clustering Methods
We consider three well-known graph clustering methods

in our experimental studies:

1. METIS[21] is a high-quality graph partitioning toolkit
implemented based on multilevel recursive-bisection,
multilevel k-way, and constraint-based graph partition-
ing schemes. We used METIS 5.1.0 with default pa-
rameter settings;

2. Graclus[12] is a fast graph clustering tool that com-
putes normalized cut and ratio association for a graph
without costly eigenvector computation. We use Gra-
clus 1.2 and choose the default parameter settings for
graph clustering;

3. MCL[40] is a scalable graph clustering method based
on simulation of stochastic flows in graphs. Note that
the number of clusters are indirectly controlled by the
inflation parameter. By tuning this parameter, we can
generate the desired number of graph clusters in the
experiments.

It is worth noting that gSparsify is not restricted to the
above-mentioned graph clustering algorithms. Any graph
clustering technique toward optimizing the notions of intra-
cluster density and inter-cluster sparsity of graph clusters
can benefit from the proposed method, gSparsify.

1DBLP datasets: http://snap.stanford.edu/data/index.html
2Orkut datasets: http://snap.stanford.edu/data/index.html

Dataset
Graph Motif Length

l0 = 3 l0 = 4 l0 = 5
Time Space Time Space Time Space

Yeast 0 0.22 0.11 2.66 0.13 2.93
DBLP 0 10.93 47.3 349.5 49.2 371.5
Orkut 0 762.1 1, 159 2, 716 1, 174 2, 755

Table 2: Index Construction Cost of gSparsify (Time in Sec-
onds, and Space in Megabytes).

7.3 Evaluation Metrics
We evaluate the graph sparsification method from multi-

ple perspectives. The foremost evaluation is to examine to
what extent gSparsify can help improve the graph clustering
effectiveness. We apply graph clustering algorithms on the
original graph G, and the sparsified graph G′, respectively,
and assess the clustering quality w.r.t. ground truth or graph
clustering metrics.

If we have ground truth for clusters, C = {c1, c2, . . . , ck}
(e.g., in DBLP and Orkut), we evaluate clustering quality
based on the average F-score of graph clusters. The F-score
of a predicted graph cluster c̄ w.r.t. a ground-truth cluster
ci ∈ C, denoted F (c̄)|ci , is the harmonic mean of the preci-
sion and recall. Furthermore, the F-score of c̄ is

F (c̄) = max
ci∈C

F (c̄)|ci ∀i : 1 ≤ i ≤ k

It is the F-score of the predicted cluster c̄ w.r.t. the ground
truth cluster c∗ ∈ C to which c̄ approximates best. The
average F-score of all the predicted clusters is the weighted
average of all F-scores, each of which is weighted by the
cluster size. Empirically, the higher the average F-score, the
better the clustering quality.

We also consider the average graph conductance to evalu-
ate the quality of graph clusters in all graph datasets. Given
a cluster c ∈ C of G, the graph conductance of c is

φ(c) =

∑
i∈c,j∈G/c Iij

min(I(c), I(G/c))
∀i, j ∈ V

where Iij is an indicator function that equals 1 if there exists
an edge (i, j) between vertices i and j, and 0 otherwise, and

I(c) =
∑
i∈c

∑
j∈V

Iij

Graph conductance lies between 0 and 1 with lower val-
ues indicating better clustering quality. The average graph
conductance is the average of φ(c) for all clusters c ∈ C.
Note that the evaluation of clustering quality based on graph
conductance should be performed on the original graph G.
That is, for clusters derived from the sparsified graph G′, we
need map all such clusters back into G and compute graph
conductance in G. This way, it will reflect how well graph
sparsification can retain the cluster structures of G.

Another evaluation metric is the speedup gSparsify offers
for graph clustering. We apply different graph clustering
methods on the original graph G and the sparsified graph
G′, respectively, and examine the runtime performance gain
gSparsify provides. As G′ is much smaller than G, clustering
on G′ is expected to be significantly faster.

There exist several critical parameters for gSparsify, in-
cluding the cycle length threshold l0, the local sparsification
exponent γ, and the aggregate function F. We also exam-
ine how these parameters regulate the performance of graph
sparsification. If not specified otherwise, we choose the clus-
ter significance w.r.t. ratio, CSR, as the default model for

Metis

Original L-Spar gSparsify
Dataset

F-score φ Time(s)
Sparse
Ratio

Speedup
F-score φ F-score φ

Yeast N.A. 0.89 2.47 0.26 21x N.A. 0.84 N.A. 0.76
DBLP 16.04 0.65 116.45 0.21 18x 16.67 0.65 18.83 0.60
Orkut 11.08 0.85 13,858 0.17 37x 10.97 0.79 15.45 0.72

Table 3: Graph Clustering Using METIS

Graclus

Original L-Spar gSparsify
Dataset

F-score φ Time(s)
Sparse
Ratio

Speedup
F-score φ F-score φ

Yeast N.A. 0.83 0.25 0.26 2x N.A. 0.80 N.A. 0.73
DBLP 16.72 0.61 73.9 0.21 13x 17.15 0.55 17.36 0.59

Table 4: Graph Clustering Using Graclus

MCL

Original L-Spar gSparsify
Dataset

F-score φ Time(s)
Sparse
Ratio

Speedup
F-score φ F-score φ

Yeast N.A. 0.84 6.56 0.26 18x N.A. 0.83 N.A. 0.74
DBLP 16.50 0.77 133.79 0.21 17x 16.52 0.75 18.04 0.67
Orkut 11.65 0.72 20,519 0.17 21x 10.79 0.81 12.85 0.66

Table 5: Graph Clustering Using MCL

graph sparsification, and set the key parameters with the
following default values: l0 = 5, γ = 0.5 and F = AVG(·).
Meanwhile, as an indexing approach, gSparsify needs to build
path-based indexes and inverted indexes, we also evaluate
the time and space cost of index construction in the experi-
mental studies.
We compare gSparsify with L-Spar [32] that only uses the

triangle motif for graph sparsification. The results will demon-
strate that gSparsify is a generalized method where a series
of graph motifs can be incorporated together to improve the
clustering quality of real-world graphs.

7.4 Index Construction Cost
We first report the index construction cost of gSparsify in

different graph datasets, shown in Table 2. We choose dif-
ferent lengths of cycle motifs ranging from 3 to 5. When
l0 = 3, only the one-level neighborhood index P1, i.e., the
adjacency list, is built. When l0 = 4, we need to build the
path index P2 and use the inverted index H1, and when
l0 = 5, both the path index P2 and inverted indexes of all
vertices are required. When the graph is small, for example,
in the Yeast dataset, the index can be constructed efficiently
with very small memory consumption. When the graph be-
comes excessively large, for example, in the Orkut dataset,
the index construction needs more time and memory. How-
ever, this path-based index is constructed offline only once.
Such cost is much affordable compared with the performance
gain obtained for graph sparsification.

7.5 Improvement on Graph Clustering
We consider both gSparsify and L-Spar to sparsify the

three graph datasets, and examine the clustering quality
and speedup by applying three graph clustering algorithms
on the original graph G and the sparsified graph G′, respec-
tively. As to the clustering quality, we evaluate both average
F-scores, if graphs have ground truth for clusters, and the
average graph conductance. For speedup, we consider the
runtime cost of graph clustering on G′ against G. The graph
sparsification ratio, |E′|/|E|, is controlled by tuning the lo-
cal sparsification exponent, γ.
The experimental results of using METIS are shown in

Table 3. For all the three datasets, gSparsify provides bet-
ter clustering quality results than the plain graph cluster-
ing method applied on the original graph, in terms of both
F-scores and the graph conductance. gSparsify also outper-
forms L-Spar by offering better clustering quality results.

For example, in the largest Orkut dataset, the F-score is
enhanced from 10.97 to 15.45, and the graph conductance
is further reduced from 0.79 to 0.72, both indicating that
gSparsify preserves more intra-cluster edges during graph
sparsification. The main reason is that gSparsify leverages
short-length cycle motifs for cluster significance quantifica-
tion, such that intra-cluster edges can be effectively iden-
tified from within large graphs. However, L-Spar only uses
the 3-cycle motif, thus leading to less effective results. An-
other benefit of graph sparsification is the speedup it of-
fers for graph clustering. We apply METIS on the original
graph G, and the sparsified graph G′, which is about 1/4
to 1/5 the size of G. The speedups for graph clustering
are 21x, 18x, and 37x, respectively, for the Yeast, DBLP
and Orkut datasets. This indicates that, gSparsify can sig-
nificantly speedup graph clustering on large graphs while
preserving, or even enhancing, the clustering quality.

We perform the same experimental studies using Graclus
and MCL clustering algorithms, and the results are pre-
sented in Table 4, and Table 5, respectively. Note that Gra-
clus cannot finish successfully in the largest Orkut dataset,
so the results are not included. Our graph sparsification
method, gSparsify, can improve clustering quality in differ-
ent graph datasets. Specifically, gSparsify results in better
clustering quality than L-Spar, in terms of both F-scores and
the graph conductance. Meanwhile, gSparsify brings signifi-
cant speedup for these two clustering methods. This is im-
portant because clustering in large graphs is very resource-
intensive and time-consuming, while graph sparsification is
an effective means to shorten the gap of the application of
many graph clustering solutions that are designed mainly
for small or medium-size graphs.

7.6 Parametric Analysis
The graph sparsification algorithm, gSparsify, is critical to

a series of algorithmic parameters. We then perform exper-
imental studies to examine how these key parameters affect
the overall graph sparsification performance.

7.6.1 Graph Spasification w.r.t. l0

We first examine the motif length threshold, l0. By tun-
ing the values of l0, we adopt different short-length cycle
motifs for graph sparsification. For example, if l0 = 3, we
only use 3-cycles in graph sparsification, while if l0 = 4,
both 3-cycles and 4-cycles will be employed. As shown in
Figure 7a and Figure 7b, we choose l0 ranging from 3 to 5
and evaluate the clustering quality w.r.t. F-scores and the
graph conductance, respectively, using the METIS method.
When more short-length cycle motifs are considered, intra-
cluster edges are more likely to be identified during graph
sparsification, and thus improve the graph clustering qual-
ity. We perform the same experiments and witness similar
evidences using the MCL method, and the results are illus-
trated in Figure 7c and Figure 7d, corresponding to F-scores
and the graph conductance, respectively.

However, when l0 is set high, we have to take more time
for graph sparsification. Figure 8 illustrates the sparsifica-
tion time for three different datasets, in terms of l0. Here a
common trade-off needs to be made between sparsification
time and effectiveness. Considering graph sparsification can
be performed offline, we still can afford more time for graph
sparsification to trade better graph clustering quality, which
is the goal of our work.

 10

 12

 14

 16

 18

 20

 22

3 4 5

F-
sc

or
e

Motif Length Threshold

DBLP
Orkut

(a) F-score (METIS)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

3 4 5

C
on

du
ct

an
ce

Motif Length Threshold

Yeast
DBLP
Orkut

(b) Conductance (METIS)

 10

 12

 14

 16

 18

 20

 22

3 4 5

F-
sc

or
e

Motif Length Threshold

DBLP
Orkut

(c) F-score (MCL)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

3 4 5

C
on

du
ct

an
ce

Motif Length Threshold

Yeast
DBLP
Orkut

(d) Conductance (MCL)

Figure 7: Graph Clustering Quality w.r.t. l0

7.6.2 Graph Spasification w.r.t. γ

We then examine the local sparsification exponent, γ,
which controls the number of top ranked edges to be re-
tained during graph sparsification. By tuning 0 ≤ γ < 1,
we can derive a series of sparsified graphs with varied sizes.
As shown in Figure 9a, we generate five different sparsified
graphs for the graph datasets by choosing different γ rang-
ing from 0.3 to 0.7, and evaluate clustering quality using
METIS. We note that, in terms of F-scores, if we retain more
edges during graph sparsification (γ = 0.7), the clustering
quality can be slightly improved. If we sparsify the graph
avidly be setting γ = 0.3, more edges will be filtered thus
resulting in a slightly worse clustering result. However, the
F-score for γ = 0.3 is still better than that generated from
the original graph. It indicates that although we filter out
most edges from G and retain about 10% of the edges into
the sparsified graph G′, the core cluster structures are still
largely preserved with most of the noisy edges eliminated.
Similarly, we evaluate the clustering quality w.r.t. the

graph conductance, and results are shown in Figure 9b.
When γ is set low (γ = 0.3), we filter out many edges that
may hurt the clustering effectiveness. However, when γ is
set high (γ = 0.7), many noisy edges are retained in G′,
which also bring side effects for graph clustering and lead
to inferior results. We conduct the same experiments using
MCL, and results are shown in Figure 9c and Figure 9d, re-
spectively. The patterns between the clustering quality and
γ are very similar to the cases where METIS is adopted.

7.6.3 Graph Spasification w.r.t. F
If multiple short-length cycle motifs are adopted to quan-

tify the cluster significance of edges, we use an aggregate
function F to synthesize cluster-significance scores. In this
experiment, we choose two aggregate functions, SUM and
AVG, and examine the effect of such aggregate functions
for graph sparsification. Note that with different aggregate
functions, the top ranked edges that are to be retained dur-

 0.1

 1

 10

 100

 1000

 10000

3 4 5

T
im

e
(S

ec
on

ds
)

Motif Length Threshold

Yeast
DBLP
Orkut

Figure 8: Graph Sparsification Time w.r.t. l0

 12

 14

 16

 18

 20

 22

0.3 0.4 0.5 0.6 0.7

F-
sc

or
e

Spasification Exponent

DBLP
Orkut

(a) F-score (METIS)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3 0.4 0.5 0.6 0.7

C
on

du
ct

an
ce

Sparsification Exponent

Yeast
DBLP
Orkut

(b) Conductance (METIS)

 10

 12

 14

 16

 18

 20

 22

0.3 0.4 0.5 0.6 0.7

F-
sc

or
e

Sparsification Exponent

DBLP
Orkut

(c) F-score (MCL)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3 0.4 0.5 0.6 0.7

C
on

du
ct

an
ce

Sparsification Exponent

Yeast
DBLP
Orkut

(d) Conductance (MCL)

Figure 9: Graph Clustering Quality w.r.t. γ

ing graph sparsification will be different, and thus the final
sparsified graph G′ may vary. We test the clustering quality
results, in terms of both F-scores and the graph conduc-
tance, on the DBLP dataset, as shown in Figure 10. For
different graph clustering methods, AVG offers better clus-
tering quality results than SUM in most cases. Note that
it is inappropriate to choose MIN or MAX as the aggregate
function in our framework, as they only choose the cluster-
significance score based on one type of cycle motifs, which
usually offers inferior sparsification results.

7.6.4 CSC vs. CSR

When modeling cluster significance of edges in a graph,
we consider two approaches: CSC and CSR. The first one
counts the absolute number of motifs that contain the edge
to be examined, while the second one computes the rela-
tive ratio w.r.t. the total number of possible paths passing
through the edge. We perform another experiment to eval-
uate these two models, each of which is chosen as the un-
derlying method for the computation of cluster-significance
scores of edges. We apply gSparsify with CSC, termed as
COUNT, and gSparsify with CSR, termed as RATIO, in the
DBLP dataset and examine the clustering quality of differ-
ent graph clustering methods. The results are shown in Fig-
ure 11. We notice that RATIO provides consistently better
quality results than COUNT, in terms of both F-scores and
the graph conductance. This is especially true when dealing
with edges incident to high-degree vertices.

8. CONCLUSIONS
In this paper, we designed a new graph sparsification

method, gSparsify, toward enabling efficient and cost-effective
graph clustering on real-world graphs. The goal of gSparsify
is to identify and preferentially retain cluster-significance
edges of a graph G into a sparsified graph G′, such that
edges with little or no cluster structure insight can be ef-
fectively pruned before costly graph clustering is performed.
The main idea of gSparsify is to make use of a group of short-
length cycle motifs to model cluster significance of edges. To
facilitate the computation of cluster significance, we devised
a path-based indexing approach such that the costly graph-
motif enumeration can be cast into a systemic path-join pro-
cess. Our experimental studies demonstrated that, gSparsify
generalizes and outperforms the state-of-the-art graph spar-

 13

 14

 15

 16

 17

 18

 19

 20

 21

METIS Graclus MCL

F-
sc

or
e

Clustering Methods

SUM
AVG

(a) F-score (DBLP)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

METIS Graclus MCL

C
on

du
ct

an
ce

Clustering Methods

SUM
AVG

(b) Conductance (DBLP)

Figure 10: Graph Clustering Quality w.r.t. F

 13

 14

 15

 16

 17

 18

 19

 20

 21

METIS Graclus MCL

F-
sc

or
e

Clustering Methods

COUNT
RATIO

(a) F-score (DBLP)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

METIS Graclus MCL

C
on

du
ct

an
ce

Clustering Methods

COUNT
RATIO

(b) Conductance (DBLP)

Figure 11: Graph Clustering Quality w.r.t. Cluster-
significance Modeling

sification method, L-Spar. More importantly, gSparsify en-
ables more efficient graph clustering without a compromise
of clustering quality, and therefore can be effectively em-
ployed to cluster real-world large graphs.

9. REFERENCES
[1] C. C. Aggarwal and H. Wang. Managing and Mining

Graph Data. Springer, 2010.
[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting

given length cycles. In ESA’94, pages 354–364, 1994.
[3] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng.

Spectral sparsification of graphs: Theory and algorithms.
Commun. ACM, 56(8):87–94, 2013.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
algorithms for large-scale local triangle counting. ACM
Trans. Knowl. Discov. Data, 4(3):13:1–13:28, 2010.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. In
STOC’98, pages 327–336, 1998.

[6] D. Chakrabarti and C. Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Comput. Surv., 38(1),
2006.

[7] S. Chechik, M. Langberg, D. Peleg, and L. Roditty.
Fault-tolerant spanners for general graphs. In STOC’09,
pages 435–444, 2009.

[8] J. Chen, W. Hsu, M. L. Lee, and S.-K. Ng. Nemofinder:
Dissecting genome-wide protein-protein interactions with
meso-scale network motifs. In KDD’06, pages 106–115,
2006.

[9] D. J. Cook and L. B. Holder. Mining Graph Data. John
Wiley & Sons, 2006.

[10] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In SIGMOD’14, pages
991–1002, 2014.

[11] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword
search on external memory data graphs. Proc. VLDB
Endow., 1(1):1189–1204, 2008.

[12] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts
without eigenvectors: A multilevel approach. IEEE Trans.
Pattern Anal. Mach. Intell., 29(11):1944–1957, 2007.

[13] H. N. Djidjev and M. Onus. Scalable and accurate graph
clustering and community structure detection. IEEE Trans.
Parallel Distrib. Syst., 24(5):1022–1029, 2013.

[14] S. Fortunato. Community detection in graphs. CoRR, 2009.

[15] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi.
A general framework for graph sparsification. In STOC ’11,
pages 71–80, 2011.

[16] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community
methods. In KDD’12, pages 597–605, 2012.

[17] M. Gonen and Y. Shavitt. Approximating the number of
network motifs. In WAW’09, pages 13–24, 2009.

[18] J. A. Grochow and M. Kellis. Network motif discovery
using subgraph enumeration and symmetry-breaking. In
RECOMB’07, pages 92–106, 2007.

[19] R. Gupta, T. Roughgarden, and C. Seshadhri.
Decompositions of triangle-dense graphs. In ITCS ’14,
pages 471–482, 2014.

[20] M. Haghir Chehreghani. Effective co-betweenness centrality
computation. In WSDM’14, pages 423–432, 2014.

[21] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 20(1):359–392, 1998.

[22] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. OPT: A
new framework for overlapped and parallel triangulation in
large-scale graphs. In SIGMOD’14, pages 637–648, 2014.

[23] K. Kutzkov and R. Pagh. On the streaming complexity of
computing local clustering coefficients. In WSDM’13, pages
677–686, 2013.

[24] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[25] J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale
spectral clustering on graphs. In IJCAI’13, pages
1486–1492, 2013.

[26] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and
A. Ukkonen. Sparsification of influence networks. In
KDD’11, pages 529–537, 2011.

[27] T. Milenkovic and N. Przulj. Uncovering biological network
function via graphlet degree signatures. Cancer Inform.,
6:257–273, 2008.

[28] R. Milo and et al. Network motifs: simple building blocks
of complex networks. Science, 298(5595):824–827, 2002.

[29] L. Orecchia and Z. A. Zhu. Flow-based algorithms for local
graph clustering. In SODA’14, 2014.

[30] R. Pagh and F. Silvestri. The input/output complexity of
triangle enumeration. In PODS’14, pages 224–233, 2014.

[31] T. Praneenararat, T. Takagi, and W. Iwasaki. Interactive,
multiscale navigation of large and complicated biological
networks. Bioinformatics, 27(8):1121–1127, 2011.

[32] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph
sparsification for scalable clustering. In SIGMOD ’11,
pages 721–732, 2011.

[33] S. E. Schaeffer. Survey: Graph clustering. Comput. Sci.
Rev., 1(1):27–64, 2007.

[34] H. Shiokawa, Y. Fujiwara, and M. Onizuka. Fast algorithm
for modularity-based graph clustering. In AAAI’13, 2013.

[35] D. A. Spielman and N. Srivastava. Graph sparsification by
effective resistances. In STOC’08, pages 563–568, 2008.

[36] D. A. Spielman and S.-H. Teng. A local clustering algorithm
for massive graphs and its application to nearly linear time
graph partitioning. SIAM J. Comput., 42(1):1–26, 2013.

[37] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher,
A. Breitkreutz, and M. Tyers. BioGRID: a general
repository for interaction datasets. Nucleic Acids Research,
34:535–539, 2006.

[38] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
RankClus: Integrating clustering with ranking for
heterogeneous information network analysis. In EDBT ’09,
pages 565–576, 2009.

[39] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case
time complexity for generating all maximal cliques and
computational experiments. Theor. Comput. Sci.,
363(1):28–42, 2006.

[40] S. van Dongen. Graph Clustering by Flow Simulation. PhD
thesis, University of Utrecht, 2000.

[41] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Trans. Comput. Biol. Bioinformatics,
3(4):347–359, 2006.

