
Mining Closed Frequent Free Trees

in Graph Databases

Peixiang Zhao and Jeffrey Xu Yu

The Chinese University of Hong Kong, China
{pxzhao,yu}@se.cuhk.edu.hk

Abstract. Free tree, as a special graph which is connected, undirected
and acyclic, has been extensively used in bioinformatics, pattern
recognition, computer networks, XML databases, etc. Recent research
on structural pattern mining has focused on an important problem of
discovering frequent free trees in large graph databases. However, it can
be prohibitive due to the presence of an exponential number of frequent
free trees in the graph database. In this paper, we propose a computa-
tionally efficient algorithm that discovers only closed frequent free trees
in a database of labeled graphs. A free tree t is closed if there exist
no supertrees of t that has the same frequency of t. Two pruning algo-
rithms, the safe position pruning and the safe label pruning, are proposed
to efficiently detect unsatisfactory search spaces with no closed frequent
free trees generated. Based on the special characteristics of free tree, the
automorphism-based pruning and the canonical mapping-based pruning
are introduced to facilitate the mining process. Our performance study
shows that our algorithm not only reduces the number of false positives
generated but also improves the mining efficiency, especially in the pres-
ence of large frequent free tree patterns in the graph database.

1 Introduction

Recent research on frequent pattern discovery has progressed from mining item-
sets and sequences to mining structural patterns including (ordered, unordered,
free) trees, lattices, graphs and other complicated structures. Among all these
structural patterns, graph, a general data structure representing relations among
entities, has been widely used in a broad range of areas, such as bioinformatics,
chemistry, pattern recognition, computer networks, etc. In recent years, we have
witnessed a number of algorithms addressing the frequent graph mining prob-
lem [5,9,4,6]. However, discovering frequent graph patterns comes with expensive
cost. Two computationally expensive operations are unavoidable: (1) to check if
a graph contains another graph (in order to determine the frequency of a graph
pattern) is an instance of subgraph isomorphism problem, which is NP-complete
[3]; and (2) to check if two graphs are isomorphic (in order to avoid creating a
candidate graph for multiple times) is an instance of graph isomorphism prob-
lem, which is not known to be either P or NP-complete [3].

With the advent of XML and the need for mining semi-structured data, a
particularly useful family of general graph — free tree, has been studied and

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 91–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 P. Zhao and J. Xu Yu

applied extensively in various areas such as bioinformatics, chemistry, computer
vision, networks, etc. Free tree — the connected, undirected and acyclic graph, is
a generalization of linear sequential patterns, and hence reserves plenty of struc-
tural information of databases. At the same time, it is a specialization of general
graph, therefore avoids undesirable theoretical properties and algorithmic com-
plexities incurred by graph. As the middle ground between two extremes, free
tree has provided us a good compromise in data mining research [8,2].

Similar to frequent graph mining, the discovery of frequent free trees in a
graph database shares a common combinatorial explosion problem: the number
of frequent free trees grows exponentially although most free trees deliver nothing
interesting but redundant information if all of them share the same frequency.
This is the case especially when graphs of a database are strongly correlated.

Our work is inspired by mining closed frequent itemsets and sequences in [7].
According to [7,11], a frequent pattern I is closed if there exists no proper super-
pattern of I with the same frequency in the dataset. In comparison to frequent
free trees, the number of closed ones is dramatically small. At the same time,
closed frequent free trees maintain the same information (w.r.t frequency) as
that held by frequent free trees with less redundancy and better efficiency.

There are several previous studies on discovering closed frequent patterns
among large tree or graph databases. CMTreeMiner [1] discovers all closed
frequent ordered or unordered trees in a rooted-tree database by traversing an
enumeration tree, a special data structure to enumerate all frequent (ordered or
unordered) subtrees in the database. However, some elegant properties of or-
dered (unordered) trees do not hold in free trees, which makes infeasible to apply
their pruning techniques directly to mine closed frequent free trees. CloseGraph
[10] discovers all closed frequent subgraphs in a graph database by traversing
a search space representing the complete set of frequent subgraphs. The novel
concepts of equivalent occurrence and early termination help CloseGraph prune
certain branches of the search space which produce no closed frequent subgraphs.
We can directly use CloseGraph to mine closed frequent free trees because free
tree is a special case of general graph, but CloseGraph will introduce a lot of in-
efficiencies. First, all free trees are computed as general graphs while the intrinsic
characteristics of free tree are omitted; Second, the early termination may fail
and CloseGraph may miss some closed frequent patterns. Although this failure
of early termination can be detected, the detection operations should be applied
case-by-case, which introduce a lot of complexities.

In this paper, we fully study the closed frequent free tree mining problem and
develop an efficient algorithm, CFFTree which is short for Closed Frequent, Free
Tree mining, to systematically discover the complete set of closed frequent free
trees in large graph databases. The main contributions of this paper are: (1) We
first introduce the concept of closed frequent free trees and study its properties
and its relationship to frequent free trees; (2) Our algorithm CFFTree depth-
first traverses the enumeration tree to discover closed frequent free trees. Two
original pruning algorithms, the safe position pruning and the safe label prun-
ing are proposed to prune search branches of the enumeration tree in the early

Mining Closed Frequent Free Trees in Graph Databases 93

stage, which is confirmed to output no desired patterns; (3) Based on the intrin-
sic characteristics of free tree, we propose the automorphism-based pruning and
the canonical mapping-based pruning to alleviate the expensive computation of
equivalent occurrence sets and candidate answer sets during the mining process.
We carried out different experiments on both synthetic data and real applica-
tion data. Our performance study shows that CFFTree outperforms up-to-date
frequent free mining algorithms by a factor of roughly 10. To the best of our
knowledge, CFFTree is the first algorithm that, instead of using post-processing
methods, directly mines closed frequent free trees from graph databases.

The rest of the paper is organized as follows. Section 2 provides necessary
background and detailed problem statement. We study the closed frequent free
tree mining problem in Section 3, and propose a basic algorithmic framework
to solve the problem. Advanced pruning algorithms are presented in Section 4.
Section 5 formulates our algorithm, CFFTree. In Section 6, we report our per-
formance study and finally, we offer conclusions in Section 7.

2 Preliminaries

A labeled graph is defined as a 4-tuple G = (V, E, Σ, λ) where V is a set of
vertices, E is a set of edges (unordered pairs of vertices), Σ is a set of labels,
and λ is a labeling function, λ : V ∪ E → Σ, that assigns labels to vertices and
edges. A free tree, denoted ftree, is a special undirected labeled graph that is
connected and acyclic. Below, we call a ftree with n vertices a n-ftree.

Let t and s be two ftrees, and g be a graph. t is a subtree of s (or s is the
supertree of t), denoted t ⊆ s, if t can be obtained from s by repeatedly removing
vertices with degree 1, a.k.a leaves of the tree. Similarly, t is a subtree of a graph
g, denoted t ⊆ g, if t can be obtained by repeatedly removing vertices and edges
from g. Ftrees t and s are isomorphic to each other if there is a one-to-one
mapping from the vertices of t to the vertices of s that preserves vertex labels,
edge labels, and adjacency. An automorphism is an isomorphism that maps from
a ftree to itself. A subtree isomorphism from t to g is an isomorphism from t to
some subtree(s) of g.

Given a graph database D = {g1, g2, . . . , gN} where gi is a graph (1 ≤ i ≤ N).
The problem of frequent ftree mining is to discover the set of all frequent ftrees,
denoted FS, where t ∈ FS iff the ratio of graphs in D that has t as its subtree
is greater than or equal to a user-given threshold φ. Formally, let t be a ftree
and gi be a graph. We define

ς(t, gi) =

{
1 if t ⊆ gi

0 otherwise
(1)

and
σ(t,D) =

∑
gi∈D

ς(t, gi) (2)

where σ(t,D) denotes the frequency or support of t in D. The frequent ftree
mining problem is to discover the ftree set FS of D which satisfies

FS = {t | σ(t,D) ≥ φN} (3)

94 P. Zhao and J. Xu Yu

The problem of closed frequent ftree mining is to discover the set of frequent
ftrees, denoted CFS, where t ∈ CFS iff t is frequent and the support of t is
strictly larger than that of any supertree of t. Formally, the closed frequent ftree
mining problem is to discover the ftree set CFS of D which satisfies

CFS = {t | t ∈ FS ∧ ∀t′ ⊃ t, σ(t,D) > σ(t′,D)} (4)

Since CFS contains no ftree that has a supertree with the same support, we
have CFS ⊆ FS.

3 Closed Frequent Ftree Mining: Proposed Solutions

Based on the definition in Eq.(4), a naive two-step algorithm of discovering
CFS from D can be easily drafted. First, using current frequent ftree mining
algorithms to discover FS from D; Second, for each t ∈ FS, examining all t′ ∈
FS where t ⊂ t′ to tell whether t′ satisfies σ(t′,D) < σ(t,D). This algorithm is
straightforward, but far from efficient. It indirectly discovers CFS by computing
FS in the first place whose size is exponentially larger than that of CFS. The
postprocessing operation of filtering non-closed frequent ftrees from FS also
incurs unnecessary computation. We want an alternative method which directly
computes CFS instead of computing FS in advance, i.e., under the traditional
search space for mining frequent ftrees, efficient pruning algorithms should be
proposed to detect branches that do not correspond to closed frequent ftrees
as early as possible, and prune them to avoid unnecessary computation, which
finally facilitate the total mining process.

In [12], we demonstrate F3TM, a fast frequent ftree mining algorithm, which
outperforms up-to-date algorithms FreeTreeMiner[2,8] by an order of magni-
tude. In F3TM, an enumeration tree representing the search space of all frequent
ftrees is built by a pattern-growth approach. Given a frequent n-ftree t, the
potential frequent (n + 1)-ftree t′ originated from t is generated as

t′ = t ◦ef v, v ∈ Σ (5)

where ef means pattern growth can be conducted on the extension frontier of
t instead of each vertex of t, while at the same time ensuring the completeness
of frequent ftrees discovered from the graph database . Figure 1 illustrates the
extension frontier of a ftree, which is composed of vertices 3, 4, 5 and 6, and the
candidate generation of t, based on Eq. 5.

For each frequent ftree in the enumeration tree discovered by F3TM, we can
check the closeness condition in Eq. 4. Given a frequent n-ftree t, its immediate
supertree set, denoted CS(t), which contains all (n + 1)-ftrees t′ ⊃ t can be
generated as

CS(t) = {t′ | t′ = t ◦x v, v ∈ Σ} (6)

where x means v can be grown on any vertex of t, which is shown in Figure 2.
t’s immediate frequent supertree set, denoted FS(t), which contains all frequent
(n + 1)-ftrees t′ ⊃ t can be generated as

FS(t) = {t′|t′ ∈ CS(t) ∧ σ(t,D) ≥ φN} (7)

Mining Closed Frequent Free Trees in Graph Databases 95

1

2 3 4 5

6 v v v

v

Fig. 1. t′ = t ◦ef v

1

2 3 4 5

6 v v v

v

v

v

Fig. 2. t′ = t ◦x v

Given a frequent ftree t′ ∈ FS(t), we denote the vertex which is grown on t to
get t′ as (t′ − t), and the vertex of t at which (t′ − t) is grown on as p, i.e., the
parent of (t′ − t) in t′.

The basic algorithmic framework for mining closed frequent ftrees can be
formalized as follows: if for every t′ ∈ FS(t), σ(t′,D) is strictly smaller than
σ(t,D), then t is closed; Otherwise, t is non-closed, i.e., we can tell the closeness
of t by checking the support values of all its immediate frequent supertrees in
FS(t) during the traversal of the enumeration tree for mining frequent ftrees.

4 Pruning the Search Space

In the previous section, we traverse the enumeration tree to discover all frequent
ftrees in a graph database. However, the final goal of our algorithm is to find
only closed frequent ftrees. Therefore, it is not necessary to grow the complete
enumeration tree, because under certain conditions, some branches of the enu-
meration tree are guaranteed to produce no closed frequent ftrees and therefore
can be pruned efficiently. In this section, we introduce algorithms that prune
unwanted branches of the search space.

4.1 Equivalent Occurrence

Given a ftree t and a graph g ∈ D, let f(t, g) represents a subtree isomorphism
from t to g. f(t, g) is also referred to as an occurrence of t in g. Notice that t can
occurs more than once in g. Let ω(t, g) denote the number of occurrences of t in g.
The number of occurrences of t in a graph database D can be formally defined as

Definition 1. Given a ftree t and a graph database D = {g1, g2, . . . , gN}, the
number of occurrence of t in D is the sum of the number of subtree isomorphisms
of t in gi ∈ D, i.e.,

∑N
i=1 ω(t, gi), denoted by O(t, D).

Suppose a ftree t′ = t ◦x v, f is a subtree isomorphism of t in g and f ′ is a
subtree isomorphism of t′ in g. If ∃ρ, ρ is subtree isomorphism of t in t′, i.e.,
∀v, f(v) = f ′(ρ(v)), we call t and t′ simultaneously occur in graph g. Intuitively,
as we can derive t′ from t by t′ = t◦x v, we can get t′ in the same pattern-growth
way from t in g. We denote the number of such simultaneous occurrences of t′

w.r.t t in g by ω(t, t′, g). Similarly, the number of simultaneous occurrences of
t′ w.r.t t in D is defined as

Definition 2. Given a ftree t′ = t◦xv and a graph database D={g1, g2, . . . , gN},
the number of simultaneous occurrence of t′ w.r.t. t in D is the sum of the number

96 P. Zhao and J. Xu Yu

of simultaneous occurrences of t′ w.r.t t in gi ∈ D, i.e.,
∑N

i=1 ω(t, t′, gi), denoted
by SO(t, t′, D).

Definition 3. Given t′ = t ◦x v and a graph database D = {g1, g2, . . . , gN}, if
O(t, D) = SO(t, t′, D), we say that t and t′ have equivalent occurrences.

Lemma 1. For a frequent ftree t in the enumeration tree, if there exists a t′ ∈
FS(t) such that (1) t and t′ have equivalent occurrences; (2) the vertex (t′ − t)
is not grown on the extension frontier of any descendants of t, including t, in
the enumeration tree, then (1) t is not a closed frequent ftree and (2) for each
child t′′ of t in the enumeration tree, there exists at least one supertree t′′′ of t′′,
such that t′′′ and t′′ have equivalent occurrences.

Proof. The first statement can be easily proved. Since t and t′ have equivalent
occurrences in D, then O(t′, D) = O(t, D). For the second statement, we notice
that (t′−t) occurs at each occurrence of t in D, so it occurs at each occurrence of
t′′ in D. In addition, the vertex (t′ − t) never be grown on the extension frontier
of any descendant of t, so it will not be a vertex of t′′ (Notice t′′ is a child of t in
the enumeration tree by growing a vertex on t’s extension frontier). Therefore,
we can obtain t′′′ by adding (t′ − t) on t′′, so that t′′ and t′′′ have equivalent
occurrences.

By inductively applying Lemma 1 to t and all t’s descendants in the enumeration
tree, we can conclude that all branches originated from t in the enumeration tree
are guaranteed to produce no closed frequent ftrees. However, the conditions
mentioned in Lemma 1, especially the condition (2) is hard to be justified. Since
when mining frequent ftree t, we have no information of all t’s descendants in the
enumeration tree. The following sections will present more detailed techniques
to prune the search space.

4.2 The Safe Position Pruning

Given a ftree t and a vertex v ∈ t, the depth of v can be defined as follows

depth(v) =

{
1 if v is a leaf
minu∈t,u is child of v{depth(u) + 1} otherwise

(8)

Intuitively, the depth of a vertex v is the minimum number of vertices from v
to the nearest leaf of t. For a frequent ftree t′ ∈ FS(t) where t and t′ have
equivalent occurrences, the vertex (t′ − t) can be grown at different positions,
i.e., there are the following possibilities for the position of p in t. (1)depth(p) ≤ 2
and p is on the extension frontier of t; (2) depth(p) ≤ 2 but p is not on the
extension frontier; (3) depth(p) > 2.

If p occurs in position (1), vertex(t′ − t) is grown on the extension frontier of
t. If p occurs in position (2), there are possibilities that for some descendant t′′

of t in the enumeration tree, the vertex p can still be on the extension frontier of
t′′. A example is shown in Figure 3. In frequent ftree t, depth(p) = 2 and p is not
located on the extension frontier. After the vertex a is grown on the extension
frontier (vertex b), we get another frequent ftree t′′ in which p is now located on

Mining Closed Frequent Free Trees in Graph Databases 97

a a

b

pc

v

a

t

c

a a

a

b

v

t′′

p

Fig. 3. A Special Case in Position (2)

b c d

e

p

a

v v’

t

Fig. 4. The Safe Label Pruning

the extension frontier. So the first two possible positions of p are unsafe when
growing vertex (t′ − t), which disallows the conditions mentioned in Lemma 1.

The following theorem shows that only position (3) of p is safe to grow the
vertex (t′ − t), while not violating the conditions mentioned in Lemma 1.

Theorem 1. For a frequent ftree t′ ∈ FS(t) such that t and t′ have equivalent
occurrences in D. If depth(p) > 2, then neither t nor any t’s descendants in the
enumeration tree can be closed.

Proof. Since for every vertex u on the extension frontier of a ftree, it is located
at the bottom two levels, i.e., depth(u) ≤ 2. If depth(p) > 2, the vertex p can
never appear on the extension frontier of any ftree, i.e., the vertex (t′ − t) will
not be grown on the extension frontier of any descendant of t, including t, in the
enumeration tree. According to Lemma 1, the branches originated from t can
not generate closed frequent ftrees.

The pruning algorithm mentioned in Theorem 1 is called the safe position prun-
ing, since the vertex (t′ − t) can only be grown on a safe vertex p ∈ t, where
depth(p) > 2. Given a n-ftree, the depth of every vertex of t can be computed in
O(n), so the safe position pruning is quite efficient to testify whether a certain
branch in the enumeration tree should be pruned or not.

4.3 The Safe Label Pruning

If p is on the extension frontier of t, obviously, depth(p) ≤ 2. We can not prune
t from the enumeration tree. However, depending on the vertex label of (t′ − t),
we can still possibly prune some children of t in the enumeration tree.

Theorem 2. For a frequent ftree t′ ∈ FS(t) such that t and t′ have equivalent
occurrences in D, if p is located on the extension frontier of t, we do not need
to grow t by adding to p a new vertex with label lexicographically greater than
(t′ − t).

Proof. For any t′′ ∈ FS(t) such that p is the parent of(t′′ − t) and (t′′ − t) is
lexicographically greater than (t′ − t), a ftree t′′′ = t′′ ◦p (t′ − t) have equivalent
occurrence with t′′ and t′′′ ∈ FS(t′′). Note t′′ ◦p (t′ − t) means growing vertex
(t′ − t) on p of ftree t′′. According to Lemma 1, t′′ is not closed. And for every
descendant of t′′ in the enumeration tree, (t′ − t) never be grown on its exten-
sion frontier. Because during frequent ftrees mining, we generate candidates in
a lexicographical order. Since (t′′ − t) is lexicographically greater than (t′ − t),

98 P. Zhao and J. Xu Yu

the vertex (t′− t) will not be reconsidered to be grown on t′′ and all t′′’s descen-
dants in the enumeration tree. According to Lemma 1, neither t′′ nor any of its
descendants can be closed.

The pruning algorithm mentioned in Theorem 2 is called the safe label pruning.
The vertex label of (t′− t) is safe because all vertices with labels lexicographically
greater than (t′−t) can be exempted from growing on p of t, and all descendants of
corresponding ftrees in the enumeration tree are also pruned. An example is shown
in Figure 4. p is located on the extension frontier of t and v = (t′ − t). If v′’s label
is lexicographically greater than v’s label, the frequent ftree t′′ = t ◦p v′ and the
frequent ftree t′′′ = t′′ ◦p v have equivalent occurrences, so that t′′ is not closed.
Similarly, all t′′’s descendants in the enumeration tree are not closed, either.

4.4 Efficient Computation of FS(t)

Based on the above analysis, both candidate generation and closeness test of the
frequent ftree, t, need to compute FS(t). Depending on if t can be pruned from
the enumeration tree during closed frequent ftree mining, we can divide FS(t)
into the following mutually exclusive subsets:

EO(t) = {t′ ∈ FS(t) | t′ and t have equivalent occurrences}
EN(t) = {t′ ∈ FS(t) | σ(t,D) = σ(t′,D)}

F (t) = {t′ ∈ FS(t) | t′ is frequent}

Based on Theorem 1 and Theorem 2, the set EO(t) can be further divided
into the following mutually exclusive subsets:

EO1(t) = {t′ ∈ EO(t) | p ∈ t is safe}
EO2(t) = {t′ ∈ EO(t) | p is on the extension frontier of t}
EO3(t) = EO(t)− EO1(t)− EO2(t)

When computing the sets mentioned above, we map t to each occurrence in
gi ∈ D and select the possible vertex (t′ − t) to grow. However, this procedure
is far from efficient since a lot of redundant t′ are generated. Now we study how
to speed up the computation of FS(t) based on the characteristics of ftree. The
detailed analysis can be found in [12].

Automorphism-based Pruning: In the example shown in Figure 5, The left-
most ftree t is a frequent 7-ftree, where vertices are identified with a unique
number as vertex id. When growing a new vertex v on vertex 3 of t, we get a
8-ftree t′ ∈ CS(t), shown in the middle of Figure 5. However, when growing
v on vertex 5 of t, we get another 8-ftree t′′ ∈ CS(t), shown on the right of
Figure 5. Notice t′ = t′′ in the sense of ftree isomorphism, so t′′ can be pruned
when computing FS(t).

Based on the observation mentioned above, We propose an automorphism-
based pruning algorithm to efficiently avoid redundant generation of ftrees in
FS(t). Given a ftree, all vertices can be partitioned into different equivalence
classes based on ftree automorphism. Figure 6 shows how to partition vertices

Mining Closed Frequent Free Trees in Graph Databases 99

a

b b

c d c d

t
0

1 2

3 4 5 6

a

b b

c d c d

V

t′

a

b b

c d c d

V

t′′

Fig. 5. t′, t′′ ∈ CS(t) and t′ = t′′

a

b b

c d c d

Fig. 6. Equivalence Class

of t in Figure 5 into four equivalence classes. When computing FS(t), only one
representative for each equivalence class of t is considered, instead of growing
vertices on every position within an equivalence class.

Canonical Mapping-based Pruning: When computing FS(t), we maintain
mappings from t to all its occurrences in gi ∈ D. However, there exist redundant
mappings because of ftree automorphism. Given a n-ftree t, and assume that
the number of equivalence classes of t is c, and the number of vertices in each
equivalence class Ci is ni, for 1 ≤ i ≤ c. The number of mappings from t to an
occurrence in gi is computed as ω(t, gi) =

∏c
i=1 (ni)!. When either the number

of equivalence classes, or the number of vertices in some equivalence class is
large, ω(t, gi) can be huge. However, among all mappings describing the same
occurrence of t ∈ gi, one out of

∏c
i=1 (ni)! mappings is selected as canonical

mapping and all computation of FS(t) is based on the canonical mapping of t in
D. While other (

∏c
i=1 (ni)!−1) mappings can be pruned so that the computation

of FS(t) can be greatly facilitated.

5 The CFFTree Algorithm

In this section, we summarize our CFFTree algorithm, which is short for Closed
Frequent Ftree Mining. Algorithm 1 illustrates the framework of CFFTree. The
algorithm simply calls CF-Mine which recursively mines closed frequent ftrees of
a graph database by a depth-first traversal on the enumeration tree.

Algorithm 2 outlines the pseudo-code of CF-Mine. For each frequent ftree t,
CFFTree check all candidate frequent ftree t′ = t ◦x v, to obtain SO(t, t′,D),
which is useful to compute EO(t) (Line 1) and EN(t) (Line 2). However, for
t′ ∈ F (t), CFFTree only grows t on its extension-frontier, i.e. t′ = t ◦ef v, which
ensures the completeness of frequent ftrees in D (Line 7-12). Automorphism-
based pruning and canonical mapping-based pruning can be applied to facilitate
the computation of the three sets EO(t), EN(t) and F (t). For the frequent ftree
t, if there exists t′ ∈ EO1(t), then neither t nor any of t’s descendants in the
enumeration tree can be closed, and hence can be efficiently pruned (Line 3-4).
If EO1(t) = ∅ but there exists t′ ∈ EO2(t), although we cannot prune t from the
enumeration tree, we can apply Theorem 2 to prune some children of t in the
enumeration tree (Line 11-12). If EO(t) = ∅, then no pruning is possible and we
have to compute EN(t) to determine the closeness of t, i.e., the naive algorithm
mentioned in Section 3 (Line 2). If EN(t) = ∅, t is not closed, otherwise, t

100 P. Zhao and J. Xu Yu

Algorithm 1. CFFTree (D, φ)
Input: A graph database D, the minimum support threshold φ
Output: The closed frequent ftrees set CF
1: CF ← ∅;
2: F ← frequent 1-ftrees;
3: for all frequent 1-ftree t ∈ F do
4: CF-Mine(t, CF , D, φ);
5: return CF

Algorithm 2. CF-Mine (t, CF , D, φ)
Input: A frequent ftree t, the set of closed frequent ftrees, CF , A graph database D

and the minimum support threshold φ
Output: The closed frequent ftrees set CF
1: Compute EO(t);
2: if EO(t) = ∅ then Compute EN(t);
3: if ∃t′ ∈ EO1(t) then
4: return; // The safe position pruning;
5: else
6: F (t)← ∅
7: for each equivalence class eci on the extension frontier of t do
8: for each valid vertex v which can be grown on eci of t do
9: t′ ← t ◦ef v, where p, a representative of eci, is v’s parent

10: if support(t′) ≥ φ|D| then
11: if �t′′ ∈ EO2(t), where (t′′ − t) is p and the label of (t′ − t) is lexico-

graphically greater than that of (t′′ − t) then
12: F (t)← F (t) ∪ {t′} // the safe label pruning
13: for each frequent t′ in F (t) do
14: CF-Mine(t′, CF, D, φ)
15: if EO(t) = ∅ and EN(t) = ∅ then
16: CF ← CF ∪ { t}

is closed (Line 15-16). The set F (t) is computed by extending vertices on the
extension frontier of t, which grows the enumeration tree for frequent ftree mining
(Line 8-12). This procedure proceeds recursively (Line 13-14) until we find all
closed frequent ftrees in the graph database.

6 Experiments

In this section, we report a systematic performance study that validates the
effectiveness and efficiency of our closed frequent free tree mining algorithm:
CFFTree. We use both a real dataset and a synthetic dataset in our experiments.
All experiments were done on a 3.4GHz Intel Pentium IV PC with 2GB main
memory, running MS Windows XP operating system. All algorithms are imple-
mented in C++ using the MS Visual Studio compiler. We compare CFFTree
with F3TM plus post-processing, thus, the performance curve mainly reflects the
effectiveness of pruning techniques mentioned in Section 4.

Mining Closed Frequent Free Trees in Graph Databases 101

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

F

ea
tu

re
s

Size of Free Trees

F3TM
CFFTree

(a) Number of patterns

10000

100000

0.05 0.06 0.07 0.08 0.09 0.1

P

at
te

rn
s

Minimum support threshold

frequent ftrees
closed frequent ftrees

(b) Number of Patterns

100

1000

10000

0.05 0.06 0.07 0.08 0.09 0.1

R

un
ti

m
e

(s
ec

)

Minimum support threshold

F3TM
CFFTree

(c) Performance

Fig. 7. Mining patterns in real datasets

10

100

1000

10000

100000

0.05 0.06 0.07 0.08 0.09 0.1

P

at
te

rn
s

Minimum support threshold

frequent ftrees
closed frequent ftrees

(a) Number of patterns

100

1000

0.05 0.06 0.07 0.08 0.09 0.1

R

un
ti

m
e

(s
ec

)

Minimum support threshold

F3TM
CFFTree

(b) Performance

10

100

1000

10000

5 10 15 20 25 30 35 40

R

un
ti

m
e

(s
ec

)

Average size of graphs (edges)

F3TM
CFFTree

(c) Performance

Fig. 8. Mining patterns in synthetic datasets

The real dataset we tested is an AIDS antiviral screen chemical compound
database from Developmental Theroapeutics Program in NCI/NIH. The database
contains up to 43, 905 chemical compounds. There are total 63 kinds of atoms
in this database, most of which are C, H , O, S, etc. Three kinds of bonds are
popular in these compounds: single-bond, double-bond and aromatic-bond. We
take atom types as vertex labels and bond types as edge labels. On average, com-
pounds in the database has 43 vertices and 45 edges. The graph of maximum
size has 221 vertices and 234 edges.

Figure 7(a) shows the number of frequent patterns w.r.t. the size of patterns
(vertex number). We select 10000 chemical compounds from the real database
and set the minimum threshold φ to be 10%. As shown, most frequent and closed
frequent ftrees have vertices ranging from 8 to 17. While the number of small
ftrees with vertex number less than 5 and large ftrees with vertex number greater
than 20 is quite limited. Figure 7(b) shows the number of patterns of interest with
φ varying from 5% to 10% and the running time is shown in Figure 7(c) on the
same dataset. As we can see, CFFTree outperforms F3TM by a factor of 10 in aver-
age and the ratio between frequent ftrees and closed ones is close from 10 to 1.5. It
demonstrates that closed pattern ming can deliver more compact mining results.

We then tested CFFTree on a series of synthetic graph databases, which are
generated by the widely-used graph generator [5]. The synthetic dataset is char-
acterized by different parameters, which is described in detail in [5]. Figure 8(a)
shows the number of patterns of interest with φ varying from 5% to 10% and
the running time is shown in Figure 8(b) for the dataset D10000I10T 30V 50.
Compared with the real dataset, CFFTree has a similar performance gain in
this synthetic dataset. We then test the mining performance by changing the

102 P. Zhao and J. Xu Yu

parameter T in the synthetic data, while other parameters keep fixed. The ex-
perimental results are shown in Figure 8(c). Again, CFFTree performs better
than F3TM.

7 Conclusion

In this paper, we investigate the problem of mining closed frequent ftrees from
large graph databases, a critical problem in structural pattern mining because
mining all frequent ftrees are inherently inefficient and redundant. Several new
pruning algorithms are introduced in this study including the safe position prun-
ing and the safe label pruning to efficiently prune branches of the search space.
The automorphism-based pruning and the canonical mapping-based pruning are
applied in the computation of candidate sets and equivalent occurrence sets,
which dramatically facilitate the total mining process. A CFFTree algorithm is
implemented and our performance study demonstrates its high efficiency over
the up-to-date frequent ftree mining algorithms. To our best knowledge, this is
the first piece of work on closed frequent ftree mining on large graph databases.

Acknowledgment. This work was supported by a grant of RGC, Hong Kong
SAR, China (No. 418206).

References

1. Yun Chi, Yi Xia, Yirong Yang, and Richard R. Muntz. Mining closed and maximal
frequent subtrees from databases of labeled rooted trees. IEEE Transactions on
Knowledge and Data Engineering, 17(2):190–202, 2005.

2. Yun Chi, Yirong Yang, and Richard R. Muntz. Indexing and mining free trees. In
Proceedings of ICDM03, 2003.

3. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

4. Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in
the presence of isomorphism. In Proceedings of ICDM03, 2003.

5. Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Pro-
ceedings of ICDM01, 2001.

6. Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining can
make a difference. In Proceedings of KDD04, 2004.

7. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-
quent closed itemsets for association rules. In Proceeding of ICDT99, 1999.

8. Ulrich Rückert and Stefan Kramer. Frequent free tree discovery in graph data. In
Proceedings of SAC04, 2004.

9. Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
Proceedings of ICDM02, 2002.

10. Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns.
In Proceedings of KDD03, 2003.

11. Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential
patterns in large databases. In Proceedings of SDM03, 2003.

12. Peixiang Zhao and Jeffrey Xu Yu. Fast frequent free tree mining in graph databases.
In Proceedings of MCD06 - ICDM 2006 Workshop, Hong Kong, China, 2006.

	Introduction
	Preliminaries
	Closed Frequent Ftree Mining: Proposed Solutions
	Pruning the Search Space
	Equivalent Occurrence
	The Safe Position Pruning
	The Safe Label Pruning
	Efficient Computation of FS(t)

	The CFFTree Algorithm
	Experiments
	Conclusion

