gSketch:
On Query Estimation in Graph Streams

Peixiang Zhao (Florida State University)
Charu C. Aggarwal (IBM Research, Yorktown Heights)
Min Wang (HP Labs, China)
Synopsis

1. Introduction
2. Problem Formulation
3. A Naïve Solution: Global Sketching
4. A Better Sketch Partitioning Solution: gSketch
5. Experimental Evaluation
6. Conclusions
Introduction

• **Graph stream = Graph + Data stream**
 - The edge set is massive
 - Edges are received and updated rapidly in a form of a stream

• **Most existing network applications can be naturally modeled as graph streams**
 - Representative applications
 • Intrusion detection on Internet
 • Social networks
 • Telecommunications
Challenges

• **Graph streams**

 – In a very large scale, the data cannot be stored explicitly in main memory, or even on disk

 – The arriving rate of graph streams is fast

 • “You can never step in the same stream twice” --- Heraclitus

• **Graph streams**

 – The universe we are keeping track of is extremely large

 – The dynamic nature hampers a direct application of many algorithms for static memory-resident graphs
Problem Formulation

- **Graph streams**
 - \(G = (V, E) \) a labeled, directed graph
 - \(|V| = N;\)
 - \(E = \{<u_{t_1}, v_{t_1}>: f_{t_1}; <u_{t_2}, v_{t_2}>: f_{t_2}; \ldots; <u_{t_i}, v_{t_i}>: f_{t_i}; \ldots\} \)

- **Queries to be estimated**
 1. **Edge query**
 - Determine the frequency of the edge \(<X, Y>: f(X, Y) = \sum_{t_i \in T} f(X, Y; t_i)\)
 2. **Aggregate subgraph query**
 - Determine the aggregate frequency behavior of the edges in a subgraph
A Naïve Solution: Global Sketching

- **Global sketching**
 - A direct application of any existing sketch method for data streams
 - AMS[STOC'96], Lossy-Count[VLDB'02], **CountMin**[J.Alg'05, SIGMOD'11], Bottom-k[VLDB'08], ……
 - **CountMin** sketch
 - Given a data stream with N arrivals till the time-stamp t, the estimated frequency \tilde{f} is bounded up w.h.p. $(1 - e^{-d})$
 \[
 f \leq \tilde{f} \leq f + e \times N/w
 \]

\[
\begin{align*}
 \tilde{f} &= \min\{h_1(e_t), h_2(e_t), \ldots, h_d(e_t)\} \\
 d &= \lceil \ln \frac{N}{w} \rceil \\
 w &= \lceil \frac{f}{\tilde{f}} \rceil
\end{align*}
\]
A Naïve Solution: Global Sketching

• The vulnerabilities of global sketching

 – The relative error of query estimation on edge i is $\frac{e}{w} \frac{N}{f_i}$, which is proportional to N/f_i!

 – Such an estimation error incurred can be extremely high

 • Edge frequencies of a graph stream are distributed quite unevenly
 • “Low-frequency" edges are quite relevant for querying, and may show up repeatedly in the workload
A Better Solution: Sketch Partitioning

• Broad intuition
 – Common characteristics of real graph streams
 • Global Heterogeneity and Skews: the relative frequencies of different edges are very uneven
 • Local Similarity: within structurally localized regions of the graph, relative frequencies of edges are often correlated
 – (Data/workload) samples are always available

• Key idea:
 – Partitioning the global sketch, so that edges with similar frequencies are maintained and queried in localized sketches in order to achieve better estimation accuracy
gSketch: Overview

• **Objective**

 – Given a space limit S, to partition the global sketch over different regions of the graph

 • Partition based on **vertices** toward counting edges with **sufficient frequency uniformity** within a sketch

• **Sampling-based partitioning**

 – A sample of the original stream is available

 – Both a sample of the stream and a sample of the query workload are available
Sketching Partitioning with Data Sample

- **Recursive** partitioning in a top-down fashion as in a decision tree
 - Data Samples are used to estimate edge frequencies based on local similarity of **edges emanating from different vertices**
 - Optimize the partitioning of S into S_1 and S_2

\[
\min E = \min \left(\sum_{m \in S_1} \frac{\tilde{d}(m) \cdot \tilde{F}(S_1)}{\tilde{f}_v(m) \tilde{d}(m)} + \sum_{m \in S_2} \frac{\tilde{d}(m) \cdot \tilde{F}(S_2)}{\tilde{f}_v(m) \tilde{d}(m)} \right)
\]
• Recursive partitioning in a top-down fashion as in a decision tree

 – **Workload Samples** are used to estimate “relative weights” of different edges

\[
\min E = \min \left(\sum_{m \in S_1} \frac{\tilde{w}(m) \cdot \tilde{F}(S_1)}{\tilde{f}_v(m) \tilde{d}(m)} + \sum_{m \in S_2} \frac{\tilde{w}(m) \cdot \tilde{F}(S_2)}{\tilde{f}_v(m) \tilde{d}(m)} \right)
\]
Early Termination of the Recursive Partition

1. The width of a partitioned sketch at a given level is less than a particular threshold w_0: $Width(S_i) \leq w_0$

2. The number of distinct edges being counted in a sketch is less than a given factor of the sketch table width:
 $\sum_{m \in S} \tilde{d}(m) < C \times Width(S_i)$
 - The probability of any collision in a particular cell in S can be bounded by C
gSketch: Query Processing

- Sketch partitioning is performed on the sample data as a preprocessing step
 - Data samples only
 - Data and query workload samples

- After sketch partitioning, graph streams are maintained and queried by a set of partitioned localized sketches
 - Each edge is dispatched to its corresponding local sketch for frequency maintenance and query processing
 - Edges not in the data sample are uniformly dispatched to an outlier sketch
Experimental Evaluation

• gSketch vs. Global sketching

• Evaluation methods
 – Average relative error
 – Number of effective queries

• Two real data sets and one synthetic data set
 – DBLP (1,954,776 edges)
 – IBM-Attack Sensor Streaming Data (3,781,471 edges)
 – GTGraph (10^8 vertices and 10^9 edges)
Query Estimation Accuracy of Edge Queries (Data Sample Only)

Figure: Average Relative Error

Figure: Number of Effective Queries
Query Estimation Accuracy of Edge Queries
(Data and Query Workload Samples)

Figure: Average Relative Error (Zipf Skewness $\alpha = 1.5$)

Figure: Number of Effective Queries (Zipf Skewness $\alpha = 1.5$)
Query Estimation Accuracy of Edge Queries
(Data and Query Workload Samples)

Figure: Average Relative Error (1G Memory)

Figure: Number of Effective Queries (1G Memory)
Query Estimation Accuracy of Aggregate Subgraph Queries

Figure: Data Sample Only

Figure: Data & Workload Samples ($\alpha = 1.5$)

Figure: Data & Workload Samples (Memory = 1G)
Query Efficiency

Figure: Sketch Construction Time (Seconds)

Figure: Query Processing Time (Seconds)
Effects of New Vertices/Edges

<table>
<thead>
<tr>
<th></th>
<th>Memory (MB)</th>
<th>Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Average relative error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gSketch</td>
<td>58.5968</td>
<td>20.381</td>
</tr>
<tr>
<td>Outlier sketch</td>
<td>58.5971</td>
<td>20.392</td>
</tr>
</tbody>
</table>

Table: Average Relative Error of gSketch and Outlier Sketch in GTGraph
Conclusions

• **gSketch**: a Partition-based sketch method for better query estimation in massive graph streams
 - Adaptation of well-known sketching methods in conventional data streams
 - Leveraging common structural characteristics of massive graphs
 - Achieving up to an order of magnitude improvement in estimation accuracy

• **Future directions**
 - Computation of complex functions of edge frequencies in subgraph queries
 - Structural queries
Thank you!

Q & A

zhao@cs.fsu.edu
charu@us.ibm.com
min.wang6@hp.com