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Abstract

Free tree, as a special graph which is connected, undi-
rected and acyclic, is extensively used in domains such as
computational biology, pattern recognition, computer net-
works, XML databases, etc. In this paper, we present a
computationally efficient algorithm F3TM (Fast Frequent
Free Tree Mining) to discover all frequent free trees in a
graph database. We focus ourselves on how to reduce the
cost of candidate generation and minimize the number of
candidates being generated. We prove a theorem that the
completeness of frequent free trees can be guaranteed by
growing vertices from a limited range of vertices in a free
tree. Two pruning techniques, automorphism-based prun-
ing and pruning based on canonical mapping are proposed
which significantly reduce the cost of candidate generation.
We conducted experimental studies on a real application
dataset and we show that our F3TM outperforms the up-
to-date algorithms by an order of magnitude.

1. Introduction

Graph, as a general data structure to represent relations
among entities, has been widely used in a broad range
of areas such as computational biology, chemistry, pattern
recognition, computer networks, etc. In recent years data
mining on complex structural patterns has attracted a lot
of research interest [6, 14] and has led to several special-
ized algorithms for mining frequent subgraph patterns in a
graph database[9, 10, 16, 8]. However, discovering frequent
subgraphs comes with high cost. Two computationally ex-
pensive operations are unavoidable: (1) to check if a graph
contains another graph (in order to determine the frequency
of a graph pattern) is an instance of the subgraph isomor-
phism problem, which is NP-complete [5]; and (2) to check
if two graphs are isomorphic (in order to avoid creating a
graph pattern multiple times) is an instance of the graph
isomorphism problem, which is not known to be in either P
or NP-complete [5].

With the advent of XML and the need for mining semi-

structured data, a particularly useful family of general graph
— free tree, has been studied intensively and applied exten-
sively in various areas. Free tree — the connected, undi-
rected and acyclic graph, is a generalization of linear se-
quential patterns, and hence reserves plenty of structural
information of datasets to be mined. At the same time, it
is a specialization of general graph, therefore avoids un-
desirable theoretical properties and algorithmic complexity
incurred by graph. As the middle ground between these
two extremes, free tree has been widely used in various
areas such as bioinformatics, chemistry, computer vision,
networks, etc. In analysis of molecular evolution, an evo-
Iutionary free tree, a.k.a. phylogeny, is used to describe
the evolution history of certain species [7]. Riickert et al.
[13] showed how additional constraints can be incorporated
into a free tree miner for biochemical databases. In pattern
recognition, a free tree called shape axis tree is used to rep-
resent shapes [11]. In computer networking, multicast free
trees are mined and used for packet routing [4]. Free tree
has provided us a good compromise between the more ex-
pressive, but computationally harder general graph and the
faster but less expressive path in data mining research.

In this paper, we fully study the problem of mining fre-
quent free trees in a database of labeled graphs. We propose
a vertical mining algorithm, called F3TM for Fast Frequent
Free Tree Mining in a graph database by a pattern-growth
approach. The main contributions of our work are summa-
rized below. First, we prove that all frequent free trees can
be discovered in a graph database by growing vertices from
the extension frontier, a limited range of vertices in a free
tree. Second, we propose an automorphism-based pruning
technique that assists us to determine if we need to generate
anew candidate from a given frequent free tree by checking
the given tree itself. Third, we propose a pruning technique
based on canonical mapping which ensures that there is a
unique mapping from a free tree to each of its occurrences
in a graph. Therefore, the unnecessary candidate genera-
tion and frequency counting operations can be significantly
reduced. Our extensive experimental studies confirm that
our algorithm significantly outperforms the up-to-date al-
gorithms [2, 3, 13] by an order of magnitude.
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The rest of the paper is organized as follows. In Sec-
tion 2, we give our problem statement. We discuss our new
algorithm F3TM in Section 3, and report the results of our
extensive performance studies in Section 4. Finally, Section
5 concludes our work.

2. Problem Statement

A graph G = (V, E, %, \) is defined as a undirected la-
beled graph where V' is a set of vertices, E is a set of edges
(unordered pairs of vertices), X is a set of labels, and A is
a labeling function, A : V U E — %, that assigns labels
to vertices and edges. A free tree, denoted ftree, is a spe-
cial undirected labeled graph that is connected and acyclic.
Below, we call a ftree with n vertices a n-ftree.

Let ¢ and s be two ftrees, and g be a graph. ¢ is a subtree
of s (or s is the supertree of t), denoted t C s, if ¢ can be
obtained from s by repeatedly removing vertices with de-
gree 1, a.k.a leaves of the tree. Similarly, ¢ is a subtree of
a graph g, denoted ¢ C g, if ¢ can be obtained by repeat-
edly removing vertices and edges from g. Ftrees t and s are
isomorphic to each other if there is a one-to-one mapping
from the vertices of ¢ to the vertices of s that preserves ver-
tex labels, edge labels, and adjacency. An automorphism is
an isomorphism that maps from a ftree to itself. A subtree
isomorphism from t to g is an isomorphism from ¢ to some
subtree(s) of g.

Given a graph database D = {g1, g2, ...,gn} Where g;
is a graph (1 < 7 < N), the problem of frequent ftree min-
ing is to find the set of all frequent ftrees where a ftree, t,
is frequent if the ratio of graphs in D, that has ¢ as its sub-
tree, is greater than or equal to a user-given threshold ¢.
Formally, let ¢ be a ftree and g; be a graph. We define

1 iftCg;
s(t,91) _{ 0 otherwise

and
O'(t,D) = Z §(t,gi)
9:€D
o(t, D) denotes the support or frequency of t in D. A ftree
t is frequent if Eq. (1) holds.

o(t,D) > &N (1

In a frequent ftree mining algorithm, two main tasks are
candidate generation and frequency counting. Candidate
generation is to generate potential frequent ftrees (candi-
dates) in the graph database. Frequency counting is to cal-
culate o(t, D), where t is a candidate ftree. The most im-
portant issue for mining frequent ftrees in a graph database
is to reduce the number of candidate frequent ftrees to be
counted with minimum overhead, which is the focus of our
paper to be studied.

e R

Figure 1. The enumeration tree

3. A New Fast Algorithm: F3TM

In this section, we present our frequent ftree mining al-
gorithm F3TM (Fast Frequent Free Tree Mining). Below,
we discuss the following issues: (1) canonical form of ftree,
(2) enumeration tree, (3) candidate generation, and (4) fre-
quent counting. We focus on pruning strategies during can-
didate generation. Two techniques, automorphism-based
pruning and canonical mapping pruning are proposed to fa-
cilitate candidate generation and they contribute a dramatic
speedup to the final performance of our ftree mining algo-
rithm.

3.1. Canonical Form

A ftree can be possibly represented in different ways,
because it is unrooted and unordered. The canonical form
is a unique representation of a ftree in the sense that two
ftrees, t1 and to, share the same canonical form if and only
if ¢; is isomorphic to t5. During frequent ftree mining, only
ftrees in their canonical form need to be considered while
others in non-canonical form are redundancy and hence can
be efficiently pruned.

A canonical form of a ftree can be obtained in a two-step
algorithm: (1) normalizing a ftree to be a rooted ordered
tree; (2) assigning a string, as its code, to represent the nor-
malized rooted ordered tree. The final code derived from
the two-step algorithm is the canonical form of a ftree. Both
steps of the algorithm are O(n) for a n-ftree [1].

3.2. The Enumeration Tree

An enumeration tree, T(V, E), is a data structure rep-
resenting all frequent ftrees of a graph database. Here, V'
is a set of vertices representing canonical frequent ftrees
(ftrees in their canonical form), £ is a set of edges repre-
senting a subtree-supertree relationship. The root of T is
a virtual vertex, which represents the special 0-ftree. Chil-
dren of the root are all frequent 1-ftrees. According to the
pattern-growth approach, a vertex can be appended to an 1-
ftree t and all candidate 2-ftrees originated from ¢ are gen-
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Figure 2. The extension frontier of a ftree

erated. This procedure continues iteratively, i.e., all (n+1)-
ftrees originated from a n-ftree ¢ can be obtained from ¢ by
the pattern-growth approach. By pre-order traversal of the
enumeration tree, F3TM can discover all frequent ftrees in
the graph database.

Figure 1 shows an enumeration tree example. Here, the
root node is labeled with @), which has three children, three
ftrees with label a, b, and c, provided that they are only
possible labels. The ftree with one vertex a can grow to
three 2-ftrees, a—a, a-b, and a-c. As shown in Fig-
ure 1, there may be duplicated ftrees in the enumeration
tree, which means that a ftree can be possibly grown from
different ancestors in the enumeration tree. For example,
the shaded ftree, a—b, can be grown either from ftree, a,
by appending a vertex with label b, or from ftree, b, by
appending a vertex with label a.

Our F3TM algorithm traverses the enumeration tree 7’
in a depth-first manner. When it finds that a ftree has been
discovered before as frequent, it does not need to mine the
duplicated ftree and all its descendants again. As discussed
above, the key issue is to reduce the possibility of generat-
ing duplicated ftrees to minimum. We will discuss it in the
next section on candidate generation.

3.3. Candidate Generation

Given a n-ftree ¢, a naive algorithm of generating can-
didate frequent (n+1)-ftrees is to add one vertex on each of
n vertices of ¢, which will generate a large number of du-
plicated (n+1)-ftrees. In the following, we prove that the
complete set of candidate ftrees is ensured even if we grow
vertices on the predefined positions of a ftree, called ex-
tension frontier. Below, we first define concepts of leg,
last-leg, and extension-frontier of a ftree.

Definition 1. Given a canonical ftreet, a leaf at the bottom
level is called a leg. Among all legs, the rightmost leaf is
the last leg and the parent of the last leg is denoted as pl(t).

Definition 2. Given a canonical ftree t, the extension-
frontier of t is composed of three part: (1) all legs; (2) the
parent of the last leg, pl(t), and (3) leaves at the second but
last level, whose order are no less than pl(t), or in other
words, appear after pl(t).

As shown in Figure 2, the legs of the ftree ¢ are vertices
f and g. The last leg is g, and the parent of the last leg is
vertex ¢ = pl(t). The leaves at the second last level, whose

(2) (=)

2 (v) (b) () (b)
OO ® & O ©
O O
Figure 3. Automorphism-Based Pruning

order are no less than pl(t), are vertices d and e. So the
extension-frontier of the ftree ¢ is composed of vertices c,
d, e, f and g.

Lemma 1. Given a canonical n-ftree t, forn > 2. Let t’
be a canonical (n-1)-ftree after deleting the last-leg | from
t. The position of vertex pl(t) of t in t' can only have 3
possibilities: (1) pl(t) is a leg of ftree t/, (2) pl(t) = pl(t')
and (3) pl(t) appears on the extension-frontier of t', where
(1) and (2) do not hold.

Because of the space limitation, we omit the proof for
Lemma 1. The detailed proof can be found in [17].

Theorem 1. All candidate frequent ftrees can be found by
growing vertices on the extension frontier of ftrees in the
enumeration tree.

Proof. We prove Theorem 1 by induction. It is obvious that
the extension frontier of a 1-ftree is its sole root, and all 2-
ftrees can be grown on the extension frontiers of 1-ftrees.
Assume that all n-ftrees can be grown a vertex on the ex-
tension frontiers of their corresponding (n-1)-ftrees. Given
a (n+1)-ftree, t, after deleting the last leg [ from ¢, we get
a canonical n-ftree, t'. Based on Lemma 1, pl(t) is located
on the extension frontier of ¢. So ¢ can be grown with one
more vertex [ from the extension frontier of ¢/. Therefore,
Theorem 1 holds.

O

Theorem 1 represents all legal positions of the n-ftree
t’ on which the last leg can be appended to achieve the
new (n+1)-ftree t, while no ftrees are omitted during this
frontier-extending process.

3.3.1 Automorphism-Based Pruning

Based on the pattern-growth approach mentioned above, we
can generate the complete set of frequent ftrees in the enu-
meration tree. Suppose there is a set of candidate frequent
ftrees found already, denoted 7. Given a candidate ftree
t € 7, in order to reduce the cost of frequency counting,
we firstly check if there is a ftree t' € 7 suchast = t
(ftree isomorphim). If it is true, there is no need to count it
again. Note: ftree isomorphism can be computed in poly-
nomial time. However, when |7 | becomes large, the cost of
checking t = t for every t' € T can possibly become the
dominating cost of the whole mining algorithm.

IFI'.F

COMPUTER
SOCIETY

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006 IEEE



Figure 4. Equivalence classes of a ftree

Figure 3 shows a concrete example. The leftmost ftree
t is a frequent 7-ftree, where vertices are identified with a
unique number as vertex id. Since vertex 3 and vertex 5
of ¢ are both located in the extension frontier of ¢, we can
grow a vertex on either of them to generate a candidate ftree.
Growing a new vertex on vertex 3 of ¢ generates a candidate
8-ftree t' € 7T, shown in the middle of Figure 3. While
growing the same vertex on vertex 5 of ¢ generates another
candidate 8-ftree t”, shown on the right of Figure 3. Since
t" € T and t' = " in the sense of ftree isomorphism, the
candidate t” can be pruned for further frequency checking.

Base on the observation mentioned above, we need a way
to make it possible to grow from either vertex 3, or vertex
5 of ¢, but not both, without checking all candidate ftrees in
7, since | 7| may be large. We propose an automorphism-
based pruning technique in this section which efficiently
prunes redundant candidates in 7 while avoids checking if
a ftree has existed in 7 already, repetitively. Below, we
define an equivalence relation of ftree based on ftree auto-
morphism.

Definition 3. Two vertices, u and v, of a canonical ftree
safisfy an equivalence relation based on automorphism, if
and only if (1) uw and v are at the same level of the ftree,
(2) subtrees rooted from u and v are isomorphic, and (3)
u and v share the same parent or their parents hold the
equivalence relation.

It is easy to see that the equivalence relation based on
automorphism is reflexive, symmetric and transitive. An
equivalence class is a set of vertices of a ftree where every
two vertices of the same equivalence class hold the equiva-
lence relation in the ftree. All vertices in a given ftree can
be partitioned into different equivalence classes. Figure 4
shows how to partition vertices in a ftree (left tree) into four
equivalence-classes (right tree).

It is worth noting that during candidate generation, we
only need to grow vertices from one representative of an
equivalence class, if vertices of the equivalence class are in
the extension frontier of the ftree. In other words, given two
vertices u and v in a n-ftree, and assume that they are in the
extension-frontier and in the same equivalence-class. Any
(n+1)-ftree that grows from u is isomorphic to a (n+1)-
ftree that grows from v.

* a0
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Figure 5. Characteristics of the real dataset

3.3.2 Pruning Based on Canonical Mapping

Consider a frequent n-ftree t and a graph g; € D and sup-
pose that ¢ occurs k times in g;, where k& > 0. The min-
ing algorithms maintain mappings from ¢t to all its k oc-
currences in g;. Based on these mappings, it is possible to
know which labels, that appear in graph g;, can be selected
and assigned to generate a candidate (n+1)-ftree.

However, there are redundant mappings representing the
same occurrence of ¢t € g;, where g; € D, with regards to
automorphism of a free tree. Canonical mapping is a unique
mapping from ¢ to one of its occurrences in g;. After orient-
ing t to its canonical mapping in g; € D, we can select po-
tential labels from g; for candidate generation, while other
non-canonical mappings of ¢ are efficiently pruned which
facilitates the whole mining process dramatically.

3.4. Frequency Counting

Given a candidate frequent ftree ¢, the frequency count-
ing is to check whether o (¢, D) > ¢N (Eq. (1)). Ullmann’s
backtracking algorithm [15] or Mckay’s Nauty algorithm
[12] can be applied to tackle this NP-complete problem.
We design our frequency counting procedure based on Ull-
mann’s approach, but it combines the tree-in-graph testing
and candidate generation into one process, thus saving lots
of computation.

4. Performance Studies

In this section, we report a systematic performance study
that validates the effectiveness and efficiency of our algo-
rithm: F3TM. We use a real dataset in our experiments. We
implemented FT-Algorithm based on [2] and FG-Algorithm
based on [13] for comparison. All experiments were done
on a 3.4GHz Intel Pentium IV PC with 2GB main memory,
running MS Windows XP operating system. All algorithms
are implemented in C++ using the MS Visual Studio com-
piler.

The experiments use the antiviral screen dataset from
Developmental Theroapeutics Program in NCI/NIH!. This
2D structure dataset contains 42390 compounds retrieved
from DTP’s Drug Information System. There are total 63

Uhttp://dtp.nci.nih.gov/docs/aids/aids_data.html
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Figure 6. Performance comparisons

kinds of atoms in this dataset, most of which are C, H,
O, S, etc. Three kinds of bonds are popular in these com-
pounds: single-bond, double-bond and aromatic-bond. We
take atom types as vertex labels and bond types as edge la-
bels. On average, compounds in the dataset have 43 vertices
and 45 edges. The graph of maximum size has 221 vertices
and 234 edges. In the following experiments, n is denoted
as the size of frequent ftrees represented as vertex number.
N, the database size, and ¢, the minimum threshold.

We show the characteristics of the real dataset being
tested. First, we randomly generated a dataset with N =
1,000 graphs from the antiviral screen database, and show
the number of frequent ftrees that have a certain number of
vertices for a given minimum threshold ¢ in Figure 5 (a).
As shown in Figure 5 (a), most frequent ftrees have vertices
varying fromn = 5 to 15. While the number of small ftrees
(n < b5) and large ftrees (n > 15) is fairly small. Sec-
ond, we use the same randomly selected 1, 000 graphs, and
show how the number of frequent ftrees decreases while the
minimum threshold ¢ varies from 0.05 to 1 in Figure 5 (b).
Third, we fix ¢ = 0.1 and increase the number of graphs
sampled from the antiviral screen database, and show that
the number of frequent ftrees increases linearly with the size
of the graph database, when N increases up to 10, 000.

We examine the performance of our F3TM with FT-
Algorithm and FG-Algorithm, and report the findings in
Figure 6. In Figure 6, we increase the number of graphs,
sampled from the antiviral screen dataset, from 1,000 to
10, 000. Figure 6 (a), (b), and (c) show the performance of
the three algorithms with three different minimum thresh-
olds, ¢ = 0.1,0,2,0.5, respectively. All the three algo-
rithms scale linearly with the size of the graph database,
while F3TM outperforms FT-Algorithm and FG-Algorithm
by an order of magnitude in all experimental settings. These
experiments also confirm that F3TM can successfully han-
dle large real application data with a broad range of support
thresholds.

5. Conclusion

In this paper, we investigate the issue of mining fre-
quent free trees in a graph database. We proposed a novel
algorithm F3TM to discover all frequent free trees in a
graph database with the focus on reducing the cost for

candidate generation. We proved a theorem to guaran-
tee the completeness of frequent free trees discovered in
graph databases. We also proposed two pruning techniques,
automorphism-based pruning and pruning based on canon-
ical mapping. They are applied in candidate generation
to greatly facilitate the mining process. Our experimental
studies show that F3TM outperforms the up-to-date exist-
ing algorithms by an order of magnitude and it is scalable
to mine frequent free trees in a large graph database with a
low minimum support threshold.
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