
A Scalable Index for Top-k Subtree
Similarity Queries

Presented by: Aliza Subedi, Bishal Bashyal

<root>
 <item id="1">Hello</item>
 <item id="1">Hello</item>
 <item id="2">World</item>
 <item id="3">World</item>
 <item id="4">Print</item>
</root>

<item id="1">Hello</item>

Document T Query Q

Problem Statement

Top-3 ranking

2

Given a small tree Q and a number K, Find the K subtrees from the
document tree T which is most similar to Q.

Query Q Document T Subtrees Ti

1

3

Problem Statement

Tree Edit Distance

Minimum number of node edit operations that transform one tree to another.

Renaming node B and F

Deleting node F

Inserting node F

Tree Edit Distance

Minimum number of node edit operations that transform one tree to another.

Time Complexity: O(n^3) Space Complexity: O(n^2)

Renaming node B and F

Deleting node F

Inserting node F

Document Subtree (T) Query (Q)

Cost Estimate and Bounds

Label Lower Bound (llb):
 how many labels are not similar
 in both trees ?

 Size Lower Bound (slb):
 Absolute size difference
 between T and Q.

Query labels = {A, C, D, E, F}
Tree labels = {A, C, D, E, B}
LLB = 1 (since F is missing)

Document Subtree (T) Query (Q)

Cost Estimate and Bounds

Label Lower Bound (llb):
 how many labels are not similar
 in both trees ?

 Size Lower Bound (slb):
 Absolute size difference
 between T and Q.

Query labels = {A, C, D, E, F}
Tree labels = {A, C, D, E, B}
LLB = 1 (since F is missing)

Document Subtree (T) Query (Q)

Cost Estimate and Bounds

Label Lower Bound (llb):
 how many labels are not similar
 in both trees ?

 Size Lower Bound (slb):
 Absolute size difference
 between T and Q.

Number of Query nodes = 5
Number of Tree nodes = 5
SLB = 0 (size of both trees are same)

Tasm-Postorder Structure Search

Index Index-Free
method Index-based method

Querying Slow Fast

Memory Usage Low HIgh (quadratic)

Index Updates - No

State of the Art Methods

Bounding Condition

Avoids unnecessary Tree Edit Distance calculations by eliminating subtrees early if they
cannot match the query within the allowed edit distance.

LowerBound(Q, Tᵢ) ≥ δ(R′[k])

Inverted Index

(b) Inverted List index of T(a) Example of Query Tree (Q) and Document Tree (T)

MergeAll ALgorithm
Start from the S0 stripe whith SLB = 0 (possible
top ranking).

Compute llb(Q,Ti) aand if llb(Q,Ti) != slb(Q,Ti),
cache that Ti to a bucket b[j] where j is the
stripe number.

If llb = slb, compute TED and update the
ranking list.

When evaluating a new stripe, evaluate
bucket b[j] first.

As processing continues, check if |R| = k and
 j >= δ (R [k]) for terminating the filtering process.

Cone Filtering
Mergeall could be inefficient by processing
large partitions within a stripe.

Cone Accesses short, sorted lists first, often
terminating before reaching large partitions.
Processes only a subset of partitions unlike
mergeall.

Uses min = |Q| − B , max = |Q| + B − nml (Ti)
values in each round.

Terminates if |R| = k and B >= δ (R [k]).

Quadratic Space Complexity.

Slim Inverted list

SlimCone
Algorithm

Reconstruct subtrees on the fly by unveiling.

Round Based with B=0, and increases in each
round.

Generate possible candidates by calculating
llb(Q,Ti).

If(llb(Q,Ti) = B), evauate TED, else cache.

Check if |R| = k ∧ B ≥ δ (R[k] for terminating
filtering algorithm.

Works with a Linear space (slim) index.

Implements sliminvertedlist as a Binary Search
tree to support index updates.

Supporting Updates
Dynamic Node Index
 Each node entry contains:

lbl: The node’s label (e.g., a,b,x a, b, x a,b,x).

size: The size of the subtree rooted at the node.

par: The parent node’s identifier.

c1: The identifier of the first child.

sib: The identifier of the next (right) sibling.

No need to reconstruct the entire index.

Comparision

Space-efficient
index (linear size)

Faster Index Build

Supports dynamic
updates

S L I M C O N E -
D Y N

S L I M C O N EC O N EM E R G E A L L

Handles large datasets
efficiently

Datasets

Xmark dataset, |Q| =16, K=10 |Q| =16, K=10

Efficient

Linear Space indexing

Scalable

Updatable

Slimcone

Conclusion
Proposed a scalable and novel solution for top-k subtree similarity query retrieval.

Presented baseline algorithm, Mergeall and cone and builds slim on top of it.

Introduced slim index reducing memory complexity from quadratic to linear.

Extended Slimcone to Slim-Dyn for dynamic document updates.

Validated performance through extensive evaluation on synthetic and real-world
datasets.

Thank you!

