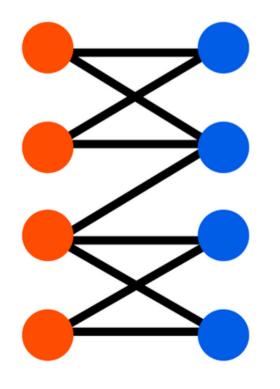
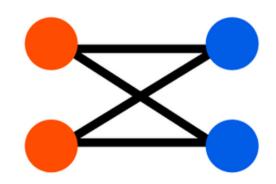
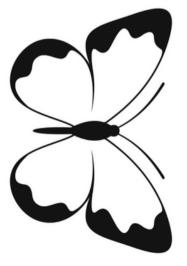

BUTTERFLY COUNTING ON UNCERTAIN BIPARTITE GRAPHS

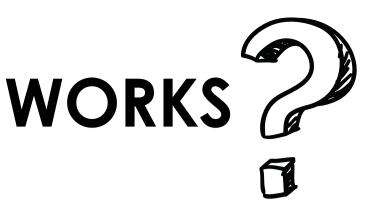
Authors: Alexander Zhou, Yue Wang, Lei Chen Presented by: Rasheeq Ishmam (RI24C) Date: April 22, 2025


WHAT IS A BIPARTITE GRAPHS?


- Bipartite Graph consists of two sets of **nodes**: Set L and Set R
- Edges only connect nodes between these two sets. No edges within the same set.

WHAT IS A BUTTERFLY


- A **butterfly** is a subgraph of the bipartite graph.
- A butterfly consist of 4 node with 4 edges structure in a bipartite graph
- It's a **2x2 biclique**, meaning 2 nodes from Set L are connected to 2 nodes from Set R.
- Represent clustering/cohesion between nodes in the graph.



pipartite graph nected to 2 nodes from Set R. raph

HOW DOES BUTTERFLY WORKS

- Person 1 and Person 2 purchased same Jacket
- Person 1 also purchased a pair of shoe
- The that pair of shoe can be advertise to person 2

PROBLEM STATEMENT

• **Objective:** Efficiently count uncertain butterflies in a bipartite graph with uncertain edges (edges with probabilities of existence).

• Challenges:

- \circ How to count butterfly subgraphs in graphs with uncertain edges.
- How can we take only edges that meet a certain **threshold t** are considered for butterfly counting. The **threshold t** allows us to focus on more reliable edges and ignore those with low probability.
- How can we make it memory efficient.

BASELINE SOLUTION

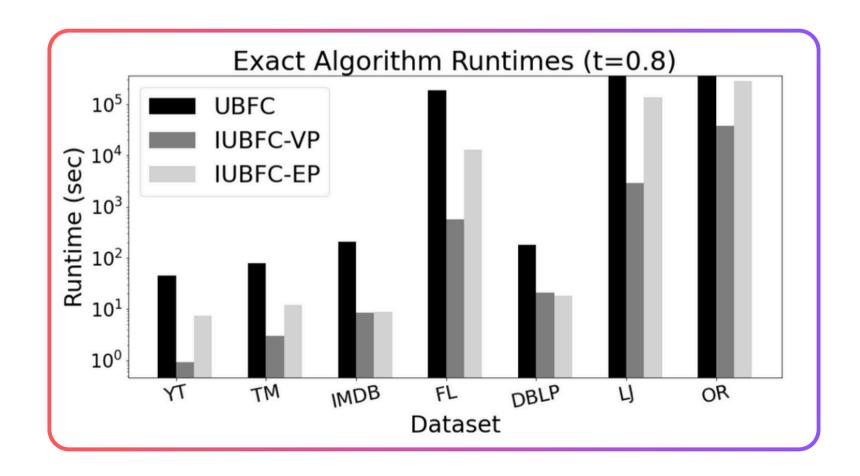
- The baseline Solution is **Uncertain Butterfly Counting (UBFC)**
- UBFC focuses on removing edges in the bipartite graph that have uncertain existence
 - Edges with **Probability ≥ Threshold** are considered existing and valid for butterfly counting.
 - Edges with Probability < Threshold are pruned</p> (removed).
- Wedge counting are done in a brute-force manner
- Combining these wedges to form butterflies count.

	Algorithm 1: UBFC								
1		Input : <i>G</i> : Input Uncertain Bipartite Network							
ג		t: Uncertainty Threshold							
	Output : C_t : Uncertain Butterfly Count								
	1 $W_1 \leftarrow \text{Extract Backbone Graph};$								
	² Sort $N(u)$ of each $u \in V_{W_1}$ by vertex priority;								
	3	$C_t \leftarrow 0;$							
	4 foreach $u \in V_{W_1}$ do								
	5	Create $H(w)$ for each Node w in same partition as							
	6	foreach $v \in N(u) : p(v) < p(u)$ do							
	7	foreach $w \in N(v) : p(w) < p(u)$ do							
	8	H(w).append(v);							
	9	foreach Node $w : H(w) > 1$ do							
	10	foreach Nodes $v_1, v_2 \in H(w), v_1 \neq v_2$ do							
	11	if $Pr(B(u, w, v_1, v_2)) > t$ then							
	12	$C_t \leftarrow C_t + 1;$							

PROPOSED SOLUTION

- The proposed Solution is **Improved Uncertain Butterfly Counting (IUBFC)**
- Counts uncertain butterflies by processing pruned edges and wedges.
- Steps:
 - Edge Pruning: Remove edges with a probability less than threshold t
 - Wedge Counting: For each node, count the wedges that a form butterflies using binary search.
 - Vertex Priority: Prioritize nodes based on their importance optimize butterfly counting.
 - Butterfly Counting: Combine valid wedges to count uncert butterflies in the graph.

	Algorithm 3: IUBFC							
	Input : G: Input Uncertain Bipartite Network							
	t: Uncertainty Threshold							
	Output : C_t : Uncertain Butterfly Count							
can	1 $W_1 \leftarrow \text{Extract Backbone Graph};$							
	2 RemoveUnusableEdges(W ₁ , t);							
	³ Sort $N(u)$ of each $u \in V_{W_1}$ by vertex priority;							
	4 $C_t \leftarrow 0;$							
to	5 foreach $u \in V_{W_1}$ do							
10	6 Create $H(w)$ for each Node w in same partition as u ;							
	for each $v \in N(u) : p(v) < p(u)$ do							
	8 foreach $w \in N(v) : p(w) < p(u)$ do							
tain	9 if $Pr(\angle(u,v,w)) \ge t$ then							
tain	10 $H(w).sortedInsert(Pr(\angle(u,v,w)));$							
	11 foreach $w : H(w) > 1$ do							
	12 $C_t \leftarrow C_t + ImprovedListCount(H(w), t);$							

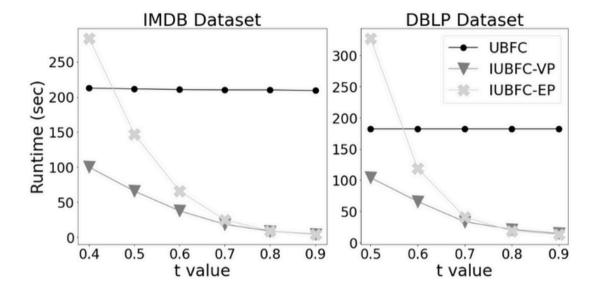

DATASET

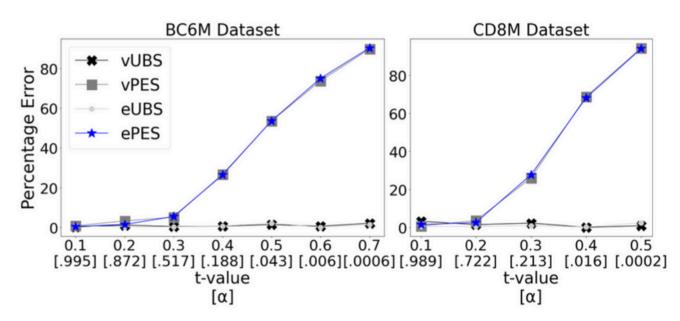
- In this research, several real-world datasets is used to evaluate the IUBFC algorithm
- Dataset:

Dataset	Edge Prob.	L	R	E	AvgDeg
YouTube (YT)	Uniform	94,238	30,087	293,360	4.719
Teams (TM)	Normal(0.8, 0.2)	901,166	34,461	1,366,466	2.921
IMDB	Normal(0.6, 0.3)	303,617	896,302	3,782,463	6.229
Flickr (FL)	Uniform	395,979	103,631	8,545,307	34.208
DBLP	Normal((0.7, 0.1)	1,953,085	5,624,219	12,282,059	3.241
LiveJournal (LJ)	Normal(0.5, 0.2)	3,201,203	7,489,073	112,307,385	21.011
Orkut (OR)	Normal(0.5, 0.25)	2,783,196	8,730,857	327,037,487	56.807
CiaoDVD (CD)	Collaborative Filtering	21,019	71,633	*	*
BookCrossing (BC)	Collaborative Filtering	77,802	185,955	*	*

RESULT

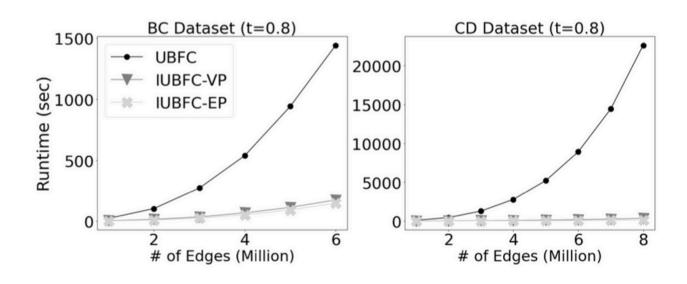
- Evaluation Metrics:
 - **Runtime:** The total time taken by the algorithm to compute the uncertain butterfly count for each dataset.
 - Uncertain Butterfly Count: The number of uncertain butterflies identified by the algorithm
 - Margin of Error: Sampling-based algorithms like UBS and PES were used to to quantify the accuracy
 - Memory Usage: The amount of memory consumed by the algorithm during computation



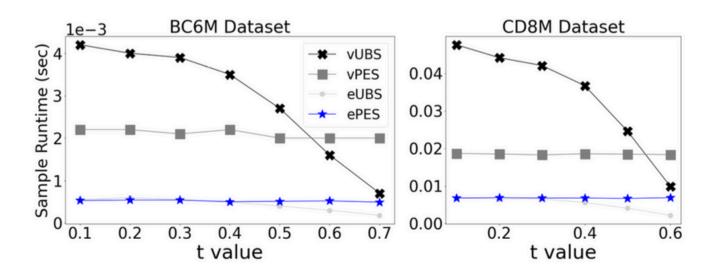

RESULT

• Runtime vs Threshold t :

• threshold t increases, the runtime decreases



• Percentage of Error :



• Number of edges increase :

• Improved algorithm is more stable compared to UBFC

• Runtime per sample as the threshold value *t* changes:

• The error increases as the threshold t increases

• ePES is more stability in terms of both runtime and accuracy

IMPLEMENTATION

• Implementation Result on IMDB Dataset:

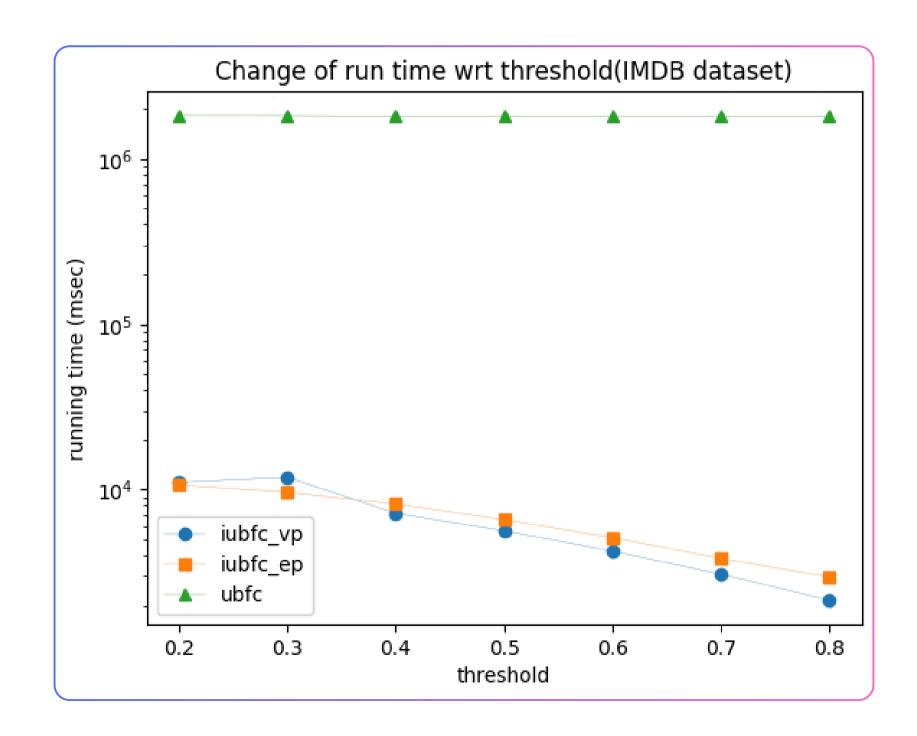
UBFC:

IMDB Dataset:

Total Nodes: 1199919 Edges: 3782463

t : 0.4||Number of Uncertain Butterflies: 348028||Runtime: 1816567 ms t : 0.6||Number of Uncertain Butterflies: 20051||Runtime: 309554 ms t : 0.7||Number of Uncertain Butterflies: 5295||Runtime: 311195 ms t : 0.7||Number of Uncertain Butterflies: 5295||Runtime: 311195 ms

IUBFC:


IMDB Dataset:

Total Nodes: 1199919 Edges: 3782463 Edges: 3782463 Edges: 3782463 Edges: 3782463 Edges: 3782463 Edges: 3782463 Edges: 3782463

The number of edges satisfying the threshold: 3497950 t : 0.2||Number of Uncertain Butterflies: 831655||Runtime: 11036 ms The number of edges satisfying the threshold: 3209475 t : 0.3||Number of Uncertain Butterflies: 215315||Runtime: 11851 ms The number of edges satisfying the threshold: 2808827 t : 0.4||Number of Uncertain Butterflies: 59888||Runtime: 7185 ms The number of edges satisfying the threshold: 2308787 t : 0.5||Number of Uncertain Butterflies: 17175||Runtime: 5627 ms The number of edges satisfying the threshold: 1752095 t : 0.6||Number of Uncertain Butterflies: 4928||Runtime: 4247 ms The number of edges satisfying the threshold: 1193441 t : 0.7||Number of Uncertain Butterflies: 1205||Runtime: 3079 ms The number of edges satisfying the threshold: 692348 t : 0.8||Number of Uncertain Butterflies: 235||Runtime: 2150 ms

IMPLEMENTATION

• Runtime vs Threshold plot on IMDB Dataset:

THANK YOU!

