
High Performance Block I/O for Global File System (GFS) with InfiniBand
RDMA ∗

Shuang Liang Weikuan Yu Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{liangs,yuw,panda}@cse.ohio-state.edu

Abstract

State-of-the-art network technology has scaled to
10Gbps. However, TCP’s high processing overhead and re-
dundant data copies remain a major bottleneck for applica-
tions to fully benefit from such high speed technology. Re-
mote Direct Memory Access (RDMA), as an emerging com-
munication protocol, provides an opportunity for efficient
storage system design by virtue of RDMA’s none data touch-
ing semantics. Although RDMA based designs have been
proposed to improve network file I/O protocols in several
previous works, its benefit for cluster file system block I/O is
not clear yet. We propose a novel technique – “buffer man-
agement delegation”, which offloads message buffer man-
agement to remote communication party. Using this tech-
nique, we design our zero copy RDMA based block trans-
fer scheme for GNBD, a block access protocol of Red Hat
Global File System, to optimize cluster file system perfor-
mance over 10Gbps InfiniBand network. We evaluate this
new scheme with our copy based scheme as well as TCP
over the same InfiniBand hardware. The evaluation quan-
tifies the redundant copy impact for both bulk data trans-
fer and file system meta-data operations. The results using
open source file system benchmarks and widely used sys-
tem utilities show that our implementation improves GFS
performance up to47% compared with copy based scheme,
and up to136% compared with TCP.

∗This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506 and NSF Grants #CNS-0403342 and #CNS-
0509452; grants from Intel, Mellanox, Cisco Systems and Sun Microsys-
tems; and equipment donations from Intel, Mellanox, AMD, Apple, Ap-
pro, Microway, PathScale, IBM, Silverstorm and Sun Microsystems.

1 Introduction

As current technology trend evolves, computing sys-
tem applications continue to be more data intensive than
ever, rendering the throughput of storage systems increas-
ingly important. For enterprise level data management, a
shared storage model is usually used, where data is resi-
dent on a storage server or a cluster on a local area network
and clients access data using file or block based protocols.
These high end storage servers are usually equipped with
large caches of several or even tens of gigabytes [5, 24].
Therefore, moving data efficiently across network intercon-
nects becomes an important issue.

Today network technology has scaled rapidly to provide
1Gbps data rate for consumer network interface products,
and 10Gbps products are emerging. Being able to utilize
this abundant bandwidth would provide an exciting perfor-
mance boost for storage systems. However, several stud-
ies [23, 3, 6, 18, 27, 19] have shown that TCP/IP protocol
cannot fully utilize the bandwidth of high speed network.
Its checksum processing and data copy contribute a lot to
the per-byte overhead, leaving high performance network
under-utilized especially for large data movement.

The Remote Direct Memory Access (RDMA) proto-
col [16] provides an opportunity for scalable network based
storage system design. RDMA is widely used in high per-
formance parallel computing area for inter-node communi-
cation. In the RDMA communication model, the sender
can specify a memory location in remote communication
party’s address space and present a remote access key;
then the underlying transport is responsible for placing the
messages with no extra copies during the protocol stack
processing. This elimination of unnecessary intermediate
copies promises potential for system performance improve-
ment, as it decreases the per byte overhead for data move-
ment as well as CPU utilization and processor cache pollu-
tion. Together with OS bypass [22], high performance in-

1



terconnects such as InfiniBand [8], have been able to scale
up to 10Gbps for memory to memory bandwidth.

While RDMA is widely used in high end parallel com-
puting, the direct placement feature of RDMA fits well with
storage servers, where data blocks are meant to be trans-
fer instead of being touched. Several recent works [28, 12,
3, 11] have studied the benefits of using RDMA capable
VIA [7] communication to improve database storage and
file I/O protocols for Gigabit networks.

In this paper, we investigate the design issues of RDMA
based network block I/O with 10-Gigabit InfiniBand Re-
liable Connection (RC) transport for Red Hat Global File
System (GFS), a shared storage cluster file system. The
motivation of our work is twofold. First, previous works on
Gigabit networks were based on network technology signif-
icantly slower than memory speed. As the speed of 10Gbps
network approaches current memory bandwidth, the impact
of RDMA and zero copy on block I/O is not clear yet. Sec-
ond, previous works focused on improving file I/O perfor-
mance. However, block I/O is different from file I/O in that
block I/O request demands data in multiples of block size,
while file I/O request length varies depending on the pro-
tocol. In addition, file protocols sit one layer above block
protocols, thus introducing network I/O at different service
layer has different caching implications.

The main contributions of this paper are as follows.

1. We proposebuffer management delegation, which of-
floads registered buffer management to GNBD client
and eliminates extra control message overhead for our
client-initiated RDMA data transfer scheme.

2. We design the block I/O transport for Red Hat GFS
with InfiniBand RDMA support. Our experiments
show that our implementation improves performance
up to 136% and 70% for bulk data transfers and
management operations respectively, when comparing
with TCP over the same InfiniBand hardware.

3. Our experimental results indicate that for kernel based
file system, the OS/FS management constraints the uti-
lization of high performance networks, whose band-
width is approaching current memory speed. Although
the performance impact of redundant copies in the
communication stack to block I/O is considerable, op-
timization of data copy reduction alone can not guar-
antee file system performance scalability to 10Gbps.

The rest of the paper is organized as follows: Section 2
provides background and related work; Section 3 discusses
the design issues of RDMA based block I/O; Section 4
presents our design for GFS/GNBD; Section 5 illustrates
the evaluation results; finally, we conclude the paper in Sec-
tion 6.

2 Background and Related Work

Clustering is an important architecture in today’s com-
puting environment. On the Top500 list, more than70%
systems are cluster based supercomputers; it is also widely
used in enterprises and research institutions for its good
cost/performance ratio. Therefore, it is desirable to pro-
vide efficient data sharing services for cluster nodes. Global
File System (GFS) [20] is a shared storage cluster file sys-
tem, which provides consistent data access for each node.
Although a lot of modern cluster systems are equipped
with high performance interconnects such as Quadrics [14],
Myrinet [2], and InfiniBand [8], currently GFS only sup-
ports TCP based communication. With IP emulations, TCP
protocol can be used directly on these interconnects; how-
ever, it does not take full advantage of the RDMA seman-
tics supported by the native communication protocol. By
designing InfiniBand RDMA based block I/O protocol for
GFS, we can quantify the data copy effects and TCP pro-
cessing overhead over the same hardware. In this section,
we first provide an overview of GFS and InfiniBand tech-
nology; then we present a summary of related work.

2.1 Global File System (GFS)

Red Hat GFS [17] is an open source project. It supports
consistent file access through locking protocol on a shared
storage environment such as Storage Area Network (SAN),
where block I/O protocol commutes across a system area
network. Two different block access protocols are designed
with GFS for different hardware configurations. As shown
in Figure 1, one is SCSI with direct attached SAN Fabric,
the other is Global Network Block Device (GNBD) for re-
mote storage access.

Figure 1. GFS Configurations

Currently, the direct attached SAN configuration re-
quires hardware support, such as Fiber Channel switch and
storage controller, which is still an expensive solution com-
pared with InfiniBand. The GNBD solution provides a more
general and cost effective way for shared storage access us-

2



ing a server node to perform similar functions as a SCSI
target.

GNBD server is a user-land program. It processes block
I/O requests from GNBD clients and serves data blocks.
GNBD client is a pseudo block device acting as a SCSI
initiator, which passes block I/O requests from the ker-
nel based GFS and communicate with GNBD server over
TCP/IP. In this paper, we use GNBD as the subject for
RDMA based block I/O design and evaluation, for the rela-
tive cost efficiency of GNBD solution.

2.2 InfiniBand

InfiniBand [8] is an emerging open standard high per-
formance interconnect, featuring low latency of a few mi-
croseconds and bandwidth up to 10Gbps with current gen-
eration of implementation. It is deployed on several large
clusters on the Top500 list and is rapidly picking up as a
cluster interconnect in the market. Several levels of Quality
of Service (QoS) are supported in InfiniBand. The Reliable
Connection (RC) service guarantees reliable transport and
supports RDMA in hardware.

�

���

���

���

���

���

���

���

	��


��

� �

�
�

�
�

�
�
�

�
�
�
�

�
�


�

�
�
�
	
�

�
�
�
�
�

��
��

�
�
��

���������

���������

�

���

���

���

���

���

���

���

	��


��

� �

�
�

�
�

�
�
�

�
�
�
�

�
�


�

�
�
�
	
�

�
�
�
�
�

��
��

�
��
��
�
�
�
�
�
�

(a) Bandwidth (b) Latency

Figure 2. InfiniBand Gen2 Verb and TCP/IPoIB
Stack Performance Comparison

InfiniBand kernel space software stack recently has been
incorporated into the Linux kernel distribution. Several
transport interfaces are supported with different perfor-
mance and compatibility features. The Verb based API is
the native communication software interface with almost
raw performance, which provides both memory semantics
interface, such as RDMA read and RDMA write, and nor-
mal channel semantics interface such as send/recv. IPoIB is
an IP emulation for InfiniBand, legacy IP based application
can run over InfiniBand without any modification. Figure
2 shows the user level memory to memory bandwidth on
IA-32 PCI-X based systems for Verb API and TCP/IPoIB.

2.3 Related Work

In this paper, we investigate the design issues of RDMA
based block I/O for GNBD using InfiniBand. The related

work falls into two categories: networked storage protocol
and InfiniBand based design.

Networked Storage Protocol: Shrimp [1], U-net [22]
and VIA [7] are representative works for user-level net-
work communication architecture for high speed network
devices. They motivate follow-up works on user-level net-
work based research. DAFS [12, 11] proposed a user space
network file system client to take advantage of high per-
formance user-level network. Unlike DAFS, NFSv4 over
RDMA [3] proposed to use RDMA for NFS’s kernel based
RPC transport. However, both work are high performance
network optimizations for file I/O protocols with Gigabit
VIA based network. In addition, Zhou et al. [28] stud-
ied different Direct Storage Access (DSA) implementations
with VIA for database storage; Carrera et al. [4] evalu-
ated user-level communication features including RDMA
for cluster based WWW server.

Sarkar et al. [19] evaluated storage protocols using soft-
ware approach, as well as two hardware approaches: TOE
and HBA, where the former offload TCP/IP processing to
the network interface and the latter offload the whole stor-
age protocol. Radkov et al. [15] compared the perfor-
mance between NFS and iSCSI for IP networked storage
and showed iSCSI based storage protocol’s performance
benefits from its better aggregation and caching capability.
Both works target for IP based network storage.

A recent industry effort proposed iSER and SRP [21],
which define SCSI transport over RDMA. But these work
are still in prototyping stage. And in this paper, we propose
different RDMA schemes for GNBD compared with these
efforts.

InfiniBand Based Design: MVAPICH [10] is an
RDMA based MPI implementation over InfiniBand. Wu
et al. [26] designed an InfiniBand based transport for Paral-
lel Virtual File System (PVFS). Recently, Liang et al. [9]
proposed to use InfiniBand RDMA based network block
device for remote swapping, where a copy based RDMA
transfer scheme was designed. In this paper, we extend that
work with a novel zero copy based RDMA design and in-
tegrate both designs in GFS for performance study with file
system benchmarks, which quantifies TCP/IP’s processing
overhead and the data copy impact on InfiniBand RDMA
transport for shared storage file system block I/O.

3 Issues for RDMA based Block I/O

Block I/O is different from file I/O in terms of the size
of an I/O request. File I/O requests can be any number of
bytes defined by the file system protocol, while block I/O
requests always demand data in units of multiple blocks
(typical block sizes are 4K or 8K). Operating system or-
ganizes the block buffers and pass them to the appropriate
block devices for actual I/O transfer. The aggregate nature

3



of block I/O allows it to benefit from network bandwidth by
larger data transfers. To optimize block I/O with RDMA,
it is beneficial to further combine multiple blocks adjacent
in memory and use hardware supported scatter/gather I/O
to reduce the number of request messages. In addition,
RDMA requires special message buffers and different trans-
fer schemes can have different performance implications. In
the section, we discuss these design issues.

3.1 Message Buffer Registration

To achieve zero copy RDMA, high performance inter-
connects depend on Network Interface (NI) aware DMA-
able message buffers. Thus, message buffers must be reg-
istered with the NI before any transfer. The registration
makes sure that the buffers are locked in memory. It also
creates an address translation entry for the NI to address
these buffers.

��

���

���

���

���

����

����

� � �� �� ��
�

��
��

��
	�

��

�
�

��
�

�

��
���������

�
�
��
�
�
��
�
�

��������������

 ����������

Figure 3. Buffer Registration vs. Message La-
tency

Memory registration operation is a costly operation. Fig-
ure 3 shows the ratio of memory registration overhead over
the message latency for different message sizes. To min-
imize this impact, several solutions such as pre-registered
buffer pool, Fast Memory Registration (FMR) [26], and reg-
istration cache have been proposed with various trade-offs.

To reduce registration cost for user space message
buffers, an interesting observation is that block I/O buffers
are locked down in kernel space. For InfiniBand stack,
physical memory descriptor can be utilized to avoid expen-
sive on-the-fly registration, if unrestricted RDMA opera-
tions to this node can be effectively managed to prevent re-
mote party from corrupting irrelevant memory regions. One
simple solution is to avoid being the passive side of RDMA
operations; the other one is to use memory windows, which
allow dynamic memory access control on registered buffers.

3.2 RDMA Transfer Alternatives

Several RDMA transfer schemes are possible for block
I/O. Based on the active side of the operation, they can be
classified into: (i) Target based RDMA, (ii) Initiator Based
RDMA, and (iii) Hybrid RDMA.

Target Based RDMA: As illustrated in Figure 4(a), ini-
tiator sends block I/O requests to remote target. For block
read requests, the target prepares the blocks and RDMA
writes the blocks back to the initiator followed by a reply
message. For block write requests, the target obtains the
blocks using RDMA read from the initiator and sends a re-
ply message for acknowledgment.

In this scheme, the target needs to cope with both re-
quest/reply control messages and RDMA based data trans-
fer processing, while the initiator needs to send the exposed
block buffer addresses to the target in the requests. This
transfer scheme is used in iSCSI/iSER and SRP protocol.

Initiator Based RDMA: As illustrated in Figure 4(b), the
target offloads the RDMA transfer processing to the initia-
tor by sending the target side RDMA buffer address in the
reply. Extra control messages are required for completion
notification to the target for resource management. To re-
duce the overhead, completion acknowledgment can be pig-
gybacked with the next request when appropriate.

Hybrid RDMA: The above two schemes use RDMA
read and RDMA write for data transfer. A potential problem
with such schemes is that RDMA read is a round trip oper-
ation involving higher latencies. More importantly, RDMA
read may not follow the ordering rules according to Infini-
Band specification and can complete out of order with re-
spect to later send or RDMA write operations.

Assuming initiator knows the remote message buffer ad-
dress beforehand, a hybrid scheme can be used. Thus both
sides use only RDMA write for data transfer, as illustrated
in Figure 4(c). The assumption here seems strong, but it is
achievable and can be implemented with a technique called
Management Delegation (MD). More details are described
in Section 4.1.

3.3 Scatter/Gather I/O and RDMA

InfiniBand scatter/gather operation allows non-
contiguous message buffers to be posted in a single
operation, thus reducing bus transactions and additional
overhead needed for multiple message processing. The
benefit of scatter/gather I/O for PVFS file I/O is studied
in [25]. For block I/O, even a single request may be
composed of multiple blocks that reside in non-contiguous

4



(a) Target Based RDMA (b) Initiator Based RDMA (c) Hybrid

Figure 4. RDMA Transfer Schemes

memory. Aggregating them in a single message posting
transaction promises further performance improvements.

However, InfiniBand architecture has one constraint for
RDMA based scatter/gather I/O: non-contiguous message
buffers can only be on the active side of RDMA operation;
that is, it only supports gather for RDMA write and scatter
for RDMA read. But it is possible that both sides have the
block buffers in non-contiguous memory, especially on the
initiator side, where the file system blocks in kernel buffer
cache are getting fragmented over time. So the trade-off
here is either we can reduce the message number by a copy
to a contiguous buffer or use separate messages for each
non-contiguous buffer. One optimization applicable before
using either of the above techniques is to do block aggrega-
tion, which combines block chunks adjacent to each other
into a single chunk to minimize overhead in both cases.

4 The Design of GFS/GNBD

In Section 3, we discussed major issues for RDMA based
block I/O. In this section, we present our design choices for
GFS/GNBD implementation. Based on the software archi-
tecture of GNBD protocol and InfiniBand performance fea-
tures, we propose our new zero copy RDMA based block
I/O scheme and discuss related issues such as message or-
dering, memory management, and flow control.

4.1 Zero Copy RDMA with Buffer Management
Delegation

Three RDMA transfer schemes are possible, as dis-
cussed in Section 3.2. Although the server based RDMA
is adopted in current proposals for SRP and iSCSI/iSER,
it has its limitations for GNBD design. First, to achieve
zero copy RDMA for the GNBD client under such scheme,
the client has to send a list of scatter/gather entries to the
server, which may potentially be very long. Second, for
block reads, the server may end up with multiple RDMA

write operations for a single request if the blocks are non-
contiguous. Third, to avoid memory registration, controlled
memory access has to be dealt with.

To avoid the problems discussed above, we propose to
use client based RDMA design with a technique called
server buffer management delegation(MD) to achieve zero
copy. With MD, the server allocates a block buffer pool
exclusively for each client and delegates the management
of the buffer to the client, so the client can issue RDMA
operations immediately to the server without extra message
exchanges for address information. This technique enables
the implementation of a hybrid design, as discussed in Sec-
tion 3.2. However, due to RDMA write’s inability of scat-
ter operations and performance features of the InfiniBand
hardware, we choose to use RDMA read for block read op-
erations as shown in Figure 5. With such a design, the
client remains safe from exposing its physical memory ad-
dress space. At the same time, the server is safe from client
failures by the exclusiveness of these buffers.

Figure 5. Management Delegation based
RDMA Scheme

4.2 Handling Request Ordering

Although InfiniBand RC service is a reliable connection
service, request ordering needs to be handled when both

5



RDMA read and RDMA write operations are used. Ac-
cording to InfiniBand specification, RDMA read operation
does not preserve the normal ordering semantics as send
and RDMA write. In particular, RDMA read may complete
after later send/RDMA write completes due to its round trip
nature, though multiple RDMA read operations are ensured
to maintain ordering among themselves. Therefore, our de-
sign needs to address this problem to maintain ordering con-
straints that block I/O requires.

In our design, a simple algorithm is used to fence
send/RDMA write requests immediately following the
RDMA read to maintain proper ordering. A fence flag is
used to notify send or RDMA write operations if there is
an outstanding RDMA read. When the following order-
preserving operation arrives, the flag is canceled. Then
when a RDMA read request completes, it checks if it is still
the owner of the flag it has set. If the result is positive, the
flag is canceled. Our experiments show that the impact of
fencing on performance is negligible.

4.3 Memory Management and Flow Control

In GNBD protocol, two types of messages are involved:
control messageanddata block message. Control messages
are small messages of fixed length holding request and re-
ply information implemented using normal send/recv se-
mantics. Data messages are actual blocks from/to storage
systems with variable length implemented using RDMA se-
mantics. Although the GNBD client can avoid managing
data buffers for block I/O transfer with pre-registered phys-
ical address space, it still needs to manage the delegated
buffer pool from the server. In addition, the server also
needs registered buffer for control messages.

In face of the high registration cost for InfiniBand com-
munication, we choose to use pre-registered buffer pools
for the server. For control messages, a static ring buffer is
implemented; and for data messages, a first fit algorithm is
implemented to manage buffers dynamically. On the client,
we use the same ring buffer management mechanism for
control message buffer. Although it is possible to use dy-
namic memory management interface provided by kernel,
the simple ring buffer scheme is more efficient.

For client/server based service, the server always needs
to deal with unexpected requests from clients with limited
resources, thus flow control must be considered. In partic-
ular, for InfiniBand RC transport, receive buffers for send
operations are expected to be pre-posted.

In our current implementation, we use a similar water-
mark based flow control scheme as in [9]. We tune the
threshold to over-provision the credits, thus excluding the
performance impact in our experiments. Although the cur-
rent scheme is static, a dynamic scheme with client/server
negotiation and on-line adjustment is certainly possible

within the design framework. More issues such as fairness
among multiple clients, strategies for bandwidth allocation
deserve further discussion, which are out of the scope of
this paper.

5 Evaluation

To evaluate the impact of RDMA transport on GFS, we
compare our zero copy based RDMA scheme with TCP
over IPoIB, an IP emulation on the same InfiniBand hard-
ware. We also implement a server based buffer copy RDMA
scheme for GNBD to quantify the data copy impact. In this
section, we present the experimental performance results.

5.1 Experiment Setup

The experiments are conducted on an Intel Xeon 2.4GHz
cluster. Each node has 1GB memory and 64 bit PCI-X 133
MHz bus. All nodes are connected to InfiniBand network
using InfiniScale MT43132 eight port switch and Mellanox
MT23108 HCA. One node is set up as the GNBD server,
which exposes the direct attached hard disk as block device.
The operating system is Linux with OpenIB 2.6.9-11 kernel.
The OpenIB [13] user-space utility is SVN revision 4507.

The workload in our experiment ensures that most of the
GNBD server I/O happens within the buffer cache. This
simulates the case of storage servers with large cache and
high storage I/O bandwidth of several hundred Megabytes.
We create GFS file system using the default4K block size.
Multiple runs are conducted for each test; and the average
performance numbers are reported.

Several open source file system benchmarks and system
utility are used for our evaluation:

IOZone is a file system benchmark, which tests a variety
of file operations such as read/re-read, write/re-write with
different I/O mode. We use it for file read/write bandwidth
test under different modes.

Fileop stresses file system meta-data operations such as
link, unlink, create, and delete.

Postmark is designed to measure the transaction rate
for a pool of small files. Each transaction is either a
read/append pair or create/delete pair. It creates a workload
similar to Internet email server.

Tar is a widely used utility program to pack/unpack small
files. A lot of file operations are involved using this tool.

In the following, we refer to our zero copy based RDMA
scheme asIB Zcopy, refer to server based buffer copy
RDMA scheme asIB Bcopy, and refer to TCP over IPoIB
asIPoIB.

6



5.2 Results

IOZone Write Bandwidth: In Figure 6, we show write
bandwidth test results with 128M files using three different
modes. In “buffer write” mode, data is written back to the
file system buffer cache with dirty block flushing happening
in background asynchronously. In “flush write” mode, dirty
block flushing from buffer cache happens synchronously
within the benchmark timing. In “direct write” mode, file
system buffer cache is bypassed and data is flushed directly
to remote server; however, in this mode the benchmark re-
ports blocking I/O interface results, which only allows one
I/O system call outstanding.

�

��

���

���

���

���

���

���

���

��		
��
���
 ������
���
 ���
���
���


�
�
��

��������

��������

�����

Figure 6. IOZone Write

The numbers shown in Figure 6 reveal that using TCP
as block I/O transport for GFS cannot provide satisfac-
tory performance. As shown by the performance differ-
ence between IPoIB and IB Bcopy scheme, IB Bcopy
performs up to65% better than TCP/IPoIB among these
three modes. This indicates that the processing overhead
other than data copy contributes significantly to the network
under-utilization problem for 10Gbps interconnect. For IB
Bcopy, protocol offloading to InfiniBand hardware reduces
such influence.

Comparing the performance of IB Zcopy and IB Bcopy,
we see that data copy degrades the bandwidth by up to
47% among these cases. The impact is both on latency and
CPU utilization. In “direct mode”, the main latency im-
pact causes IB Zcopy to perform17% better than IB Bcopy.
In “buffer write” mode and “flush write” mode, where the
background flushing thread (performingwrite behind) com-
petes CPU with the main thread, IB Zcopy performs36%
and47% better than IB Bcopy respectively. This indicates
the data copy’s CPU utilization impact on performance is
more significant.

IOZone Read Bandwidth: Figure 7 shows the read per-
formance with 128M files. In “buffer read” mode, data is

read from buffer cache with processor cache effects on. In
“purge read” mode, data is read from buffer cache with pro-
cessor cache effects for the target data buffer off. In “direct
read” mode, reading bypasses buffer cache and data is de-
livered from remote server directly.

�

���

����

����

����

����

�����	
���
 ��	��
���
 ��	���
���


�
�
��

��
�����

��
�����

�����

Figure 7. IOZone Read

Compared with the write results, the performance dif-
ference among IB Zcopy, IB Bcopy and TCP is minor be-
cause in the first two test modes most operations happen
locally. The difference between “buffer read” and “purge
read” exhibits the processor cache effects, which is as large
as165%. However in “dircet read” mode, TCP’s high pro-
cessing overhead repeats itself, where our IB Zcopy scheme
is 87% better. For IB Zcopy and IB Bcopy, the copy elimi-
nation improves performance by7%.

We have an interesting observation from the bandwidth
test: Although our 10Gbps InfiniBand can achieve band-
width of 834MB/s (as shown in Figure 2), our zero copy
RDMA based GFS can only achieve a fraction of that band-
width for bulk data read/write. Two factors possibly con-
tribute to this effect in our experiments. One is kernel re-
quests issuing rate; the other is server requests serving rate.
To narrow down the problem, we hacked our implementa-
tion to nullify bulk data RDMA and server side data flushes
operations for the write bandwidth test to see the impact.
The result shows that the performance improvement is still
minor. This indicates that management layers between ap-
plication and zero copy RDMA based block I/O restrict
the potential of high performance interconnects. Therefore,
kernel based file system needs to provide more efficient ser-
vices to scale with next generation interconnects.

Fileop Meta Data Operations: Figure 8 shows the re-
sults of Fileop. The benchmark creates a 20-ary directory
tree of height two, each leaf is a one byte file. Fileop stresses
the file system meta-data operations. Although RDMA is
not significantly beneficial to small messages than copy

7



based send, this graph shows that the trend among differ-
ent network protocols still persists for most cases due to the
aggregate nature of meta-data operations using block I/O
based storage architecture.

�

����

�����

�����

�����

�����

�����

���	
� ��	���� 
��� ��
��� ��
�
�

�
�
�
�	

�
�
�
�
��

��������

��������

���������

Figure 8. Fileop

Postmark and Tar: Table 1 shows the performance of
postmark with 2000 file pool and 2000 transactions as pa-
rameters. Table 2 shows the performance of extracting a
zipped tarball of around 52M. Both benchmarks involve file
creation and small write operations. The result shows that
the trend is consistent with those reported by IOZone and
Fileop. In particular, the extraction test shows that zero
copy based RDMA performs 21% better than copy based
RDMA and 47% better than IPoIB.

Table 1. Postmark Performance
Postmark IBZcopy IBBcopy TCP/IPoIB
Transactions/s 666 666 500

Table 2. Extracting Zipped Tarball

tar -zxf IBZcopy IBBcopy TCP/IPoIB
Seconds 13.18 16.621 20.518

In summary, the results show that TCP based processing
entails a high overhead for GFS block I/O besides data copy.
Data copy reduction is more beneficial for less CPU utiliza-
tion rather than latency optimization in the conducted tests.
The experiments also show that as network bandwidth ap-
proaches memory bandwidth, the OS/FS management layer
is required to provide more efficient services in order to
scale with next generation high performance interconnects.

6 Conclusions and Future Work

InfiniBand’s hardware support for RDMA allows effi-
cient data transfer for storage block I/O. We apply this fea-
ture in the design of the block I/O access protocol of GFS, a
shared storage cluster file system. We propose a new tech-
nique, buffer management delegation, to implement zero
copy RDMA block transfer from client buffer cache to re-
mote GNBD server. The evaluation using several bench-
marks and frequently used system utilities shows that zero
copy RDMA can improve block I/O performance for up to
47% compared with our copy based RDMA implementa-
tion and136% compared with TCP over the same Infini-
Band hardware. The result also indicates that more efficient
and scalable management infrastructure is needed for kernel
based file system to scale with next generation high perfor-
mance Interconnects.

In the near future, we intend to investigate buffer caching
related issues for GNBD server design. We also would like
to evaluate our block I/O design together with upcoming
iSCSI/iSER implementations.

References

[1] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W.
Felten, and J. Sandberg. Virtual memory mapped net-
work interface for the shrimp multicomputer. InPro-
ceedings of the 21ST annual international symposium
on Computer architecture(ISCA’94), pages 142–153,
Los Alamitos, CA, USA, 1994. IEEE Computer Soci-
ety Press.

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, and W. Su. Myrinet: A
Gigabit-per-Second Local Area Network.IEEE Mi-
cro, 15(1):29–36, 1995.

[3] B. Callaghan, T. Lingutla-Raj, and A. Chiu. NFS over
RDMA. In ACM SIGCOMM 2003 Workshops, 2003.

[4] E. V. Carrera, S. Rao, L. Iftode, and R. Bian-
chini. User-Level Communication in Cluster-Based
Servers. InProceedings of the 8th International
Symposium on High-Performance Computer Architec-
ture(HPCA’02), page 275, 2002.

[5] Z. Chen, Y. Zhou, and K. Li. Eviction-based
Cache Placement for Storage Caches. InProceed-
ings of USENIX Annual Technical Conference, Gen-
eral Track, pages 269–281, 2003.

[6] H. K. J. Chu. Zero-Copy TCP in Solaris. InUSENIX
Annual Technical Conference, pages 253–264, 1996.

8



[7] D. Dunning and G. Regnier. The Virtual Interface Ar-
chitecture. InProceedings of Hot Interconnects, 1997.

[8] InfiniBand Trade Association. The InfiniBand Archi-
tecture. http://www.infinibandta.org/specs.

[9] S. Liang, R. M. Noronha, and D. K. Panda. Swapping
to Remote Memory over InfiniBand: An Approach us-
ing a High Performance Network Block Device. In
Proceedings of International Conference on Cluster
Computing(CLUSTER’05), 2005.

[10] J. Liu, J. Wu, and D. K. Panda. High Perfor-
mance RDMA-Based MPI Implementation over In-
finiBand. International Journal of Parallel Program-
ming, 32(3):167–198, 2004.

[11] K. Magoutis, S. Addetia, A. Fedorova, and M. I.
Seltzer. Making the Most Out of Direct-Access Net-
work Attached Storage. InProceedings of the 2nd
USENIX Conference on File and Storage Technolo-
gies, 2003.

[12] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer,
J. S. Chase, A. J. Gallatin, R. Kisley, R. Wick-
remesinghe, and E. Gabber. Structure and Per-
formance of the Direct Access File System. In
Proceedings of USENIX Annual Technical Confer-
ence,General Track, pages 1–14, 2002.

[13] Open InfiniBand Alliance. OpenIB.
http://www.openib.org.

[14] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll. Per-
formance Evaluation of the Quadrics Interconnection
Network. Journal of Cluster Computing, 6(2):125–
142, April 2003.

[15] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy.
A Performance Comparison of NFS and iSCSI for
IP-Networked Storage. InProceedings of the 3rd
USENIX Conference on File and Storage Technolo-
gies, 2004.

[16] RDMA Consortium. An RDMA Protocol Specifica-
tion. http://www.rdmaconsortium.org.

[17] Rea Hat Inc. Red Hat GFS Documentation.
http://www.redhat.com/docs/manuals/csgfs/browse/rh-
gfs-en/.

[18] G. Regnier, S. Makineni, R. Illikkal, R. Iyer,
D. Minturn, R. Huggahalli, D. Newell, L. Cline, and
A. Foong. TCP Onloading for Data Center Servers.
IEEE Computer, 37(11):48–58, 2004.

[19] P. Sarkar, S. Uttamchandani, and K. Voruganti. Stor-
age Over IP: When does Hardware Support Help? In
Proceedings of the 2rd USENIX Conference on File
and Storage Technologies, 2003.

[20] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The
Global File System. InProceedings of the Fifth NASA
Goddard Conference on Mass Storage Systems, pages
319–342, College Park, MD, 1996. IEEE Computer
Society Press.

[21] Storage Networking Industry Association.
iSCSI/iSER and SRP Protocols. http://www.snia.org.

[22] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
Net: A User-Level Network Interface for Parallel and
Distributed Computing. InProceedings of the 14th
ACM Symposium on Operating Systems Principles,
pages 40–53, 1995.

[23] K. Voruganti and P. Sarkar. An Analysis of Three
Gigabit Networking Protocols for Stroage Area Net-
works. In Proceedings of International Conference
on Performance, Computing, and Communications,
2001.

[24] T. M. Wong and J. Wilkes. My Cache or Yours?
Making Storage More Exclusive. InProceedings of
USENIX Annual Technical Conference,General Track,
pages 161–175, 2002.

[25] J. Wu, P. Wyckoff, and D. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand. In
Proceedings of International Conference on Cluster
Computing (CLUSTER’03), 2003.

[26] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. InPro-
ceedings of the International Conference on Parallel
Processing (ICPP’03), pages 125–132, 2003.

[27] W. Yu, S. Liang, and D. K. Panda. High Performance
Support of Parallel Virtual File System (PVFS2) over
Quadrics. InProceedings of International Conference
on Supercomputing (ICS’05), 2005.

[28] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F.
Philbin, and K. Li. Experiences with VI communica-
tion for database storage. InProceedings of the 29th
annual international symposium on Computer archi-
tecture(ISCA’02), pages 257–268, 2002.

9




