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Abstract

Multicast is an important collective operation for
parallel programs. Some Network Interface Cards
(NICs), such as Myrinet, have programmable proces-
sors that can be programmed to support multicast. This
paper proposes a high performance and reliable NIC-
based multicast scheme, in which a NIC-based multi-
send mechanism is used to to send multiple replicas of
a message to different destinations, and a NIC-based
forwarding mechanism to forward the received pack-
ets without intermediate host involvement. We have ex-
plored different design alternatives and implemented the
proposed scheme with the set of best alternatives over
Myrinet/GM-2. MPICH-GM has also been modified to
take advantage of this scheme. At the GM-level, the NIC-
based multicast improves the multicast latency by a fac-
tor up to 1.48 for messages � 512 bytes, and a factor
up to 1.86 for 16KB messages over 16 nodes compared
to the traditional host-based multicast. Similar improve-
ments are also achieved at the MPI level. In addition, it
is demonstrated that NIC-based multicast is tolerant to
process skew and has significant benefits for large sys-
tems.

1. Introduction
Multicast is an important collective operation in par-

allel and distributed programs. Message passing stan-
dards, such as MPI [10], often have the multicast op-
eration, also called broadcast, included as a part of
their specifications. Some interconnects such as Qs-
Net [12], Infiniband [8] and BlueGene/L [9], provide
hardware primitives to support multicast communica-
tion. Other interconnects, such as Myrinet, do not have
hardware multicast and provide unicast communication
along point-to-point links. Thus a multicast operation is
usually implemented at the user level with unicast op-
erations. Such an approach can lead to higher multicast
latency. Thus it would be beneficial to reduce the la-
tency of this operation as much as possible. Some net-
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work interface cards (NICs) have programmable proces-
sors which can be customized to support collective com-
munication. This type of NIC support has been studied
in [14, 2, 5, 6, 4]. Among them, NIC-supported mul-
ticast has been studied with several different schemes,
namely, FM/MC by Verstoep [14], LFC by Bhoed-
jang [2] and a NIC-assisted scheme by Buntinas [5].

In this paper, we start with the characterization of fea-
tures that are important to NIC-based multicast. These
features include reliability, forwarding, scalability, pro-
tection, and tree construction etc. In this context, we
analyze the existing multicast schemes [14, 2, 5] and de-
termine that each of them lacks one or more features.
Accordingly, we propose a new NIC-based multicast
scheme that provides a complete set of features. We
then explore different design alternatives and implement
the proposed scheme with the set of best alternatives.
The NIC-based scheme is used together with an opti-
mal spanning tree [1] to support multicast to an arbitrary
set of nodes in a system. Our evaluation indicates that
the NIC-based multicast scheme achieves significant im-
provement over the traditional host-based multicast. We
have also modified MPICH-GM to use this scheme and
observed that it significantly reduces broadcast latency
and benefits large size systems with reduced effects of
process skew.

The rest of the paper is structured as follows. In the
next section, we describe and characterize general fea-
tures of NIC-supported multicast schemes, followed by
Section 3 where we describe our scheme. In Section 4,
we give an overview of Myrinet and GM. In Section 5,
we describe design issues and implementation details for
the NIC-based multicast scheme, as well as the mod-
ification of MPICH-GM. We then present the perfor-
mance results and evaluation of our implementation in
Section 6. Finally, we conclude the paper in Section 7.

2. NIC-based Multicast
In this section we describe and characterize the fea-

tures of NIC-supported multicast schemes. We identify
the following features that are important to the multicast
in modern parallel systems:

Tree Construction, Tree information and For-
warding – Broadcast/multicast on point-to-point net-
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tures of different multicast schemes.

works is typically done by having the message for-
warded to the destinations along a spanning tree [7].
Three major features of a multicast scheme are the span-
ning tree construction, how the tree information is spec-
ified and how messages are forwarded. Note, a node in
a network consists of the host and the NIC. The span-
ning tree can either be constructed at the host or at the
NIC. Since the NIC processor is typically much slower
than the host processor, it is more efficient to construct
the tree at the host. The tree information can be either
specified with each message [13, 5] or preposted to the
NIC [14, 2]. With preposted tree information, at inter-
mediate nodes, a message does not have to wait for the
host process to provide the tree information before it can
be forwarded, which can lead to reduced host involve-
ment. Message forwarding can either be done by the
NIC or by the host. Using host-based forwarding, a node
must pass the received message to the host first and then
back to the NIC for forwarding. This leads to a large
overhead to the multicast latency.

Reliability – Reliability is also important to a mul-
ticast scheme, which can be done either directly or in-
directly. A direct scheme uses acknowledgments to
confirm the delivery, and timeout/retransmission to deal
with the loss of messages, while an indirect scheme typ-
ically assumes the network is reliable and uses a credit-
based scheme to manage the receive buffer. In gen-
eral, however, a network cannot be considered reliable.
Though bit error-rates are low in modern networks, they
are not zero. There are also drawbacks with credit-based
schemes. A centralized credit scheme has a bottleneck at
the centralized component. A distributed credit scheme,
in which the credits are managed from hop to hop, can
lead to deadlock since a multicast message may be ini-
tiated by the root, while an intermediate node is running
out of credits to forward it.

Protection and Scalability – Depending on the im-
plementation, a multicast scheme may or may not pro-
vide protection of concurrent NIC access by several pro-
cesses. Without protection, a user process may modify
the NIC-memory used by another process, which can
lead to unpleasant scenarios. In addition, high scalabil-
ity has since been a desirable feature of parallel systems,
and it becomes indispensable, as the number of nodes
reaches thousands in a cluster.

Figure 1 shows a diagram, which uses six axes to rep-
resent these features, and compares the features of avail-
able multicast schemes, as well as the scheme we are
proposing in this paper. In this diagram, a line is used
to connect the points on the axes to describe the features
of a particular scheme. To be efficient in tree construc-
tion, all these schemes have the host construct the span-
ning tree. The NIC-assisted scheme [5] specifies the tree
information along with the message, but it requires the
intermediate host involvement to perform the message
forwarding. FM/MC [14] provides an end-to-end flow
control with host-level credits. A centralized credit man-
ager is used to recycle multicast credits, which does not
scale. LFC [2] provides link-level point-to-point flow
control with NIC-level credits. But it is deadlock prone
since a multicast packet may be injected into the net-
work by the root, while an intermediate NIC is running
out of credits to forward the message.

In this paper, we propose a high performance and re-
liable NIC-based multicast scheme with features such
as NIC-based forwarding, protection of concurrent NIC-
memory access between processes, tree construction
at the host and preposting of the tree information to
the NIC. We propose to implement this scheme over
Myrinet/GM. GM [11] is a user-level protocol that pro-
vides a reliable ordered delivery of packets with low
latency and high bandwidth. It can support clusters
of over 10,000 nodes and concurrent memory-protected
OS-bypass access to the NIC by several user-level ap-
plications. By modifying GM to support the NIC-based
multicast while maintaining the original features of GM,
it is possible to achieve our proposed scheme. Recent
alpha releases of GM-2.0 [11] provide a myrinet packet
descriptor for every network packet and also a callback
handler to each descriptor. A packet descriptor and its
callback handler provide a way to take necessary actions
on this packet when appropriate. We have implemented
the proposed scheme using these features, which results
in a high-performance and reliable multicast scheme,
supporting concurrent memory-protected access to the
NIC.

3. Our Scheme
In this section, we describe our proposed scheme. For

a tree-based broadcast/multicast operation over point-to-
point networks multiple copies of the data will be trans-
mitted by root nodes of the tree or subtrees to their chil-
dren. In our scheme, we use a NIC-based mechanism, by
which a message is transfered only once from the host to
the NIC, and from the NIC multiple replicas are trans-
mitted to a set of destinations, referred to as the NIC-
based multisend operation. For a multicast operation,
the NIC at the intermediate nodes, when having received
the message, forwards it without the host involvement.
This leads to reduced latency. We describe our scheme
and its benefits over a host-based multicast as we look
into the process of the multicast communication.

NIC-Based Multisend and its Benefits – Figure 2a
shows abstract timing diagrams for sending a message
to four destinations with a host-based mechanism. The
host-based sending can be broken into three steps. In the
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Figure 2. Abstract Timing Diagrams Comparing Host-Based Multicast and NIC-Based Multicast
figure, three lines in parallel represent the timing of the
three steps. First, the host posts four send requests. At
the second step, the NIC processes the requests sequen-
tially, during which the messages are downloaded from
the host and queued for transmission. At the third step,
the NIC transmit DMA engine completes the transmis-
sion of a queued message. As shown in the figure, when
the host posts four requests, the NIC has to repeat the
second processing step four times. If the processing of
a request can not be overlapped with the transmission
time of a queued message, it results in a higher latency.
With a NIC-based mechanism, we can avoid repeated
processing. Figure 2b shows a corresponding timing di-
agram for the NIC-based mechanism. The host posts
only one multisend request. The NIC then finds a corre-
sponding list of destinations and queues the message for
transmission to the first destination. When that transmis-
sion completes, the NIC modifies the packet header and
queues it for transmission to another destination, and so
on. The same data is transmitted again with a small over-
head, represented in the figure with the wide bars. How-
ever, the repeated transmission of the message does not
have to wait for the processing of a host request. A NIC-
based multisend operation can potentially transmit the
messages at a faster speed, resulting in a lower latency.

NIC-Based Forwarding and Its Benefits – With a
host-based mechanism, the intermediate host initiates
another set of unicasts after receiving the message. A
message just received by the NIC must be copied into the
host memory and then back to the NIC for forwarding.
This leads to a large overhead to the latency of the multi-
cast. Figure 2c shows the timing diagram for forwarding
a message with a NIC-based approach. When having re-
ceived a multicast packet, the intermediate NIC looks
into its table to find a list of destinations for that packet.
This packet can then be queued for forwarding with a
changed header. Thus the overhead at the intermediate
host to receive the message and initiate the forwarding
is eliminated. For multiple packet messages, using NIC-
based forwarding an intermediate NIC can forward the
packets of a message without waiting for the arrival of
the complete message. This can further reduce the mul-
ticast latency.

Tolerance to Process Skew – The NIC-based mul-
ticast scheme also has the potential of reducing the ef-
fects of process skew. When processes in a parallel pro-
gram are skewed, or unsynchronized, they may not reach
the same point of computation at the same time. For a
broadcast operation, some processes call the broadcast
earlier, while others do after some delay. As the tradi-
tional host-based broadcast is implemented, an interme-
diate process will not forward the message until it calls

the broadcast and receives the message. A process could
be forced to wait longer if one or more of its ancestors
are lagging behind due to some skew. With the NIC-
based approach, the message can be forwarded by an
intermediate NIC to its children even if the host process
has not called the broadcast. So a delayed process will
not keep the processes lower in the tree from receiving
the messages. Therefore the effects of process skew to
the overall multicast performance can be reduced.

4. Overview of Myrinet and GM
In this section, we give some background informa-

tion on Myrinet and GM. Myrinet is a high-speed in-
terconnect technology using wormhole-routed crossbar
switches to connect all the NICs. GM is a user-level
communication protocol that runs over the Myrinet [3]
and provides a reliable ordered delivery of packets with
low latency and high bandwidth.

Sending a Message – To send a message, A user ap-
plication calls the appropriate function from the library.
This function constructs a send descriptor, referred to as
a send event in GM, which describes what data to be sent
and to which process to send the data to. The NIC trans-
lates the event to a send token (a form of send descriptor
that NIC uses), and appends it to the send queue for the
desired destination. For each send token, the NIC will
DMA the data from the host buffer into a send buffer
and transmit the message on a per packet basis. The
NIC keeps a send record of the sequence number and
the time for each packet it has sent. The send record will
be removed when a corresponding acknowledgment is
received. If the acknowledgment is not received within
the timeout time, the sender will retransmit the packet.
When all the send records are acknowledged, the NIC
will pass the send token back to the host.

Receiving a Message – To receive a message, the
host provides some registered memory as the receive
buffer by preposting a receive descriptor. A posted re-
ceive descriptor is translated into a receive token by the
NIC. When the NIC receives a packet, it checks the se-
quence number. If it is expected, the NIC locates a re-
ceive token, DMAs the packet data into the host mem-
ory, and also acknowledges the sender. When all the
packets for a message have been received, the NIC will
also generate a receive event to the host process for it to
detect that a message has been received.

New Features of GM-2 – In recent alpha releases of
GM-2.0, a data structure called the myrinet packet de-
scriptor, is introduced to describe every network packet.
Inside this structure, there is also a callback handler,
which allows the possibility of taking actions on the
packet. Either the packets that have data to be trans-



mitted at the send side or the packets that have data to be
copied to the final location at the receive side, are queued
using the descriptors. At the completion of transmis-
sion or copying, the packets are freed by freeing the de-
scriptors. Using the descriptor and its callback handler,
one can easily have a packet queued again for transmis-
sion before it is freed. For example, to send a replica to
another destination, a callback handler can change the
packet header and queue it for transmission again. This
can be done to both a send packet and a receive packet.

5. Design Issues and Our Implementation
In this section, we describe the design issues and the

implementation details of the NIC-based multicast. We
implemented the proposed scheme by modifying GM
version 2.0 alpha1. There are several design issues for
this implementation: the sending of message replicas to
multiple destinations, message forwarding at the inter-
mediate NIC, reliability and in order delivery, deadlock,
and construction of the spanning tree. For each of these
issues, we describe design alternatives below and show
how we choose the best alternative. At the end of this
section, we describe the modification to MPICH-GM for
taking advantage of the NIC-based multicast.

Sending of Multiple Message Replicas – To send
replicas of a message to multiple destinations, one can
readily generate multiple send tokens and queue them
to multiple destinations. Another way to do this is to
use a callback handler as just described in the previous
section. A third way to do this is to change the header
right after the transmit DMA engine is done transmitting
the header and queue the packet again for transmission.
The first approach performs the processing for each of
the tokens, and it saves nothing more than the posting of
multiple send events. The benefits of this is no more than
1 � s, if any, since the host overhead over GM is less than
1 � s. Both the second and third approach can save the
repeated processing, but the third approach takes special
care and demands good timing strategy in order to avoid
clobbering the packet header before it is transmitted out.
We implemented the second approach in our multicast
scheme. The benefits of the third approach could be
more, but we decided to leave it for later research.

Messages Forwarding – For a received message to
be forwarded, we need to consider: 1 � how to set up
timeout and retransmission mechanisms, and 2 � which
replica of the message should be made available for the
retransmission. As to the first issue, we create send
records to record the time the packets are forwarded.
When the records are not acknowledged within the time-
out period, retransmission of the packets is triggered.
Since the intermediate NIC does not have a send token
for this multicast, one has to generate a token for the
purpose of transmission. This can be done by grabbing
a send token from the free send token pool, or by trans-
forming the receive token into a send token. Using the
former approach can lead to the possibility of deadlock
when the intermediate nodes are running out of send to-
kens. We take the second approach since it does not
require additional resources at the NIC. The receive to-
ken is presumed to be available to receive any message.

In this approach, the receive token is used for transfer-
ring the data to the host at the intermediate NIC, and is
also used to retransmit the message when timeout. As to
the second issue, a naive solution would be keeping the
received packet available until all the children acknowl-
edge the transmission. The problem with this approach
is that the NIC receive buffer is a limited resource, and
holding on to one or more receive buffer will slow down
the receiver or even block the network. An alternative
is to release the packet as the forwarding is done, and
use the message replica in the host memory for retrans-
mission. Since GM can only send and receive data from
registered memory, this requires the host memory to be
kept registered until all the children acknowledged that
the packets are correctly received. We take the second
alternative in our implementation.

Reliability and In Order Delivery – To ensure or-
dered sending, GM employs a form of Go-back-N pro-
tocol to ensure ordered delivery between peer-to-peer
communication end points, called ports. When a packet
is not acknowledged within a timeout period, the sender
NIC will retransmit the packet, as well as all the later
packets from the same port.

A reliable ordered multicast requires modification to
the existing ordering scheme. Since each sender is in-
volved with multiple receivers, the sending side must
keep track of the ordering of packets in a one-to-many
manner to all its children. A modified ordering scheme
works as described below. Multicast send tokens are
queued by group. Each multicast group has a unique
group identifier. For each group, the NIC keeps tracks
of: 1 � a receive sequence number to record the sequence
number for the packets received from its parent, 2 � a
send sequence number to record the packets that have
been sent out, and 3 � an array of sequence numbers to
record the acknowledged sequence number from each
child. A multicast packet sent from one NIC to its chil-
dren has the same sequence number and send record,
ensuring ordered sending for the same group’s multicast
packets. When an acknowledgment from one destina-
tion is received, the acknowledged sequence number for
that destination is updated. If the record for a packet
is timed out, the retransmission of the packet and the
following ones will be performed only for the destina-
tions which have not acknowledged. A receiver only
acknowledges the packets with expected sequence num-
bers for the desired group sequentially.

Deadlock – Deadlock is an important aspect of con-
cern for any collective communication, which may oc-
cur if there is a cyclic dependence on using some shared
resources among multiple concurrent operations. We
take the following approaches to avoid the possibilities
of the deadlock. First, we do not use any credit-based
flow control, avoiding one source of deadlock. In addi-
tion, we provide a unique group identifier and a separate
queue for each multicast group with a sender, so that
one group does not block the progress of another. The
other possibility for a deadlock is when some nodes in
multiple broadcast operations form a cyclic parent-child
relationship, in which all of them are using its last re-



ceive token while requesting another to receive its mes-
sage with a new receive token. Since the root node in
a broadcast operation only uses its send token, it will
not be in such a cycle. To break a possible cycle among
the rest of the nodes, we sort the list of destinations lin-
early by their network IDs before tree construction, and
a child must have a network ID greater than its parent
unless its parent is the root. Thus a deadlock on the
use of receive token can not form under either situation
(See [15] for more information on the deadlock). As
long as receive tokens are available at the destinations,
multicast packets can be received by all the destinations.
The responsibility of making receive tokens available to
receive multicast messages is left to client programs, the
same way as is required to receive regular point-to-point
messages.

The Spanning Tree – The tree topology is also im-
portant for multicast performance. One tree topology
may give better performance over another depending on
the communication characteristics and also the desired
performance metrics, latency or throughput. The perfor-
mance of logical tree topology can be affected by the
underlying hardware topology. In this paper, our intent
is not to study the effects of hardware topology. In this
study, Myrinet network uses its default hardware topol-
ogy, Clos network. One relevant design issue in this pa-
per is where to generate the tree, since the NIC proces-
sor is typically rather slow to perform intensive compu-
tation. To better expose the potential of the NIC-based
multicast protocol, we use an algorithm similar to [5] for
constructing an optimal tree in terms of latency. The op-
timality of such trees has been shown by Bar-Noy and
Kipnis [1]. The basic idea of constructing an optimal
tree is to have maximum number of nodes involved in
sending at any time. In other words, we construct the
tree such that a node will send to as many destinations
as possible before the first destination it sent to becomes
ready to send out data to its own children. We compute
the number of destinations a sender can send to before
its first receiver can start sending as the ratio of: � a � the
total amount of time for a node to send a message un-
til the receiver receives it, and � b � the average time for
the sender to send a message to one additional destina-
tion. The message delivery time is calculated as end-to-
end latency. Different message lengths leads to different
optimal tree topologies. Since the LANai processor is
much slower compared to the host processor, we carried
out the following division of labor in order to be efficient
on tree construction: the host generates a spanning tree
and inserts it into a group table stored in the NIC and the
NIC is responsible for the protocol processing related to
communication.

Incorporating into MPICH-GM – MPICH is a
widely used MPI implementation. MPICH-GM is a
port of MPICH on top of GM. We investigated how
MPICH-GM can benefit from the NIC-based multicast.
Since MPICH-GM uses remote DMA operations in its
rendezvous protocol for transferring messages larger
than 16K, our modified channel interface still performs
broadcast operation in its original manner for these mes-

sages. For messages less than 16K, the first broadcast
operation from a particular root in a communicator will
cause a new group context to be created and the group
membership to be updated into the NIC. Thus the first
broadcast operation for any group will pay the cost of
creating group membership, we consider this demand-
driven approach to be appropriate for dealing with the
vast number of possible combinations of communica-
tors and root nodes. Once the unique group context is
created or identified, the root node initiates a NIC-based
multicast operation, while the destinations invoke block-
ing receive operations as MPI Recv does.

6. Performance Evaluation
In this section, we describe the performance evalua-

tion of our implementation. The experiments were con-
ducted on a 16 node cluster consisting of 16 quad-SMP
700 MHz Pentium-III nodes with 66MHz/64bit PCI bus.
The nodes have Myrinet NICs with 133MHz LANai 9.1
processors and are connected to a Myrinet 2000 net-
work. Each of these nodes run the 2.4.18 Linux kernel.
We compared our NIC-based implementation, which is
based on GM-2.0 alpha1, to the host-based implementa-
tion using the same version of GM. MPICH-GM version
1.2.4..8a was modified to use the NIC-based multicast.
The same version of MPICH-GM was used as the com-
parison at the MPI-level.

6.1. GM Level
Our modification to GM was done by leaving the

code for other types of communications mostly un-
changed. The evaluation indicated that it has no notice-
able impact on the performance of non-multicast com-
munications.

NIC-based multisend – We first evaluated the per-
formance of the NIC-based multisend operation. Our
tests were conducted by having the source node trans-
mit a message to multiple destinations, and wait for an
acknowledgment from the last destination. All destina-
tions received the message from the source node, and
none of them forwarded the message. The first 20 it-
erations were used to synchronize the nodes. Then the
average for the next 10,000 iterations was taken as the
latency. Figures 3(a) and 3(b) show the performance and
the improvement of using the NIC-based multisend op-
eration to transmit messages to 3, 4 and 8 destinations,
compared to the same tests conducted using host-based
multiple unicasts. For sending messages � 128 bytes
to 4 destinations, an improvement factor up to 2.05 is
achieved. This is due to the fact that the NIC-based mul-
ticast was able to save repeated processing. As the mes-
sage size gets larger, the improvement factor decreases
and eventually levels off at a little below 1. This is to
be expected because large message sizes leads to longer
transmission time. With host-based multiple unicasts,
the request processing is completely overlapped with the
transmission of a previous queued packet, but there is
still an overhead each time the packet header is changed
with the NIC-based multisend.

NIC-based multicast – We evaluated the perfor-
mance of the multicast with NIC-based forwarding us-
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Figure 4. The MPI-level performance of the NIC-based (NB) multicast, compared to the host-based multi-
cast (HB), for 4, 8 and 16 node systems

ing an optimal tree. Our tests were conducted by hav-
ing the root initiate the NIC-based multicast operation,
and wait for an acknowledgment from one of the leaf
nodes in the spanning tree. The first 20 iterations were
used to synchronize the nodes. Then 10,000 iterations
were timed to take the average latency. The same test
was repeated with different leaf nodes returning the ac-
knowledgment. The maximum from all the tests was
taken as the multicast latency. The traditional host-based
multicast was also evaluated in the same manner using
the same version of GM as a comparison. Figures 5(a)
and 5(b) show the performance of the NIC-based mul-
ticast compared to the performance of host-based mul-
ticast. For broadcasting messages � 512 bytes on a 16
node system, the NIC-based multicast achieves an im-
provement factor up to 1.48. Because multiple replicas
of small messages can be sent out faster with the NIC-
based multicast, the optimal tree constructed for small
messages has a larger average fan-out degree and so a
shallower depth, compared to the same size binomial
tree used in the traditional host-based multicast. The
average fan-out degree is the ratio as described in Sec-
tion 5, the spanning tree, and it imposes little impact on
the latency. So the shallower depth reduces the multicast
latency significantly. As also shown in the figures, when
broadcasting a 16KB message on a 16 node system, the
NIC-based multicast achieves an improvement factor up
to 1.86. This is due to the fact that, in the NIC-based
multicast, intermediate nodes do not have to wait for
the arrival of the complete message to forward it. Thus
the NIC-based multicast achieves its performance ben-
efits for the reduced intermediate host involvement and

the capability of pipelining messages. Moreover, Fig-
ure 5(b) shows dips in the improvement factor curves
when multicasting 2KB and 4KB messages. The drop
of improvement for these message is because these mes-
sages do not have the benefit for large multiple packet
messages and also they do not have the benefit for small
messages. The maximum packet size in GM is 4096
bytes, therefore � 4096 byte messages do not benefit
from message pipelining. On the other hand, since the
NIC-based multisend does not have much improvement
for these � 1KB messages (See Figure 3(b)), the fan-
out degree chosen in the optimal tree is about 1 and the
shape of the resulted optimal tree is not significantly dif-
ferent from the binomial tree used in the host-based ap-
proach. Therefore for these messages, the multicast la-
tency does not benefit much from the change of the span-
ning tree shape either. Taken together, the performance
improvement is low for multicasting these messages.

6.2. MPI Level
Since our modification to MPICH-GM only uses the

NIC-based multicast support for the eager mode mes-
sage passing, the largest message that uses the NIC-
based multicast is the largest eager mode message,
which is 16,287 bytes. We measured the broadcast la-
tency at the MPI level in the same manner as that at the
GM level. The maximum latency obtained was taken as
the broadcast latency. Figures 4(a) and 4(b) show the
latency performance and the improvement factor of the
NIC-based multicast at the MPI level, respectively. We
observed an improvement factor of up to 2.02 for broad-
casting 8KB messages over 16 node system. Also the
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Figure 6. Average host CPU time on performing the MPI Bcast under different amount of average skew
with both the host-based approach (HB) and the NIC-based (NB) approach

trend of the performance improvements are similar to
the trend at the GM-level (Figure 5(b)). However, when
broadcasting 16,287 byte messages, there is a dip in the
improvement factor curve. That is due to the larger cost
of copying the data to their final locations. So the broad-
cast latency for a 16,287 byte message with the NIC-
based multicast is comparatively high, which leads to a
lower improvement factor.

6.3. Tolerance to Process Skew
Another major benefit of the NIC-based multicast is

the tolerance to process skew. Typically, with the block-
ing implementation of MPI Bcast, the host CPU time,
the time spent on performing the MPI Bcast, becomes
larger if a process is delayed at an intermediate node. In
reality, all processes skew at random. Some processes
call MPI Bcast before the root node does, and others do
after the root node. The effects of the former can not be
reduced by a multicast operation, but those from the lat-
ter can be reduced if possible, because all the processes
that have called MPI Bcast inevitably have to wait for
the root process. We evaluate the effects of the delayed
processes, relative to the root processes, to the aver-
age host CPU time. We measure the average host CPU
time to perform the MPI Bcast with varying amount of
process skew. All the processes are first synchronized
with a MPI Barrier. Then each process, except the root,
chooses a random number between the negative half and
the positive half of a maximum value as the amount of
skew they have. The processes with a positive skew time
perform computation for this amount of skew time be-
fore calling the MPI Bcast operation. The average host

CPU time from 5,000 iterations was plotted against the
average process skew (See [15] for more information on
the process skew).

Figure 6(a) shows the average host CPU time for
broadcasting small messages (2, 4 and 8 bytes) over
16 nodes with varying amount of average skew. The
NIC-based broadcast has much smaller host CPU time
compared to the host-based broadcast. With a skew un-
der 40 � s, the host CPU time decreases using either ap-
proach. This is to be expected because a small amount
of skew time can overlap with some of the message
broadcasting time. When the skew goes beyond 40 � s,
the host CPU time increases with the host-based ap-
proach, while it decreases with the NIC-based approach.
This is to be expected. As the skew increases, more in-
termediate processes get delayed. With the host-based
approach, more processes wait longer for their ances-
tors to call MPI Bcast and forward the messages, which
results in longer average host CPU time. In contrast,
with the NIC-based approach, the delayed intermedi-
ate processes does not prevent their children from re-
ceiving the message and, on the other hand, their delay
have more overlap with the message transmission time.
which leads to less average host CPU time. Figure 6(b)
shows that the improvement factor of the NIC-based ap-
proach over the host-based approach for small messages.
With an average skew of 400 � s, the NIC-based multicast
achieves an improvement factor up to 5.82. We also ob-
served that the improvement factor becomes greater as
the skew increases. When broadcasting large messages
(2KB to 8KB), a similar trend of benefits on average host
CPU time is also observed when comparing the NIC-



based multicast to the host-based broadcast (See [15] for
corresponding graphs and explanations).
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Figure 7. The effect of process skew for sys-
tems of different sizes

We also evaluated the effect of process skew on the
average host CPU time for different size systems. Fig-
ure 7 shows the factors of improvement on the host
CPU time for broadcasting 4 byte and 4KB messages us-
ing the NIC-based multicast compared to the host-based
multicast, over systems of different sizes. For both sizes
of messages, the improvement factor becomes greater as
the system size increases for a fixed amount of process
skew of 400 � s. This suggests that a larger size system
can benefit more from the NIC-based multicast for the
reduced effects of process skew.

7. Conclusions and Future Work
We have characterized features of multicast schemes

that uses Myrinet programmable NICs, and proposed a
NIC-based multicast scheme with a complete set of fea-
tures. We have implemented this scheme, which mainly
consists of a NIC-based multisend mechanism, using the
NICs to send multiple replicas of a message to different
destinations, and a NIC-based forwarding mechanism,
using intermediate NICs to forward the received pack-
ets without intermediate host involvement. This results
in a high performance and reliable NIC-based multicast.
We have also modified MPICH-GM to take advantage
of this NIC-based multicast. The performance benefits
of the NIC-based multicast has been evaluated at both
the GM-level and the MPI-level.

At the GM-level, the NIC-based multicast scheme
provides an improvement factor up to 1.86 for 16KB
messages and an improvement factor up to 1.48 for �
512 byte messages over 16 nodes compared to the tradi-
tional host-based multicast. At the MPI-level, the NIC-
based multicast achieves an improvement factor up to
2.02 for 8KB messages, and an improvement factor up
to 1.78 for small messages � 512 bytes over 16 nodes.
In addition, at the MPI-level, the NIC-based multicast
was shown to have better tolerance to process skew.
In the presence of an average skew of 400 � s on a 16
node system, using the NIC-based approach to perform
MPI Bcast provides an improvement factor up to 5.82
for small (2 to 8 bytes) messages and an improvement
factor up to 2.9 for large (2KB) messages.

The NIC-based scheme achieves its reliability and
efficiency without using a centralized manager and re-
quires minimum memory and processor resources at the
NIC, which promises good scalability. In the future,

we intend to study its scalability in large scale systems.
MPICH-GM employs remote DMA for over 16K mes-
sages in its rendezvous protocol. So we also intend to
study the NIC-based multicast using remote DMA op-
erations and its performance impacts at different levels.
Moreover, in view of the benefits of NIC-based multi-
cast, we intend to expand the NIC-based support to other
collective operations, for example, Allreduce and All-
toall broadcast.
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