High Performance Support of
Parallel Virtual File System (PVFS2) over Quadrics *

Weikuan Yu Shuang Liang

Dhabaleswar K. Panda

Network-Based Computing Laboratory
Dept. of Computer Sci. & Engineering
The Ohio State University
{yuw,liangs,panda} @cse.ohio-state.edu

Abstract

Parallel I/O needs to keep pace with the demand of high per-
formance computing applications on systems with evereiaging
speed. Exploiting high-end interconnect technologieetiuce the
network access cost and scale the aggregated bandwidtle isfon
the ways to increase the performance of storage systemdisin t
paper, we explore the challenges of supporting parallelsfjie
tem with modern features of Quadrics, including user-legh-
munication and RDMA operations. We design and implement a
Quadrics-capable version of a parallel file system (PVFS2)r
design overcomes the challenges imposed by Quadrics stetie
munication model to dynamic client/server architectu@sadrics
QDMA and RDMA mechanisms are integrated and optimized for
high performance data communication. Zero-copy PVFS20is$
achieved with a Single Event Associated MUItiple RDMA (SEA-
MUR) mechanism. Experimental results indicate that théoper
mance of PVFS2, with Quadrics user-level protocols and RDMA
operations, is significantly improved in terms of both datensfer
and management operations. With four 10 server nodes, our im
plementation improves PVFS2 aggregated read bandwidtip by u
140% compared to PVFS2 over TCP on top of Quadrics IP imple-
mentation. Moreover, it delivers significant performancgpiove-
ment to application benchmarks such as mpi-tile-io [24] 8d

10 [26]. To the best of our knowledge, this is the first work le t
literature to report the design of a high performance palrdille
system over Quadrics user-level communication protocols.

Keywords: Parallel 10, Parallel File System, RDMA, Zero-Copy,
Quadrics

1. Introduction

The gap between computer processing power and disk thratughp
becoming wider as the growth of the latter continuously lzefsind
that of the former [21]. Large I/O-intensive applications these

This research is supported in part by a DOE grant #DE-FC02-
01ER25506 and NSF Grants #EIA-9986052 and #CCR-0204429.

Permission to make digital or hard copies of all or part o tivork for

personal or classroom use is granted without fee providatidibpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycoiherwise, or
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. ICS’05, June 20-22, Boston, MA, US@pyright

(© 2005, ACM 1-59593-167-8/06/2005...$5.00

platforms demand increasingly higher I/O throughput. €gpond-
ingly, scalable parallel I/0O needs to be available for theséworld
applications to perform well. Both commercial [13, 15, 9fae-
search projects [19, 12, 1] have been developed to providelgla
file systems for 1/O accesses on such architectures. Amag,th
the Parallel Virtual File System 2 (PVFS2) [1] has been @gatith
the intention of addressing the needs of next generatidersigsus-
ing low cost Linux clusters with commodity components.

On the other hand, high performance interconnects such as
Myrinet [4], InfiniBand [14], and Quadrics [3] not only havedn
deployed into large commodity component-based clustede

vide higher computing power, but also have been utilizedoim-c
modity storage systems to achieve scalable parallel |/@a@tpFor
example, the low-overhead high-bandwidth user-level camioa-

tion provided by VI [31], Myrinet [20], and InfiniBand [27] Isa
been utilized to parallelize I/O accesses to storage seeved in-
crease the performance of parallel file systems.

One of the leading technologies, Quadrics Interconnect 83
provides very low latency< 2us) and high bandwidth. It sup-
ports many of the cutting-edge communication featuresh asc
OS-bypass user-level communication, remote direct meraory
cess (RDMA), hardware atomic operations and hardware colle
tive operations. Moreover, Quadrics network interfacevigles a
programmable co-processor, which offloads much of the commu
nication processing down to the network interface and daurtes
greatly to its efficient point-to-point and collective comnication.
These features and their performance advantages have eot be
leveraged to support scalable parallel 10 throughput atuses-
level, though some of these modern features such as RDMA are
exploited over Myrinet and InfiniBand. Currently, there afforts

in distributed file systems to exploit the benefits of Quagin@
Quadrics kernel communication library, e.g., Lustre [8]ut Bhis
approach incurs high network access overhead due to thivéavo
ment of the operating system in the communication path. ti-ad
tion, as a distributed file system Lustre is designed to sbaleg-
gregated bandwidth for accesses to files on different serwérile
parallel file accesses from a single parallel job cannottiréake

its maximum benefits. For example, concurrent writes fronftimu
ple processes in a single parallel job cannot benefit withreus\
typical platform may utilize a parallel file system such aSRE5]

to export scalable bandwidth to a single job by striping ta&adf

a single parallel file system over multiple underlying filestgms
such as Lustre. However, the extra multiplexing adds motado
cost in the path of 10 accesses.

In this paper, we examine the feasibility of supporting patdile
systems with Quadrics user-level communication and RDMA op
erations. PVFS2 [1] is used as a parallel file system in thikwo
We first investigate the challenges of supporting PVFS2 profo
Quadrics interconnect, focusing on: (a) designing a clsemver
model over Quadrics at the user-level, (b) constructingfficient
PVFS2 transport layer over Quadrics communication meshas)i
such as QDMA and RDMA, and (c) optimizing the performance of
PVFS2 over Quadrics. In particular, we overcome the coimgra
imposed by Quadrics static communication model to suppprt d
namic PVFS2 client and server connections. PVFS2 also stgppo
non-contiguous 10 via its list 10 interface. By taking adtage of
Quadrics RDMA and event mechanisms, we design a Single Event
Associated MUItiple RDMA (SEAMUR) mechanism to achieve
zero-copy PVFS2 list IO.

We evaluate our implementation using PVFS2 and MPI-IO [18]
benchmarks. The performance of our implementation is coagpa
to that of PVFS2 over TCP. Quadrics IP implementation is used
PVFS2/TCP to avoid network differences. Our work demomestra
that: (a) a client/server process model required for filéesyscom-
munication is feasible with Quadrics interconnect; (b)ttlaasport
layer of a parallel file system can be efficiently implemerdgadop

of Quadrics; and (c) the performance of PVFS2 can be significa
improved with Quadrics user-level protocols and RDMA capab
ities. Compared to PVFS2/TCP, our implementation incredse

provides communication support to Lustre (CFS) [8] and I6tqar
cols, the user-level communication libraries (libelan &bdlan4)
can provide OS-bypass communication and Remote Directed Me
sage Access (RDMA) directly to parallel user applications.

User Applications
S Senvi libelan
stem Services
User Space | =Y libeland | 1 4
P | CFS R
Kernel Spac Device | ©
Elan Kernel Driver Vo N
Library L L
Hardware Eland / Elite4

Fig. 1: Quadrics/Elan4 Communication Architecture

2.2. Overview of PVFS2

PVFS2 [1] is the second generation parallel file system frben t

aggregated read performance of PVFS2 by 140%. It is also able Parallel Virtual File System (PVFS) project team. It incortes

to deliver significant performance improvement in terms@fac-
cess time to application benchmarks such as mpi-tile-i¢ §2vl
BT-10 [26]. To the best of our knowledge, this is the first wank
the literature to report the design of a high performancalfefile
system over Quadrics user-level communication protocols.

The rest of the paper is organized as follows. In the nexi@gct
we provide overviews of Quadrics and PVFS2, and the chatieng
of designing PVFS2 over Quadrics. Section 3 provides thigdes
of client/server model over Quadrics. Sections 4 and 5 distie
design of the PVFS2 transport layer over Quadrics commtinita
mechanisms. The implementation is provided in Section b, fo
lowed by the performance evaluation in Section 7. Sectioivésg
a brief review of related works. Section 9 concludes the pape

2. Challenges in Designing PVFS2 over
Quadrics/Elan4

Quadrics interconnect [3] and its parallel programmingdites,
I'i bel an andl i bel an4 [23], are widely used to support high per-
formance computing. However little is known about how tcelev
age high speed Quadrics interconnect to support high pesioce
parallel file systems. This section provides a brief ovevviaf
Quadrics/Elan4 and PVFS2, and discusses the challengingss
in designing PVFS2 over Quadrics/Elan4.

2.1. Overview of Quadrics/Elan4

Quadrics [22, 23] has recently released its second geoeraét-
work, QsNe! [3]. This new release provides ultra-low latency,
high bandwidth communication with its two building blockhie
Elan-4 network interface card and the Elite-4 switch, wraoh in-
terconnected in a fat-tree topology. As shown in Fig. 1, Qiead
provides two communication libraries:i bel an and | i bel an4
user-level libraries and a kernel communication librany,top of
its Elan4 network [23]. While the kernel communication &by

the design of the original PVFS [20] to provide parallel agdre-
gated I/O. A client/server architecture is used in PVFS2thBbe
server and client side libraries can reside completely ér gpace.
Clients initiate requests for file accesses with one of theess.
The actual file 10 is striped across a number of file serverer- St
age spaces of PVFS2 are managed by and exported from inglividu
servers using native file systems available on the localsi\adere
information about PVFS2 can be found in [1].

2.3. Challenges

PVFS2 provides a network abstraction layer to encapsulbteea
functionalities needed for communication support. Thaltew
component is called Buffered Message Interface (BMI), Wwhic
teracts with other components in the software architediiip-
port low-level 10 accesses. Fig. 2 shows a diagram of PVF8&2 co
ponents on both the client side and the server side. As shown
in the figure, BMI functionalities can be further classifiettoi
three categories: connection management between precesss-
sage passing activities for interprocess communicatiB€)land
the memory management needed for IPC. In particular, Qegdri
user-level programming libraries have a unique designdoning
Higher Performance Computing (HPC) applications. All flala
jobs over Quadrics need to start from a static pool of apfiina
processes [23]. This is rather incompatible to the needdeo$yis-
tems, in which servers typically start first and deliver |@vizes

to incoming clients. In addition, PVFS2 interprocess comitar
tion between servers and clients needs to be properly ldymrer
Quadrics communication mechanisms to expose the maximum ca
pacity of Quadrics hardware. In this work, we take on the fol-
lowing issues to design PVFS2 over Quadrics: (a) constrgdi
client/server communication model in terms of connecti@mage-
ment, (b) designing PVFS2 basic transport protocol on togpef
propriate Quadrics communication mechanisms for messags-t
mission, and (c¢) optimizing PVFS2 performance over Quadric

Client Server

System Interface Operation State Machir

Job Interface
BMI | flow|
memory

Job Interface
BMI
memor

c
< -

flow Trove

Network (Ethernet, Myrinet, InfiniBand, |.Storage

Fig. 2: The Architecture of PVFS2 Components

3. Designing Dynamic Client/Server Communi-
cation Model Over Quadrics/Elan4

As described in Section 2.2, PVFS2 is designed as a cliemfsar-
chitecture. In contrast, an application over Quadricsaliles runs
as a static pool of parallel processes [23]. All of these gsses
have to join or leave the Quadrics network in a synchronizad-m
ner. In addition, to facilitate this process, Quadrics reggia re-

notify the server when they leave. Servers allocate comeating
resources as new clients join in, and deallocate when trepodi
nect or timeout. There are no restrictions of synchronizethory
allocation and startup.

Table 1: Elan4 Capability Allocation for Dynamic Processes

Setting Value
Capability node{0..N}ctx{i..j}
VPID nodeid (j —i+1)+ (ctx—i)
fstab elan4://serveid:serverctx/pvfs2-fs

3.2. Fast Connection Management

A process over Quadrics needs to know both the VPID and an ex-
posed memory location of a remote process before sendinga me
sage. Parallel jobs built from default Quadrics librariggically

use a global memory address to initiate communication lsecau

source management framework such as RMS [23] to launch thethe memory allocation is synchronized and a global virtuahm

parallel applications. In order to provide a PVFS2 clieanvsr ar-
chitecture over Quadrics, it is necessary to break the mafdsatic
process pool used in Quadrics parallel jobs and eliminatenéed

of a resource management framework. That means that PVFS2over Quadrics/Elan4.

servers need to start first, then process requests andrd€iser-
vices to incoming dynamic clients via Quadrics interconnétle
describe the connection management as two separate isaues:
locating a dynamic pool of processes and managing the dynami
connections.

3.1. Allocating a Dynamic Pool of Processes
over Quadrics

Each process must acquire a unique Virtual Process ID (VEMHhD)
use it as an identity for network addressing before the conitmu
cation starts over Quadrics. VPID is an abstract representaf
Quadrics capability, which describes the network node tintext

ory [23] is available from the startup time under the staimmu-
nication model. Without the global memory, we design twdedif

ent schemes for clients to initiate communication to PVFS2ers
Initially, a basic scheme utilizesPTie-
based socket. A server opens a known TCP port and polls for in-
coming communication requests from time to time. Clientaneat

to this known TCP port and establish a temporal connecti@xto
change VPID and memory addresses.

Because establishing and tearing down the connectionsebatw
clients and servers is common for file I/O, it is desirable & d
sign a fast connection management scheme to achieve s#labl
accesses. In another scheme, we use native communicagon ov
Quadrics for communication initiation. All servers starittwa
known node ID and context ID, which together determine théD/P
according to the allocation scheme described earlier ;xdbétion.

A set of receive queue slots are also allocated, which dtartiai-

fied memory address across all the servers. Servers theworpoll

ID owned by a process, the range of network nodes and the rangethis receive queue for new connection requests (and als®tO s

of contexts all processes may have. Typically, Quadricizes
RMS [23] to allocate appropriate capabilities and VPIDsdibap-
plication processes before launching a parallel job. Tipal#ities
from all processes share the same range of network nodesiand t
same range of contexts. Together with the network node IDaand
context ID, each process can determine its VPID based oraffee ¢
bility. In this way, a static pool of application processe<ieated
over Quadrics interconnect.

To allocate a dynamic pool of processes over Quadrics, wegeha
the aforementioned allocation scheme. First, we expandatinge

vice requests), using Quadrics Queue-based Direct Memorggs
(QDMA) model. The QDMA model is described in more detail in
Section 4.1. Because this memory for the receive queue {@por
of the NIC memory mapped to the host address space) is albcat
dynamically at run time in the current Quadrics implemeaotst
one constraint here is that the server needs to report itessldt
the startup time. We pass this address to clients as an anwénatal
parameter. Further investigation will study the feasipitind im-
pact of mapping Quadrics NIC memory to a fixed memory space.

Fig. 3 shows a diagram of a client process that is initiatiognec-

of nodes to include every node in the network. Second, a large tion with a server. The client obtains the VPID of the senasda
range of contexts is provided on each node. Table 1 shows theon the pvfsZ st ab file and the memory address of the server’s re-

format of Elan4 capability for all PVFS2 processes. On each
node, the first context is dedicated to the server processihan
rest of the contexts are left for the client processes. ThéDVP
needed to identify an elan4 process is calculated with trindla:
nodeid = (j —i+ 1) 4 (ctx—i). A client process obtains the corre-
sponding parameters from the PVH32 ab entry as shown on the
third row of Table 1. A logfile-based atomic mechanism isantr
duced to serialize the acquisition of contexts by multipiecesses

on a single node. Clients connect to a server on a dynamis aagi

ceive queue through an environmental variaBERVER ADDR. Us-

ing the known memory address and the known VPID, a client can
initiate a message to the server, which includes its own V&iD
address of its exposed memory location. When a connectinitiis
ated, the corresponding network addressing informatioecgrded
into a global address list. Lists to record all the outstagdiper-
ations are also created. This address information and iatsdc
resources are removed when a connection is finalized as ibmo c
nection has been established earlier.

and then sent over the network. At the receiver side, It isived
into a receive queue slot. If the message is an unexpecteshgess
it is then copied into a secondary receive slot immediatatiiout
waiting for a matching receive operation to be posted. Tle pr
ENV: SERVER_ADDR mary receive slot is then recycled to receive new messagete N
that unexpected messages are typically short messagege $iae
unexpected messages requires another RDMA operatiomféra
. . L . : the remaining data, which works in the same way as the RDMA op-
Fig. 3: Connection Initiation over Native Elan4 Communicat erations described later in thendezvous protocol. For a message
that needs to be matched, it remains in the primary recedteistil
L . a matching receive operation is posted. This can save aa rees-
4. Designing PVFS2 Basic Transport Layer sage copy if the operations is posted in time. However, ifuine-

server: | B ~ ~ —=—server_addr

client:
eland://server:ctx/pvfs2—fs

over Quadrics/Elan4 ber of primary receive slots becomes low under various Sis,
these messages are copied into the secondary receivefigetag
All PVFS2 [1] networking functionalities are included inettBMI up primary receive slots for more incoming messages. When th
interface [6]. PVFS2 networking operations are designeainion- messages are eventually matched, the secondary receiseasto
blocking manner to allow multiple of them in service coneuntty. also recycled into the secondary buffer zone. If there argel

Two models of message transmission: matched and unexpectednumber of free secondary receive slots, they are deallddates-

are included. In the matched model, a send operation must beduce the memory usage.

matched with a corresponding receive operation beforeadts-c

pletion. In the unexpected model, a server polls for uneiguec 4 .2. Long Messageg witiRendezvous Protocol
messages from clients without having to allocate a comnatioic

buffer beforehand. Quadrics provides two basic intersa®m- Quadrics RDMA (read/write) communication model can traitsm
munication models: Queue-based Direct Memory Access (QPMA arbitrary size messages [23]. ®ndezvougprotocol is designed
and Remote Direct Memory Access (RDMA) [23]. In Quadrics with this model for long messages. Two schemes are propased t
QDMA model, a process can receive DMA messages (up to 2KB) take advantage of RDMA read and write, respectively. As show
posted by any remote processes into its receive queue; Tiee ot by the left diagram of Fig. 5, RDMA write is utilized in the firs

model, RDMA read/write, supports transmission of arbjtraize scheme. Arendezvousnessage is first initiated from the sender
messages. Using these two models, the transport layer 06RVF tg the receiver in both schemes. The receiver returns aroatkn
over Quadrics/Elan4 is designed with two protocols: eagdman- edgment to the sender when it detectedezvousnessage. The
dezvous, to handle messages with different sizes. sender then sends the full message with a RDMA write opera-

tion. At the completion of RDMA write, a control packet typed

4.1. Short and Unexpected Messages with Eager as FINis sent to the receiver for the completion notificatbthe
Protocol full message. The right diagram in Fig. 5 shows the otherraehe

with RDMA read. When theendezvousnessage arrives at the re-
ceiver, instead of returning an acknowledgment to the geride
receiver initiates a RDMA read operation to get the data. Wthe
RDMA read operation complete, a different control packpetyas
FIN_ACK is sent to the sender, both for acknowledging the arrival
of the earliemendezvous$ragment and notifying the completion of
the whole message.

A process can check incoming QDMA messages posted by any pro-
cess into its receive queue with QDMA model. An eager prdtoco
is designed with this model to transmit short and unexpentes-
sages. As mentioned in Section 3.2, this QDMA model is used in
initiating dynamic client/server connection scheme witla@rics
native communication.

—Rendezvous —Rendezvous
Send Recv e —
[\ 2
SNSSY T
5 / -7
hort/unexpteld L K
AR E | RDMA Write . RDMARead
RRR I IR hE
k=] R
< Tl
g — —
0] /
.o FIN FIN_ACK
send slots recv slots
a) RDMA Write b) RDMA Read

Fig. 4: Eager Protocol for Short and Unexpected Messages .
Fig. 5: RendezvouBrotocol for Long Messages

As shown in Fig. 4, in the eager protocol, a number of sendéetsu L.

are allocated on the sender side to form a send queue, andia fixe 9- Optimizing the Performance of PVFS2 over
number of receive queue slots (also referred to as primasive Quadrlcs

slots) are created on the receiver side to form a receiveequieu

addition, a secondary receive buffer zone is created witht aofs To improve the basic design discussed in Section 4, we have ex
secondary receive slots. The number of slots in the secpizdae plored several further design issues including adaptwelezvous
can grow or shrink on an on-demand basis. In this eager pbhtoc message transfer with RDMA read/write, optimization on ptan

a new message to be sent is first copied into a sender queue slotion notification and zero-copy non-contiguous 10.

5.1. Adaptive Rendezvous with RDMA Read
and RDMA Write

As discussed in Section 4.2, RDMA read and write are botfzatll

in the rendezvousgprotocol. This achieves zero-copy transmission
of long messages. File systems, such as DAFS [10], also thke a
vantage of similar RDMA-based message transmission. &lpic

a receiver decides to use RDMA read or write based on whether
the sender is trying to read or write data: a read operationpte-
mented as RDMA write from the receiver, and a write operaéisn

a RDMA read. However, one process can be potentially oveelda
with a large number of outstanding RDMA operations, which ca
lead to suboptimal performance due to the bandwidth drofsbf

A basic throttling mechanism is needed to control the nunafer
concurrent outstanding RDMA operations. We introduce apad
tive throttling algorithm to take into account of the loabimmation
and balance the number of RDMA operations. In this algorjtam
receiver gathers its load information from the local comioation
state and the sender’s load information from the sendetialiren-
dezvougacket. For the reason of fairness to multiple clients, this
algorithm takes into account whether one process is a sendar
heavy load. The client always carries out the RDMA operation
when one process is a heavily loaded server. Otherwisegivesc
uses RDMA read to pull the message when it is less loaded ltean t
sender, or RDMA write when it is not. Fig. 6 shows a flow chart of
the detail algorithm.

Yes
A server under heavy lo

No

The server is a receiver
Yes

No

Yes
receiver_load < sender |

No

RDMA Rea%
RDMA Write (<———

Fig. 6: Adaptive RDMA Algorithm

5.2. Optimizing Completion Notification

Event mechanisms that enable both local and remote completi
notification are available in Quadrics communication meddh
particular, this mechanism can be used to enable notifitaifo
message completion along with RDMA read/write operatiolms.
the rendezvousprotocol, so long as the control information con-
tained in the last control message is available to the reproess,
the completion of a full message can be safely notified thicarg
enabled remote event. We have designed this as an optiamizati
to therendezvougprotocol. A sender process allocates a comple-
tion event and encodes the address of this event in therdinst
dezvousnessage. When the receiver pulls the message via RDMA
read, it also triggers a remote event to the sender usingrte p
vided event address. Similarly, in the case of RDMA write, té-
ceiver provides the address of such an event in its ackngwiedt

to the sender. The receiver detects the completion of a fedlsage
through the remote event triggered by a RDMA write operatlan

either case, both sides notice the completion of data tressmn
without the need of an extra control message.

5.3. Zero-Copy Non-Contiguous 10 with SEA-
MUR

Non-contiguous I/O access is the main access pattern intsie
applications. Thakur et. al. [25] also noted that it is intpot to

achieve high performance MPI-IO by providing native suppdr
noncontiguous access in file systems. PVFS2 provides Gstdf

structured non-contiguous 10 in scientific applicationist LO can

be built on top of an interconnect’s native scatter/gatlippsrt if

it is available. Otherwise, it often resorts to memory pagkand
unpacking for converting non-contiguous to contiguous itmmi-

cation. An alternative is to use multiple contiguous ogerat. This
approach would require multiple send and receive operafiamm

both the sender and the receiver, and it would lead to moieepss
ing of smaller communication operations, resulting in tegrdda-
tion of performance.

Quadrics provides non-contiguous communication oparatio
the form ofelan_putvandelan.getv However, these operations are
specifically designed for the shared memory programmingeinod
(SHMEM) over Quadrics. The final placement of the data resuir
a memory copy from the global shared memory to the applisatio
destination memory. To support zero-copy non-contigu@isae
propose a Single Event Associated MUItiple RDMA (SEAMUR)
mechanism.

Fig. 7 shows a diagram of RDMA write-based SEAMUR mecha-
nism. The source and destination memory address/length pfi
the 10 fragments are first collected by the process that isitiaie

the RDMA operations, in this case, the sender. Then SEAMUR is
carried out in four steps. In Step 1, the sender determireesum-
ber of required contiguous RDMA write operatiori$, and con-
structs the same number of RDMA descriptors in the host mgmor
A single Elan4 event is also created to wait on the completion
theseN RDMA operations. In Step 2, these RDMA write descrip-
tors are posted together into the Quadrics Elan4 commartdgor
command queue to the NIC formed by a memory-mapped user ac-
cessible NIC memory) through programmed 10. In Step 3, multi
ple RDMA write operations are triggered to perform the zeopy
non-contiguous IO from the source to the destination memiory
Step 4, upon the completion of multiple RDMA operations,dhe

lier associated elan event is triggered, which in turn regtithe host
process through a host-side event. The remote side can ifiedhot
through a separated chained message as described in S&&jon
or simply a remote event as described in Section 5.2. Note tha
using this approach, multiple RDMA operations are issudtiouit
calling extra sender or receiver routines. Zero-copy iseaetdl by
directly addressing the source and destination memory DR
read is chosen based on the adaptemdezvougprotocol, similar
zero-copy hon-contiguous support can be achieved by igsuin-
tiple RDMA read operations, all being chained with anothizmg
event of countN.

6. Implementation

With the design of client/server connection model and thedport
layer over Quadrics communication mechanisms, we haveeimpl
mented PVFS2 over Quadrics/Elan4. The implementationdeda
on the recent release of PVFS2-1.1-prel. Due to the conilfigitib
issue of PVFS2 and Quadrics RedHat Linux kernel distriloytiee

Source Memory Destination Memory
Table 2: Network Performance over Quadrics

§ \ § § § \ § § Operations Latency | Bandwidth

\ TCP/EIP 23.92us | 482.26MB/s

Host Event 1 Quadrics RDOMA/Write| 1.93s | 910.1MB/s

l _,,fc"mmand Port Quadrics RDMA/Read| 3.19is | 911.IMB/s

\.N 4 i 2 3 / Quadrics QDMA 3.02ps | 368.2MBJ/s
single event Multiple RDMA destination NIC

performance in terms of both latency and bandwidth comptred
Fig. 7: Zero-Copy Non-Contiguous Communication with RDMA the performance of TCP over Quadrics. Moreover, the host CPU
write-based SEAMUR has less involvement in the communication processing wisen u

ing Quadrics RDMA operations because of its zero-copy ngessa

delivery. More CPU cycles can be used to handle computation i
have utilized a patched stock kernel linux-2.4.26-4.28tsrOur other components and contribute to higher overall file spster-
implementation is layered on top of Quadrics library, ldyet, and ~ formance. To demonstrate the potential and effectiveneever-
completely resides in the user space. We include the faligwi aging Quadrics capabl!ltles, we focus on the following .mahe
choices in our implementation: short messages are trateshiit performance of bandwidth-bound data transfer operatibesper-
the eager protocol along with the chained control messamey | formance of the Ia{tency-bognd.management operations, and 1
messages are transmitted through the adapgiveéezvougrotocol performance benefits to application benchmarks, such asTig?I
using zero-copy RDMA read and write; zero-copy PVFS2 listdO 10 [24] and BT-IO [26].
supported with SEAMUR; a throttling mechanism is used tareg .
late and balance the number of RDMA read and write operations 7.2. Performance of Data Transfer Operations

To evaluate the data transfer performance of PVFS2 file syste

7. Performance Evaluation have used a parallel program that iteratively performsalewing
)))) operations: create a new PVFS2 file, concurrently write Himteks
In this section, we describe the performance evaluatioruoiro- to disjoint regions of the file, flush the data, concurrenégid the

plementation of PVFS2 over Quadrics/Elan4. The experiment same data blocks back from the file, and then remove the fild. MP
were conducted on a cluster of eight SuperMicro SUPER X5DL8- ¢ojlective operations are used to synchronize applicatiosesses
GG nodes: each with dual Intel Xeon 3.0 GHz processors, 512 KB pefore and after each I/O operation. In our program, eacbess
L2 cache, PCI-X 64-bit 133 MHz bus, 533MHz Front Side Bus \yrites and then reads a contiguous 4MB block of data at disjoi
(FSB) and a total of 2GB PC2100 DDR-SDRAM physical mem- qffsets of a common file based on its rank in the MPI job. At the

ory. end of each iteration, the average time to perform the reaiété/w
)) operations among all processes is computed and recordeen Se
All eight nodes are connected to a QsNetetwork [23, 3], with iterations are performed, and the lowest and highest vaitesdis-

a dimension one quaternary fat-tree [11] QS-8A switch agtitei carded. Finally, the average values from the remainingtitems
Elan4 QM-500 cards. Each node has a 40GB, 7200 RPM, ATA/100 gre taken as the performance for the read and write opesation

hard disk Western Digital WD400JB. The operating systemeid-R
Hat 9.0 Linux. To minimize the impact in network capacity, we

used the TCP implementation of PVFS2 as a comparison. As men- 1500 ' ' ' 1S
tioned in Section 2.1, Quadrics provides an IP implemeortabin - Elan4 2S5 ---x---
top of its kernel communication library. g 1200 + ElTagg ‘llg § i
= X TCP2S --m-
. . =S s TCP 4S --o -
7.1. Performance Comparisons of Different 5 oo 1
Communication Operations 5 ¥ ——
e 600 /[/,></"’”‘/’é/ i
Table 2 shows the comparisons of the latency and bandwidth be & L X o T =
tween TCP/IP over Quadrics and Quadrics native commupitati o R T | :
operations, including QDMA and RDMA read/write. Quadri€s | § 300 'S G B B R
implementation is often referred to as EIP based on the ndiite o A
Ethernet module. The performance of TCP stream over Qusadric 0 . ! L ! .
is obtained using the netperf [2] benchmark. The perforraanfc 1 2 3 4 5 6 7
Quadrics native operations is obtained using microbendkipra- Number of Clients
grams: pgpi ng andgpi ng, available from standard Quadrics re-
leases [23]. The latency is measured as the one way latemyggiof Fig. 8: Performance Comparisons of PVFS2 Concurrent Read

cal ping-pong tests, and the bandwidth as the throughputesrs-

ing communication. All these benchmark programs directam We have divided the eight-node cluster into two groups: exsrand

sure the performance of corresponding communicationfades clients. Up to four nodes are configured as PVFS2 servershend

without introducing additional overhead. remaining nodes are running as clients. Experimental tesué
labeled as\S for a configuration with N servers. Fig. 8 shows the

As shown in the table, Quadrics native operations provideebe read performance of PVFS2 over Elan4 compared to the PVFS2

over TCP. PVFS2 over Elan4 improves the aggregated read band
width by more than 140% compared to that of PVFS2 over TCP.
This suggests that the read performance of PVFS2 is muctetimi
by the network communication and can significantly beneditrfr

the improvement in the network performance.

We have also performed experiments to evaluate the wriferper

mance of PVFS2/Elan4. We have observed between 10% to 45%

performance improvement compared to PVFS2/TCP when the lo-
cal ext3 file system is mounted in ordered or writeback moBes.
cause the network bandwidth of both Elan4 and TCP are more tha
350MB/s, much higher than the 40MB/s bandwidth of local IDE
disks, disk accesses could be a significant factor thatdithé per-
formance of write accesses due to the variation of cachifegtst

We have used a memory-resident file system, ramfs, to igatsti
the maximum write performance benefits of PVFS2 over Quadric
This is similar to have a local file system with a perfect budfeche

for PVFS2 IO servers. Fig.9 show the experimental resultgh W
varying numbers of clients concurrently writing to the filestem,
PVFS2 over Elan4 improves the aggregated write bandwidtlpby

to 82% compared to that of PVFS2 over TCP. This suggests that
PVFS2 write bandwidth can also benefit from Quadrics commu-
nication mechanisms, though it is relatively less boundgdhie
network communication compared to the read performance.

1250 T T . . ;
Elan4 1S —+—
0 Elan4 2S ---x---
m Elan4 4S ---*---
g 1000F % TCP 1S - |
< TCP 2S --m-
£ - IR TCP4S -0~
S 750 | © i
©
3 .
o o e X
L o % —-x- |
g 500 ,.x!:’/i_v,_,_.,,,,,',,f<»-777,,]
g P
93’ . . 1
S 250F h @B BB
<
0 1 1 1 1 1

3 4 5
Number of Clients

Fig. 9: Performance Comparisons of PVFS2 Concurrent Write

7.3. Performance of Management Operations

PVFS2 parallel file system is designed to provide scalahiellpa
10 operations that match MPI-10 semantics. For example agen
ment operations, such &Bl _Fi | e_open andMP| _Fi | e_set _si ze,

are shown to be very scalable in [16]. These management oper-

ations typically do not involve massive data transfer. Taleate
the benefits of Quadrics low latency communication to thear-m
agement operations, we have performed the following expanris
using a microbenchmark program available in the PVFS2iklistr
tion.

With the eight-node cluster, a PVFS2 file system is configuriti

two servers, both act as metadata and 10 servers. The first ex-

periment measures the average time to create a file usingceoll
tive MPI _Fi | e_open with different numbers of clients. The second
experiment measures the average time to perform a resiza-ope
tion using collectiveMPl _Fi | e_set _si ze with different numbers
of clients. As shown in Table 3, our PVFS2 implementationrove
Elan4 improves the time to resize a file by as much as4.257%)

Table 3: Comparison of the Scalability of Management Opemat

No. of clients| TCP | Elan4
Create (milliseconds)
1] 28.114] 27.669
2| 28.401| 28.248
3| 28.875| 28.750
4 | 28.892| 28.710
5] 29.481| 29.123
6 | 29.611| 29.410
Resize (milliseconds)
1] 0.192 | 0.141
2| 0.248 | 0.187
3| 0.330 | 0.201
4| 0.274 | 0.180
5| 0.331 | 0.226
6| 0.338 | 0.213

for up to 6 clients. However, the improvement on the time &ate
a file is just marginal compared to the total time. This is beea
the time in allocating the storage spaces at the PVFS2 stawver
the new file, though small, still dominates over the commaitidc
between the client and the server. On the other hand, ondietie
created, the time for the operations that update the filedataaas
represented by the resize operation, can be reduced by tRePV
implementation over Elan4. Therefore PVFS2 implementaticer
Elan4 is also beneficial to the scalability of MPI-IO managein
operations.

7.4. Performance of MPI-Tile-10

MPI-Tile-1O [24] is a tile reading MPI-IO application. It $¢s the
performance of tiled access to a two-dimensional denseselata
simulating the type of workload that exists in some visialan
applications and numerical applications. Four of eightesodre
used as server nodes and the other four as client nodes gudiih
tile-1O processes. Each process rendersx<a22array of displays,
each with 1024 768 pixels. The size of each element is 32 bytes,
leading to a file size of 96 MB.

PVFS2 provides two different modes for its 1O servers: teyve
and notrovesync. The former is the default mode in which 10
servers perforni sync operations to flush its underlying file sys-
tem buffer cache; the latter allows the 10 servers to takectube
effects of the local file system for better performance. Weeha
evaluated both the read and write performance of mpi-tilevier
PVFS2/Elan4 under both modes. As shown in Fig. 10, compared
to PVFS2/TCP, PVFS2/Elan4 improves MPI-Tile-10 write band
width by 170% with server side caching effects (under nasgnc
mode, W/N), and 12% without caching effects (under trovesyn
mode, W/T). On the other hand, MPI-Tile-IO read bandwidth is
improved by about 240% with or without server side caching ef
fects. These results indicate that our implementationdséu able

to leverage the performance benefits of Quadrics mechariigms
PVFS2: when the server disk access is a bottleneck, it ingsrov
the write performance with its zero-copy user-level comitaition
which competes less with the disk access for CPU time; when th
server disk access is not a primary bottleneck, it improvath b
the read and write bandwidth significantly. Note that therel
tive performance improvement for the MPI-Tile-1O applicatis
much higher compared to the improvement observed for data-tr

fer operations. This is because MPI-Tile-10 involves mainbn-

contiguous 10, for which PVFS2/Elan4 provides true OS-lsgpa Table 4: Performance of BT-IO Benchmark (seconds)
zero-copy support with its SEAMUR mechanism, but PVFS2/TCP Type Duration | 10 Time
does not support zero-copy list 1O. No 1O 6171 ——
BT/IO Elan4 63.83 2.12
400 ' ' ' BT/IO TCP (over E|P) 67.09 5.38
aso| I ES2Ee BT/IO GM 67.58 5.87

w

Q

=]
T

N
a
=]

InfiniBand over PVFS1 [20]. DeBergalis et. al. [10] have ft
described a file system, DAFS, built on top of networks wit\VI
like semantics. Our work is designed for Quadrics Intereats
over PVFS2[1].

Bandwidth (MB/s)
N
o
)

Models to support client/server communication and progieieeric
abstractions for transport layer have been described affer-d
ent networks [30, 17, 6]. Yu et. al [29] have described the
designing of dynamic process model over Quadrics for MPI2.

i ’_.
0

write WIT ReadWiT Write WIN Read WIN Our work explores the ways to overcome Quadrics static pro-
]) cess/communication model and optimize the transport potgo
Fig. 10: Performance of MPI-Tile-lO Benchmark with Quadrics event mechanisms for PVFS2. Ching et. al [7gha
implemented list IO in PVFS1 and evaluated its performanas o
7.5. Performance of NAS BT-10 TCP/IP over fast-Ethernet. Wu et. al [28] have studied theebe

fits of leveraging InfiniBand hardware scatter/gather opana to

The BT-IO benchmarks are developed at NASA Ames Research OPtimize non-contiguous IO access in PVFS1. Our work etploi
Center based on the Block-Tridiagonal problem of the NASWPar & communication mechanism with a single event chained téi-mul

lel Benchmark suite. These benchmarks test the speed dighé®a ple RDMA to support zero-copy non-contiguous network I0rove
capability of high performance computing applicationse Emtire Quadrics.

data set undergoes complex decomposition and partitienteally

distributed among many processes, more details availatj26i. 9. Conclusions

The BT-10O problem size class A is evaluated. We have also eval
uated the performance of BT-IO with the same version of PVFS2 |, this paper, we have examined the feasibility of desigaiparal-

built on top of Myrinet/GM. The Myrinet experiment is conded lel file system over Quadrics [23] to take advantage of its-imel

on the same 8-node cluster. All nodes are equipped with twb po communication and RDMA operations. PVFS2 [1] is used as the
LANai-XP cards that are connected to a Myrinet 2000 netwivt. parallel file system platform in this work. The challengisgiies
hgve used four of eight nodes as server nodes and the othieasfou i, supporting PVFS2 on top of Quadrics interconnects aratice
client nodes. fied. Accordingly, strategies have been designed to ovesdbese

challenges, such as constructing a client-server cororentodel,

Table 4 shows the comparisons of BT-IO performance over esigning the PVFS2 transport layer over Quadrics RDMA read
PVFS2/Elan4 and PVFS2/TCP on top of Quadrics interconnect, 5nq write, and providing efficient non-contiguous netwdgksup-

and that of PVFS2/GM over Myrinet. The performance of ba- ot The performance of our implementation is comparedhad t
sic BT benchmark is measured as the time of BT-IO benchmark o py/ES2/TCP over Quadrics IP implementation. Our expenime
without IO accesses. On the same Quadrics network, the BT- 5 regyits indicate that: the performance of PVFS2 can deiféi
10 benchmark has only 2.12 seconds extra 10 time when access-cantly improved with Quadrics user-level protocols and RDbA-
ing a PVFS2 file system provided by this implementation, but apijities. Compared to PVFS2/TCP on top of Quadrics IP énpl
5.38 seconds when accessing a PVFS2 file system with a TCP-mentation, our implementation improves the aggregated pea-
based implementation. The 10 time of BT-10 is reduced by 60% tormance by more than 140%. It is also able to deliver sigaific

with our Quadrics/Elan4-based implementation comparétB- herformance improvement in terms of 10 access time to apiptin
based |mplementat|qn. Compared to the PVFS? implementatio panchmarks such as mpi-tile-io [24] and BT-10 [26]. To thetif
over Myrinet/GM, this Elan4-based implementation alsoucess our knowledge, this is the first high performance design anlé-

the 10 time of BT-IO. This is because the bandwidth of Quaric mentation of a user-level parallel file system, PVFS2, oveadpics
is higher than that of Myrinet 2000, about 500 MB with two40or interconnects.

LANai cards. These results suggest our implementation an i

deed enable the applications to leverage the performanwefit®e |y fyture, we intend to leverage more features of Quadricsup
of Quadrics/Elan4 for efficient file 10 accesses. port PVFS2 and study their possible benefits to differeneetsp
of parallel file system. For example, we intend to study tlaesife
8. Related Work bility of offloading PVFS2 communication-related processinto
Quadrics programmable network interface to free up more¢ hos
Previous research have studied the benefits of using ussrelam- CPU computation power for disk 10 operations. We also intiend
munication protocols to parallelize 10 access to storageess. study the benefits of integrating Quadrics NIC memory intd-82

Zhou et. al. [31] have studied the benefits of VIA networks in memory hierarchy, such as data caching with client andiwese
database storage. Wu et. al. [27] have described their work o side NIC memory.

Acknowledgment

We gratefully acknowledge Dr. Pete Wyckoff from Ohio Super-

computing Center and Dr. Jiesheng Wu from Ask Jeeves, Inc for

many technical discussions. We would like to thank memlrers f
the PVFS2 team for their technical help. Furthermore, We als
would like to thank Drs Daniel Kidger and David Addison from
Quadrics, Inc for their valuable technical support.

10

[1] The Parallel Virtual File System, version 2.

(2]
(3]

(4]

(5]

(6]

References

http://www
pvfs.org/pvfs2.

The Public Netperf Homepage.
netperf/NetperfPage.html.

J. Beecroft, D. Addison, F. Petrini, and M. McLaren. Q$Ne
I1: An Interconnect for Supercomputing Applications. the
Proceedings of Hot Chips '0%tanford, CA, August 2003.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area NetworkEEE Micro, 15(1):29-36,
1995.

D. Bonachea, C. Bell, P. Hargrove, and M. Welcome. GAS-
Net 2: An Alternative High-Performance Communication In-
terface, Nov. 2004.

P. H. Carns, W. B. Ligon Ill, R. Ross, and P. Wyckoff. BMI:
A Network Abstraction Layer for Parallel I/O, April 2005.

http://www.netperf.org/

[7] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp.

(8]

Noncontiguous /0O through PVFS. IProceedings of
the IEEE International Conference on Cluster Computing
Chicago, IL, September 2002.

Cluster File System, Inc. Lustre: A Scalable, High Perfo
mance File System. http://www.lustre.org/docs.html.

[9] A. M. David Nagle, Denis Serenyi. The Panasas ActiveScal

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Storage Cluster — Delivering Scalable High Bandwidth Stor-
age. InProceedings of Supercomputing ;0dovember 2004.

M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Nokec

T. Talpey, and M. Wittle. The Direct Access File System.
In Proceedings of Second USENIX Conference on File and
Storage Technologies (FAST '02003.

J. Duato, S. Yalamanchili, and L. Nilnterconnection Net-
works: An Engineering Approaciihe IEEE Computer Soci-
ety Press, 1997.

J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. SuBl|
menthal. PPFS: A High Performance Portable Parallel File
System. IrProceedings of the 9th ACM International Confer-
ence on Supercomputingages 385-394, Barcelona, Spain,
July 1995. ACM Press.

IBM Corp. IBM AIX Parallel I/O File System: Installatig
Administration, and Use. Document Number SH34-6065-01,
August 1995.

Infiniband Trade Association. http://www.infinibaadbrg.

Intel Scalable Systems Division.
Guide, May 1995.

R. Latham, R. Ross, and R. Thakur. The impact of file sys-
tems on mpi-io scalability. IfProceedings of the 11th Eu-

Paragon System Wser’

(17]

(18]
(19]

(20]

(21]

(22]

(23]
(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

ropean PVM/MPI Users’ Group Meeting (Euro PVM/MPI
2004) pages 87-96, September 2004.

J. Liu, M. Banikazemi, B. Abali, and D. K. Panda. A Poii&ab
Client/Server Communication Middleware over SANs: De-
sign and Performance Evaluation with InfiniBand. SAN-02
Workshop (in conjunction with HPCAfebruary 2003.

Message Passing Interface ForumPI-2: Extensions to the
Message-Passing Interfacéul 1997.

N. Nieuwejaar and D. Kotz. The Galley Parallel File Syst
Parallel Computing(4):447-476, June 1997.

P. H. Carns and W. B. Ligon lll and R. B. Ross and R. Thakur.
PVFS: A Parallel File System For Linux Clusters.Rroceed-
ings of the 4th Annual Linux Showcase and Confergpages
317-327, Atlanta, GA, October 2000.

D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Re-
dundant Arrays of Inexpensive Disks. Rroceedings of the
1988 ACM SIGMOD International Conference on Manage-
ment of DataChicago, IL, 1988.

F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Fraaht
berg. The Quadrics Network: High Performance Cluster-
ing Technology.IEEE Micro, 22(1):46-57, January-February
2002.

Quadrics, Inc. Quadrics Linux Cluster Documentation.

R. B. Ross. Parallel i/o benchmarking consortium. #ttp
www-unix.mcs.anl.gov/rross/pio-benchmark/html/.

R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
10 Portably and with High Performance. Rroceedings of
the 6th Workshop on I/O in Parallel and Distributed Systems
pages 23-32. ACM Press, May 1999.

P. Wong and R. F. Van der Wijngaart. NAS Parallel Bench-
marks 1/0 Version 2.4. Technical Report NAS-03-002, Com-
puter Sciences Corporation, NASA Advanced Supercomput-
ing (NAS) Division.

J. Wu, P. Wychoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. Proceedings of the
International Conference on Parallel Processing, 6Gohsi-
ung, Taiwan, October 2003.

J. Wu, P. Wychoff, and D. K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand Proceed-
ings of Cluster Computing 'g3Hong Kong, December 2004.

W. Yu, T. S. Woodall, R. L. Graham, and D. K. Panda. De-
sign and Implementation of Open MPI over Quadrics/Elan4.
In Proceedings of the International Conference on Parallel
and Distributed Processing Symposium,'@olorado, Den-
ver, April 2005.

R. Zahir. Lustre Storage Networking Transport Layer.
http://www.lustre.org/docs.html.

Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. Flifhj
and K. Li. Experiences with VI Communication for Database
Storage. InProceedings of the 29th Annual International
Symposium on Computer Architectupages 257-268. IEEE
Computer Society, 2002.

