
High Performance Support of
Parallel Virtual File System (PVFS2) over Quadrics ∗

Weikuan Yu Shuang Liang Dhabaleswar K. Panda

Network-Based Computing Laboratory
Dept. of Computer Sci. & Engineering

The Ohio State University
{yuw,liangs,panda}@cse.ohio-state.edu

Abstract

Parallel I/O needs to keep pace with the demand of high per-
formance computing applications on systems with ever-increasing
speed. Exploiting high-end interconnect technologies to reduce the
network access cost and scale the aggregated bandwidth is one of
the ways to increase the performance of storage systems. In this
paper, we explore the challenges of supporting parallel filesys-
tem with modern features of Quadrics, including user-levelcom-
munication and RDMA operations. We design and implement a
Quadrics-capable version of a parallel file system (PVFS2).Our
design overcomes the challenges imposed by Quadrics staticcom-
munication model to dynamic client/server architectures.Quadrics
QDMA and RDMA mechanisms are integrated and optimized for
high performance data communication. Zero-copy PVFS2 listIO is
achieved with a Single Event Associated MUltiple RDMA (SEA-
MUR) mechanism. Experimental results indicate that the perfor-
mance of PVFS2, with Quadrics user-level protocols and RDMA
operations, is significantly improved in terms of both data transfer
and management operations. With four IO server nodes, our im-
plementation improves PVFS2 aggregated read bandwidth by up to
140% compared to PVFS2 over TCP on top of Quadrics IP imple-
mentation. Moreover, it delivers significant performance improve-
ment to application benchmarks such as mpi-tile-io [24] andBT-
IO [26]. To the best of our knowledge, this is the first work in the
literature to report the design of a high performance parallel file
system over Quadrics user-level communication protocols.

Keywords: Parallel IO, Parallel File System, RDMA, Zero-Copy,
Quadrics

1. Introduction

The gap between computer processing power and disk throughput is
becoming wider as the growth of the latter continuously lagsbehind
that of the former [21]. Large I/O-intensive applications on these

∗This research is supported in part by a DOE grant #DE-FC02-
01ER25506 and NSF Grants #EIA-9986052 and #CCR-0204429.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ICS’05, June 20-22, Boston, MA, USA. Copyright
c© 2005, ACM 1-59593-167-8/06/2005...$5.00

platforms demand increasingly higher I/O throughput. Correspond-
ingly, scalable parallel I/O needs to be available for thesereal world
applications to perform well. Both commercial [13, 15, 9] and re-
search projects [19, 12, 1] have been developed to provide parallel
file systems for I/O accesses on such architectures. Among them,
the Parallel Virtual File System 2 (PVFS2) [1] has been created with
the intention of addressing the needs of next generation systems us-
ing low cost Linux clusters with commodity components.

On the other hand, high performance interconnects such as
Myrinet [4], InfiniBand [14], and Quadrics [3] not only have been
deployed into large commodity component-based clusters topro-
vide higher computing power, but also have been utilized in com-
modity storage systems to achieve scalable parallel I/O support. For
example, the low-overhead high-bandwidth user-level communica-
tion provided by VI [31], Myrinet [20], and InfiniBand [27] has
been utilized to parallelize I/O accesses to storage servers and in-
crease the performance of parallel file systems.

One of the leading technologies, Quadrics Interconnect [23, 3],
provides very low latency (≤ 2µs) and high bandwidth. It sup-
ports many of the cutting-edge communication features, such as
OS-bypass user-level communication, remote direct memoryac-
cess (RDMA), hardware atomic operations and hardware collec-
tive operations. Moreover, Quadrics network interface provides a
programmable co-processor, which offloads much of the commu-
nication processing down to the network interface and contributes
greatly to its efficient point-to-point and collective communication.
These features and their performance advantages have not been
leveraged to support scalable parallel IO throughput at theuser-
level, though some of these modern features such as RDMA are
exploited over Myrinet and InfiniBand. Currently, there areefforts
in distributed file systems to exploit the benefits of Quadrics via
Quadrics kernel communication library, e.g., Lustre [8]. But this
approach incurs high network access overhead due to the involve-
ment of the operating system in the communication path. In addi-
tion, as a distributed file system Lustre is designed to scalethe ag-
gregated bandwidth for accesses to files on different servers, while
parallel file accesses from a single parallel job cannot directly take
its maximum benefits. For example, concurrent writes from multi-
ple processes in a single parallel job cannot benefit with Lustre. A
typical platform may utilize a parallel file system such as PFS [15]
to export scalable bandwidth to a single job by striping the data of
a single parallel file system over multiple underlying file systems
such as Lustre. However, the extra multiplexing adds more tothe
cost in the path of IO accesses.

In this paper, we examine the feasibility of supporting parallel file
systems with Quadrics user-level communication and RDMA op-
erations. PVFS2 [1] is used as a parallel file system in this work.
We first investigate the challenges of supporting PVFS2 on top of
Quadrics interconnect, focusing on: (a) designing a client-server
model over Quadrics at the user-level, (b) constructing an efficient
PVFS2 transport layer over Quadrics communication mechanisms,
such as QDMA and RDMA, and (c) optimizing the performance of
PVFS2 over Quadrics. In particular, we overcome the constraints
imposed by Quadrics static communication model to support dy-
namic PVFS2 client and server connections. PVFS2 also supports
non-contiguous IO via its list IO interface. By taking advantage of
Quadrics RDMA and event mechanisms, we design a Single Event-
Associated MUltiple RDMA (SEAMUR) mechanism to achieve
zero-copy PVFS2 list IO.

We evaluate our implementation using PVFS2 and MPI-IO [18]
benchmarks. The performance of our implementation is compared
to that of PVFS2 over TCP. Quadrics IP implementation is usedin
PVFS2/TCP to avoid network differences. Our work demonstrates
that: (a) a client/server process model required for file system com-
munication is feasible with Quadrics interconnect; (b) thetransport
layer of a parallel file system can be efficiently implementedon top
of Quadrics; and (c) the performance of PVFS2 can be significantly
improved with Quadrics user-level protocols and RDMA capabil-
ities. Compared to PVFS2/TCP, our implementation increases the
aggregated read performance of PVFS2 by 140%. It is also able
to deliver significant performance improvement in terms of IO ac-
cess time to application benchmarks such as mpi-tile-io [24] and
BT-IO [26]. To the best of our knowledge, this is the first workin
the literature to report the design of a high performance parallel file
system over Quadrics user-level communication protocols.

The rest of the paper is organized as follows. In the next section,
we provide overviews of Quadrics and PVFS2, and the challenges
of designing PVFS2 over Quadrics. Section 3 provides the design
of client/server model over Quadrics. Sections 4 and 5 discuss the
design of the PVFS2 transport layer over Quadrics communication
mechanisms. The implementation is provided in Section 6, fol-
lowed by the performance evaluation in Section 7. Section 8 gives
a brief review of related works. Section 9 concludes the paper.

2. Challenges in Designing PVFS2 over
Quadrics/Elan4

Quadrics interconnect [3] and its parallel programming libraries,
libelan andlibelan4 [23], are widely used to support high per-
formance computing. However little is known about how to lever-
age high speed Quadrics interconnect to support high performance
parallel file systems. This section provides a brief overview of
Quadrics/Elan4 and PVFS2, and discusses the challenging issues
in designing PVFS2 over Quadrics/Elan4.

2.1. Overview of Quadrics/Elan4

Quadrics [22, 23] has recently released its second generation net-
work, QsNetII [3]. This new release provides ultra-low latency,
high bandwidth communication with its two building blocks:the
Elan-4 network interface card and the Elite-4 switch, whichare in-
terconnected in a fat-tree topology. As shown in Fig. 1, Quadrics
provides two communication libraries:libelan and libelan4
user-level libraries and a kernel communication library, on top of
its Elan4 network [23]. While the kernel communication library

provides communication support to Lustre (CFS) [8] and IP proto-
cols, the user-level communication libraries (libelan andlibelan4)
can provide OS-bypass communication and Remote Directed Mes-
sage Access (RDMA) directly to parallel user applications.

Driver

User Applications

Hardware

Kernel Space

User Space

Elan Kernel
Library

IP CFS

libelan4

libelan
System Services

Elan4 / Elite4

Device

Fig. 1: Quadrics/Elan4 Communication Architecture

2.2. Overview of PVFS2

PVFS2 [1] is the second generation parallel file system from the
Parallel Virtual File System (PVFS) project team. It incorporates
the design of the original PVFS [20] to provide parallel and aggre-
gated I/O. A client/server architecture is used in PVFS2. Both the
server and client side libraries can reside completely in user space.
Clients initiate requests for file accesses with one of the servers.
The actual file IO is striped across a number of file servers. Stor-
age spaces of PVFS2 are managed by and exported from individual
servers using native file systems available on the local nodes. More
information about PVFS2 can be found in [1].

2.3. Challenges

PVFS2 provides a network abstraction layer to encapsulate all the
functionalities needed for communication support. The resulting
component is called Buffered Message Interface (BMI), which in-
teracts with other components in the software architectureto sup-
port low-level IO accesses. Fig. 2 shows a diagram of PVFS2 com-
ponents on both the client side and the server side. As shown
in the figure, BMI functionalities can be further classified into
three categories: connection management between processes, mes-
sage passing activities for interprocess communication (IPC) and
the memory management needed for IPC. In particular, Quadrics
user-level programming libraries have a unique design for running
Higher Performance Computing (HPC) applications. All parallel
jobs over Quadrics need to start from a static pool of application
processes [23]. This is rather incompatible to the needs of file sys-
tems, in which servers typically start first and deliver IO services
to incoming clients. In addition, PVFS2 interprocess communica-
tion between servers and clients needs to be properly layered over
Quadrics communication mechanisms to expose the maximum ca-
pacity of Quadrics hardware. In this work, we take on the fol-
lowing issues to design PVFS2 over Quadrics: (a) constructing a
client/server communication model in terms of connection manage-
ment, (b) designing PVFS2 basic transport protocol on top ofap-
propriate Quadrics communication mechanisms for message trans-
mission, and (c) optimizing PVFS2 performance over Quadrics.

Network (Ethernet, Myrinet, InfiniBand, ...)

Job Interface

Server

Operation State Machine

flowBMI

System Interface

Client

Job Interface

flow Trove
BMI connection

mesgmemory memory

Storage

Fig. 2: The Architecture of PVFS2 Components

3. Designing Dynamic Client/Server Communi-
cation Model Over Quadrics/Elan4

As described in Section 2.2, PVFS2 is designed as a client/server ar-
chitecture. In contrast, an application over Quadrics libraries runs
as a static pool of parallel processes [23]. All of these processes
have to join or leave the Quadrics network in a synchronized man-
ner. In addition, to facilitate this process, Quadrics requires a re-
source management framework such as RMS [23] to launch the
parallel applications. In order to provide a PVFS2 client/server ar-
chitecture over Quadrics, it is necessary to break the modelof static
process pool used in Quadrics parallel jobs and eliminate the need
of a resource management framework. That means that PVFS2
servers need to start first, then process requests and deliver IO ser-
vices to incoming dynamic clients via Quadrics interconnect. We
describe the connection management as two separate issues:al-
locating a dynamic pool of processes and managing the dynamic
connections.

3.1. Allocating a Dynamic Pool of Processes
over Quadrics

Each process must acquire a unique Virtual Process ID (VPID)and
use it as an identity for network addressing before the communi-
cation starts over Quadrics. VPID is an abstract representation of
Quadrics capability, which describes the network node ID, context
ID owned by a process, the range of network nodes and the range
of contexts all processes may have. Typically, Quadrics utilizes
RMS [23] to allocate appropriate capabilities and VPIDs forall ap-
plication processes before launching a parallel job. The capabilities
from all processes share the same range of network nodes and the
same range of contexts. Together with the network node ID anda
context ID, each process can determine its VPID based on the capa-
bility. In this way, a static pool of application processes is created
over Quadrics interconnect.

To allocate a dynamic pool of processes over Quadrics, we change
the aforementioned allocation scheme. First, we expand therange
of nodes to include every node in the network. Second, a large
range of contexts is provided on each node. Table 1 shows the
format of Elan4 capability for all PVFS2 processes. On each
node, the first context is dedicated to the server process, and the
rest of the contexts are left for the client processes. The VPID
needed to identify an elan4 process is calculated with this formula:
nodeid ∗ (j − i +1)+(ctx− i). A client process obtains the corre-
sponding parameters from the PVFS2fstab entry as shown on the
third row of Table 1. A logfile-based atomic mechanism is intro-
duced to serialize the acquisition of contexts by multiple processes
on a single node. Clients connect to a server on a dynamic basis and

notify the server when they leave. Servers allocate communicating
resources as new clients join in, and deallocate when they discon-
nect or timeout. There are no restrictions of synchronized memory
allocation and startup.

Table 1: Elan4 Capability Allocation for Dynamic Processes

Setting Value
Capability node{0..N}ctx{i.. j}

VPID nodeid ∗ (j − i +1)+(ctx− i)
fstab elan4://serverid:serverctx/pvfs2-fs

3.2. Fast Connection Management

A process over Quadrics needs to know both the VPID and an ex-
posed memory location of a remote process before sending a mes-
sage. Parallel jobs built from default Quadrics libraries,typically
use a global memory address to initiate communication because
the memory allocation is synchronized and a global virtual mem-
ory [23] is available from the startup time under the static commu-
nication model. Without the global memory, we design two differ-
ent schemes for clients to initiate communication to PVFS2 servers
over Quadrics/Elan4. Initially, a basic scheme utilizes TCP/IP-
based socket. A server opens a known TCP port and polls for in-
coming communication requests from time to time. Clients connect
to this known TCP port and establish a temporal connection toex-
change VPID and memory addresses.

Because establishing and tearing down the connections between
clients and servers is common for file I/O, it is desirable to de-
sign a fast connection management scheme to achieve scalable IO
accesses. In another scheme, we use native communication over
Quadrics for communication initiation. All servers start with a
known node ID and context ID, which together determine the VPID
according to the allocation scheme described earlier in this section.
A set of receive queue slots are also allocated, which start at a uni-
fied memory address across all the servers. Servers then pollon
this receive queue for new connection requests (and also IO ser-
vice requests), using Quadrics Queue-based Direct Memory Access
(QDMA) model. The QDMA model is described in more detail in
Section 4.1. Because this memory for the receive queue (a portion
of the NIC memory mapped to the host address space) is allocated
dynamically at run time in the current Quadrics implementation,
one constraint here is that the server needs to report its address at
the startup time. We pass this address to clients as an environmental
parameter. Further investigation will study the feasibility and im-
pact of mapping Quadrics NIC memory to a fixed memory space.

Fig. 3 shows a diagram of a client process that is initiating connec-
tion with a server. The client obtains the VPID of the server based
on the pvfs2fstab file and the memory address of the server’s re-
ceive queue through an environmental variable,SERVER ADDR. Us-
ing the known memory address and the known VPID, a client can
initiate a message to the server, which includes its own VPIDand
address of its exposed memory location. When a connection isiniti-
ated, the corresponding network addressing information isrecorded
into a global address list. Lists to record all the outstanding oper-
ations are also created. This address information and associated
resources are removed when a connection is finalized as if no con-
nection has been established earlier.

ENV: SERVER_ADDR

server_addr

client:

server:

elan4://server:ctx/pvfs2−fs

Fig. 3: Connection Initiation over Native Elan4 Communication

4. Designing PVFS2 Basic Transport Layer
over Quadrics/Elan4

All PVFS2 [1] networking functionalities are included in the BMI
interface [6]. PVFS2 networking operations are designed ina non-
blocking manner to allow multiple of them in service concurrently.
Two models of message transmission: matched and unexpected,
are included. In the matched model, a send operation must be
matched with a corresponding receive operation before its com-
pletion. In the unexpected model, a server polls for unexpected
messages from clients without having to allocate a communication
buffer beforehand. Quadrics provides two basic interprocess com-
munication models: Queue-based Direct Memory Access (QDMA)
and Remote Direct Memory Access (RDMA) [23]. In Quadrics
QDMA model, a process can receive DMA messages (up to 2KB)
posted by any remote processes into its receive queue; The other
model, RDMA read/write, supports transmission of arbitrary size
messages. Using these two models, the transport layer of PVFS2
over Quadrics/Elan4 is designed with two protocols: eager and ren-
dezvous, to handle messages with different sizes.

4.1. Short and Unexpected Messages with Eager
Protocol

A process can check incoming QDMA messages posted by any pro-
cess into its receive queue with QDMA model. An eager protocol
is designed with this model to transmit short and unexpectedmes-
sages. As mentioned in Section 3.2, this QDMA model is used in
initiating dynamic client/server connection scheme with Quadrics
native communication.

recv slots

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

short/unexpted

Send Recv

se
co

nd
ar

y
bu

ffe
r

zo
ne

send slots

Fig. 4: Eager Protocol for Short and Unexpected Messages

As shown in Fig. 4, in the eager protocol, a number of sender buffers
are allocated on the sender side to form a send queue, and a fixed
number of receive queue slots (also referred to as primary receive
slots) are created on the receiver side to form a receive queue. In
addition, a secondary receive buffer zone is created with a set of
secondary receive slots. The number of slots in the secondary zone
can grow or shrink on an on-demand basis. In this eager protocol,
a new message to be sent is first copied into a sender queue slot

and then sent over the network. At the receiver side, It is received
into a receive queue slot. If the message is an unexpected message,
it is then copied into a secondary receive slot immediately without
waiting for a matching receive operation to be posted. The pri-
mary receive slot is then recycled to receive new messages. Note
that unexpected messages are typically short messages. Large size
unexpected messages requires another RDMA operation to transfer
the remaining data, which works in the same way as the RDMA op-
erations described later in therendezvous protocol. For a message
that needs to be matched, it remains in the primary receive slot until
a matching receive operation is posted. This can save an extra mes-
sage copy if the operations is posted in time. However, if thenum-
ber of primary receive slots becomes low under various situations,
these messages are copied into the secondary receive slots,freeing
up primary receive slots for more incoming messages. When the
messages are eventually matched, the secondary receive slots are
also recycled into the secondary buffer zone. If there are a large
number of free secondary receive slots, they are deallocated to re-
duce the memory usage.

4.2. Long Messages withRendezvous Protocol

Quadrics RDMA (read/write) communication model can transmit
arbitrary size messages [23]. Arendezvousprotocol is designed
with this model for long messages. Two schemes are proposed to
take advantage of RDMA read and write, respectively. As shown
by the left diagram of Fig. 5, RDMA write is utilized in the first
scheme. Arendezvousmessage is first initiated from the sender
to the receiver in both schemes. The receiver returns an acknowl-
edgment to the sender when it detects arendezvousmessage. The
sender then sends the full message with a RDMA write opera-
tion. At the completion of RDMA write, a control packet typed
as FIN is sent to the receiver for the completion notificationof the
full message. The right diagram in Fig. 5 shows the other scheme
with RDMA read. When therendezvousmessage arrives at the re-
ceiver, instead of returning an acknowledgment to the sender, the
receiver initiates a RDMA read operation to get the data. When the
RDMA read operation complete, a different control packet typed as
FIN ACK is sent to the sender, both for acknowledging the arrival
of the earlierrendezvousfragment and notifying the completion of
the whole message.

FIN_ACK

−Rendezvous

RDMA Write

−Rendezvous

RDMA Read

FIN

a) RDMA Write b) RDMA Read

Fig. 5: RendezvousProtocol for Long Messages

5. Optimizing the Performance of PVFS2 over
Quadrics

To improve the basic design discussed in Section 4, we have ex-
plored several further design issues including adaptiverendezvous
message transfer with RDMA read/write, optimization on comple-
tion notification and zero-copy non-contiguous IO.

5.1. Adaptive Rendezvous with RDMA Read
and RDMA Write

As discussed in Section 4.2, RDMA read and write are both utilized
in the rendezvousprotocol. This achieves zero-copy transmission
of long messages. File systems, such as DAFS [10], also take ad-
vantage of similar RDMA-based message transmission. Typically
a receiver decides to use RDMA read or write based on whether
the sender is trying to read or write data: a read operation isimple-
mented as RDMA write from the receiver, and a write operationas
a RDMA read. However, one process can be potentially overloaded
with a large number of outstanding RDMA operations, which can
lead to suboptimal performance due to the bandwidth drop-off [5].
A basic throttling mechanism is needed to control the numberof
concurrent outstanding RDMA operations. We introduce an adap-
tive throttling algorithm to take into account of the load information
and balance the number of RDMA operations. In this algorithm, a
receiver gathers its load information from the local communication
state and the sender’s load information from the sender’s initial ren-
dezvouspacket. For the reason of fairness to multiple clients, this
algorithm takes into account whether one process is a serverunder
heavy load. The client always carries out the RDMA operations
when one process is a heavily loaded server. Otherwise, a receiver
uses RDMA read to pull the message when it is less loaded than the
sender, or RDMA write when it is not. Fig. 6 shows a flow chart of
the detail algorithm.

No

The server is a receiver?

RDMA Read

RDMA Write

A server under heavy load?

No

Yes

No

Yes

receiver_load < sender_load
Yes

Fig. 6: Adaptive RDMA Algorithm

5.2. Optimizing Completion Notification

Event mechanisms that enable both local and remote completion
notification are available in Quadrics communication models. In
particular, this mechanism can be used to enable notification of
message completion along with RDMA read/write operations.In
the rendezvousprotocol, so long as the control information con-
tained in the last control message is available to the remoteprocess,
the completion of a full message can be safely notified through an
enabled remote event. We have designed this as an optimization
to the rendezvousprotocol. A sender process allocates a comple-
tion event and encodes the address of this event in the firstren-
dezvousmessage. When the receiver pulls the message via RDMA
read, it also triggers a remote event to the sender using the pro-
vided event address. Similarly, in the case of RDMA write, the re-
ceiver provides the address of such an event in its acknowledgment
to the sender. The receiver detects the completion of a full message
through the remote event triggered by a RDMA write operation. In

either case, both sides notice the completion of data transmission
without the need of an extra control message.

5.3. Zero-Copy Non-Contiguous IO with SEA-
MUR

Non-contiguous I/O access is the main access pattern in scientific
applications. Thakur et. al. [25] also noted that it is important to
achieve high performance MPI-IO by providing native support of
noncontiguous access in file systems. PVFS2 provides list I/O for
structured non-contiguous IO in scientific applications. List IO can
be built on top of an interconnect’s native scatter/gather support if
it is available. Otherwise, it often resorts to memory packing and
unpacking for converting non-contiguous to contiguous communi-
cation. An alternative is to use multiple contiguous operations. This
approach would require multiple send and receive operations from
both the sender and the receiver, and it would lead to more process-
ing of smaller communication operations, resulting in the degrada-
tion of performance.

Quadrics provides non-contiguous communication operations in
the form ofelan putvandelan getv. However, these operations are
specifically designed for the shared memory programming model
(SHMEM) over Quadrics. The final placement of the data requires
a memory copy from the global shared memory to the application
destination memory. To support zero-copy non-contiguous IO, we
propose a Single Event Associated MUltiple RDMA (SEAMUR)
mechanism.

Fig. 7 shows a diagram of RDMA write-based SEAMUR mecha-
nism. The source and destination memory address/length pairs of
the IO fragments are first collected by the process that is to initiate
the RDMA operations, in this case, the sender. Then SEAMUR is
carried out in four steps. In Step 1, the sender determines the num-
ber of required contiguous RDMA write operations,N, and con-
structs the same number of RDMA descriptors in the host memory.
A single Elan4 event is also created to wait on the completionof
theseN RDMA operations. In Step 2, these RDMA write descrip-
tors are posted together into the Quadrics Elan4 command port (a
command queue to the NIC formed by a memory-mapped user ac-
cessible NIC memory) through programmed IO. In Step 3, multi-
ple RDMA write operations are triggered to perform the zero-copy
non-contiguous IO from the source to the destination memory. In
Step 4, upon the completion of multiple RDMA operations, theear-
lier associated elan event is triggered, which in turn notifies the host
process through a host-side event. The remote side can be notified
through a separated chained message as described in Section4.2,
or simply a remote event as described in Section 5.2. Note that,
using this approach, multiple RDMA operations are issued without
calling extra sender or receiver routines. Zero-copy is achieved by
directly addressing the source and destination memory. If RDMA
read is chosen based on the adaptiverendezvousprotocol, similar
zero-copy non-contiguous support can be achieved by issuing mul-
tiple RDMA read operations, all being chained with another Elan4
event of countN.

6. Implementation

With the design of client/server connection model and the transport
layer over Quadrics communication mechanisms, we have imple-
mented PVFS2 over Quadrics/Elan4. The implementation is based
on the recent release of PVFS2-1.1-pre1. Due to the compatibility
issue of PVFS2 and Quadrics RedHat Linux kernel distribution, we

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

�
�
�
�

�
�
�
�

� �
� �
� �
� �

	 	
	 	
	 	
	 	

Destination MemorySource Memory

N

single event

Host Event

4

1

2 3

destination NICMultiple RDMA

� �
� �
� �
� �

Command Port

� �
� �
� �
� �

�
�
�
�

�
�
�
�

Fig. 7: Zero-Copy Non-Contiguous Communication with RDMA
write-based SEAMUR

have utilized a patched stock kernel linux-2.4.26-4.23qsnet. Our
implementation is layered on top of Quadrics library, libelan4, and
completely resides in the user space. We include the following
choices in our implementation: short messages are transmitted in
the eager protocol along with the chained control message; long
messages are transmitted through the adaptiverendezvousprotocol
using zero-copy RDMA read and write; zero-copy PVFS2 list IOis
supported with SEAMUR; a throttling mechanism is used to regu-
late and balance the number of RDMA read and write operations.

7. Performance Evaluation

In this section, we describe the performance evaluation of our im-
plementation of PVFS2 over Quadrics/Elan4. The experiments
were conducted on a cluster of eight SuperMicro SUPER X5DL8-
GG nodes: each with dual Intel Xeon 3.0 GHz processors, 512 KB
L2 cache, PCI-X 64-bit 133 MHz bus, 533MHz Front Side Bus
(FSB) and a total of 2GB PC2100 DDR-SDRAM physical mem-
ory.

All eight nodes are connected to a QsNetII network [23, 3], with
a dimension one quaternary fat-tree [11] QS-8A switch and eight
Elan4 QM-500 cards. Each node has a 40GB, 7200 RPM, ATA/100
hard disk Western Digital WD400JB. The operating system is Red-
Hat 9.0 Linux. To minimize the impact in network capacity, we
used the TCP implementation of PVFS2 as a comparison. As men-
tioned in Section 2.1, Quadrics provides an IP implementation on
top of its kernel communication library.

7.1. Performance Comparisons of Different
Communication Operations

Table 2 shows the comparisons of the latency and bandwidth be-
tween TCP/IP over Quadrics and Quadrics native communication
operations, including QDMA and RDMA read/write. Quadrics IP
implementation is often referred to as EIP based on the name of its
Ethernet module. The performance of TCP stream over Quadrics
is obtained using the netperf [2] benchmark. The performance of
Quadrics native operations is obtained using microbenchmark pro-
grams: pgping andqping, available from standard Quadrics re-
leases [23]. The latency is measured as the one way latency oftypi-
cal ping-pong tests, and the bandwidth as the throughput of stream-
ing communication. All these benchmark programs directly mea-
sure the performance of corresponding communication interfaces
without introducing additional overhead.

As shown in the table, Quadrics native operations provide better

Table 2: Network Performance over Quadrics

Operations Latency Bandwidth
TCP/EIP 23.92µs 482.26MB/s
Quadrics RDMA/Write 1.93µs 910.1MB/s
Quadrics RDMA/Read 3.19µs 911.1MB/s
Quadrics QDMA 3.02µs 368.2MB/s

performance in terms of both latency and bandwidth comparedto
the performance of TCP over Quadrics. Moreover, the host CPU
has less involvement in the communication processing when us-
ing Quadrics RDMA operations because of its zero-copy message
delivery. More CPU cycles can be used to handle computation in
other components and contribute to higher overall file system per-
formance. To demonstrate the potential and effectiveness of lever-
aging Quadrics capabilities, we focus on the following aspects: the
performance of bandwidth-bound data transfer operations,the per-
formance of the latency-bound management operations, and the
performance benefits to application benchmarks, such as MPI-Tile-
IO [24] and BT-IO [26].

7.2. Performance of Data Transfer Operations

To evaluate the data transfer performance of PVFS2 file system, we
have used a parallel program that iteratively performs the following
operations: create a new PVFS2 file, concurrently write datablocks
to disjoint regions of the file, flush the data, concurrently read the
same data blocks back from the file, and then remove the file. MPI
collective operations are used to synchronize applicationprocesses
before and after each I/O operation. In our program, each process
writes and then reads a contiguous 4MB block of data at disjoint
offsets of a common file based on its rank in the MPI job. At the
end of each iteration, the average time to perform the read/write
operations among all processes is computed and recorded. Seven
iterations are performed, and the lowest and highest valuesare dis-
carded. Finally, the average values from the remaining iterations
are taken as the performance for the read and write operations.

 0

 300

 600

 900

 1200

 1500

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 4S

TCP 1S
TCP 2S
TCP 4S

Fig. 8: Performance Comparisons of PVFS2 Concurrent Read

We have divided the eight-node cluster into two groups: servers and
clients. Up to four nodes are configured as PVFS2 servers, andthe
remaining nodes are running as clients. Experimental results are
labeled asNS for a configuration with N servers. Fig. 8 shows the
read performance of PVFS2 over Elan4 compared to the PVFS2

over TCP. PVFS2 over Elan4 improves the aggregated read band-
width by more than 140% compared to that of PVFS2 over TCP.
This suggests that the read performance of PVFS2 is much limited
by the network communication and can significantly benefit from
the improvement in the network performance.

We have also performed experiments to evaluate the write perfor-
mance of PVFS2/Elan4. We have observed between 10% to 45%
performance improvement compared to PVFS2/TCP when the lo-
cal ext3 file system is mounted in ordered or writeback modes.Be-
cause the network bandwidth of both Elan4 and TCP are more than
350MB/s, much higher than the 40MB/s bandwidth of local IDE
disks, disk accesses could be a significant factor that limits the per-
formance of write accesses due to the variation of caching effects.
We have used a memory-resident file system, ramfs, to investigate
the maximum write performance benefits of PVFS2 over Quadrics.
This is similar to have a local file system with a perfect buffer cache
for PVFS2 IO servers. Fig.9 show the experimental results. With
varying numbers of clients concurrently writing to the file system,
PVFS2 over Elan4 improves the aggregated write bandwidth byup
to 82% compared to that of PVFS2 over TCP. This suggests that
PVFS2 write bandwidth can also benefit from Quadrics commu-
nication mechanisms, though it is relatively less bounded by the
network communication compared to the read performance.

 0

 250

 500

 750

 1000

 1250

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 4S

TCP 1S
TCP 2S
TCP 4S

Fig. 9: Performance Comparisons of PVFS2 Concurrent Write

7.3. Performance of Management Operations

PVFS2 parallel file system is designed to provide scalable parallel
IO operations that match MPI-IO semantics. For example, manage-
ment operations, such asMPI File open andMPI File set size,
are shown to be very scalable in [16]. These management oper-
ations typically do not involve massive data transfer. To evaluate
the benefits of Quadrics low latency communication to these man-
agement operations, we have performed the following experiments
using a microbenchmark program available in the PVFS2 distribu-
tion.

With the eight-node cluster, a PVFS2 file system is configuredwith
two servers, both act as metadata and IO servers. The first ex-
periment measures the average time to create a file using collec-
tive MPI File open with different numbers of clients. The second
experiment measures the average time to perform a resize opera-
tion using collectiveMPI File set size with different numbers
of clients. As shown in Table 3, our PVFS2 implementation over
Elan4 improves the time to resize a file by as much as 125µs (37%)

Table 3: Comparison of the Scalability of Management Operations

No. of clients TCP Elan4
Create (milliseconds)

1 28.114 27.669
2 28.401 28.248
3 28.875 28.750
4 28.892 28.710
5 29.481 29.123
6 29.611 29.410

Resize (milliseconds)
1 0.192 0.141
2 0.248 0.187
3 0.330 0.201
4 0.274 0.180
5 0.331 0.226
6 0.338 0.213

for up to 6 clients. However, the improvement on the time to create
a file is just marginal compared to the total time. This is because
the time in allocating the storage spaces at the PVFS2 serverfor
the new file, though small, still dominates over the communication
between the client and the server. On the other hand, once thefile is
created, the time for the operations that update the file metadata, as
represented by the resize operation, can be reduced by the PVFS2
implementation over Elan4. Therefore PVFS2 implementation over
Elan4 is also beneficial to the scalability of MPI-IO management
operations.

7.4. Performance of MPI-Tile-IO

MPI-Tile-IO [24] is a tile reading MPI-IO application. It tests the
performance of tiled access to a two-dimensional dense dataset,
simulating the type of workload that exists in some visualization
applications and numerical applications. Four of eight nodes are
used as server nodes and the other four as client nodes running MPI-
tile-IO processes. Each process renders a 2×2 array of displays,
each with 1024×768 pixels. The size of each element is 32 bytes,
leading to a file size of 96MB.

PVFS2 provides two different modes for its IO servers: trovesync
and notrovesync. The former is the default mode in which IO
servers performfsync operations to flush its underlying file sys-
tem buffer cache; the latter allows the IO servers to take thecache
effects of the local file system for better performance. We have
evaluated both the read and write performance of mpi-tile-io over
PVFS2/Elan4 under both modes. As shown in Fig. 10, compared
to PVFS2/TCP, PVFS2/Elan4 improves MPI-Tile-IO write band-
width by 170% with server side caching effects (under notrovesync
mode, W/N), and 12% without caching effects (under trovesync
mode, W/T). On the other hand, MPI-Tile-IO read bandwidth is
improved by about 240% with or without server side caching ef-
fects. These results indicate that our implementation is indeed able
to leverage the performance benefits of Quadrics mechanismsinto
PVFS2: when the server disk access is a bottleneck, it improves
the write performance with its zero-copy user-level communication
which competes less with the disk access for CPU time; when the
server disk access is not a primary bottleneck, it improves both
the read and write bandwidth significantly. Note that the rela-
tive performance improvement for the MPI-Tile-IO application is
much higher compared to the improvement observed for data trans-

fer operations. This is because MPI-Tile-IO involves mainly non-
contiguous IO, for which PVFS2/Elan4 provides true OS-bypass
zero-copy support with its SEAMUR mechanism, but PVFS2/TCP
does not support zero-copy list IO.

Write W/T Read W/T Write W/N Read W/N
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

PVFS2/TCP
PVFS2/Elan4

Fig. 10: Performance of MPI-Tile-IO Benchmark

7.5. Performance of NAS BT-IO

The BT-IO benchmarks are developed at NASA Ames Research
Center based on the Block-Tridiagonal problem of the NAS Paral-
lel Benchmark suite. These benchmarks test the speed of parallel IO
capability of high performance computing applications. The entire
data set undergoes complex decomposition and partition, eventually
distributed among many processes, more details available in [26].
The BT-IO problem size class A is evaluated. We have also eval-
uated the performance of BT-IO with the same version of PVFS2
built on top of Myrinet/GM. The Myrinet experiment is conducted
on the same 8-node cluster. All nodes are equipped with two port
LANai-XP cards that are connected to a Myrinet 2000 network.We
have used four of eight nodes as server nodes and the other four as
client nodes.

Table 4 shows the comparisons of BT-IO performance over
PVFS2/Elan4 and PVFS2/TCP on top of Quadrics interconnect,
and that of PVFS2/GM over Myrinet. The performance of ba-
sic BT benchmark is measured as the time of BT-IO benchmark
without IO accesses. On the same Quadrics network, the BT-
IO benchmark has only 2.12 seconds extra IO time when access-
ing a PVFS2 file system provided by this implementation, but
5.38 seconds when accessing a PVFS2 file system with a TCP-
based implementation. The IO time of BT-IO is reduced by 60%
with our Quadrics/Elan4-based implementation compared toTCP-
based implementation. Compared to the PVFS2 implementation
over Myrinet/GM, this Elan4-based implementation also reduces
the IO time of BT-IO. This is because the bandwidth of Quadrics
is higher than that of Myrinet 2000, about 500 MB with two-port
LANai cards. These results suggest our implementation can in-
deed enable the applications to leverage the performance benefits
of Quadrics/Elan4 for efficient file IO accesses.

8. Related Work

Previous research have studied the benefits of using user-level com-
munication protocols to parallelize IO access to storage servers.
Zhou et. al. [31] have studied the benefits of VIA networks in
database storage. Wu et. al. [27] have described their work on

Table 4: Performance of BT-IO Benchmark (seconds)

Type Duration IO Time
No IO 61.71 −−
BT/IO Elan4 63.83 2.12
BT/IO TCP (over EIP) 67.09 5.38
BT/IO GM 67.58 5.87

InfiniBand over PVFS1 [20]. DeBergalis et. al. [10] have further
described a file system, DAFS, built on top of networks with VIA-
like semantics. Our work is designed for Quadrics Interconnects
over PVFS2 [1].

Models to support client/server communication and providegeneric
abstractions for transport layer have been described over differ-
ent networks [30, 17, 6]. Yu et. al [29] have described the
designing of dynamic process model over Quadrics for MPI2.
Our work explores the ways to overcome Quadrics static pro-
cess/communication model and optimize the transport protocols
with Quadrics event mechanisms for PVFS2. Ching et. al [7] have
implemented list IO in PVFS1 and evaluated its performance over
TCP/IP over fast-Ethernet. Wu et. al [28] have studied the bene-
fits of leveraging InfiniBand hardware scatter/gather operations to
optimize non-contiguous IO access in PVFS1. Our work exploits
a communication mechanism with a single event chained to multi-
ple RDMA to support zero-copy non-contiguous network IO over
Quadrics.

9. Conclusions

In this paper, we have examined the feasibility of designinga paral-
lel file system over Quadrics [23] to take advantage of its user-level
communication and RDMA operations. PVFS2 [1] is used as the
parallel file system platform in this work. The challenging issues
in supporting PVFS2 on top of Quadrics interconnects are identi-
fied. Accordingly, strategies have been designed to overcome these
challenges, such as constructing a client-server connection model,
designing the PVFS2 transport layer over Quadrics RDMA read
and write, and providing efficient non-contiguous network IO sup-
port. The performance of our implementation is compared to that
of PVFS2/TCP over Quadrics IP implementation. Our experimen-
tal results indicate that: the performance of PVFS2 can be signifi-
cantly improved with Quadrics user-level protocols and RDMA ca-
pabilities. Compared to PVFS2/TCP on top of Quadrics IP imple-
mentation, our implementation improves the aggregated read per-
formance by more than 140%. It is also able to deliver significant
performance improvement in terms of IO access time to application
benchmarks such as mpi-tile-io [24] and BT-IO [26]. To the best of
our knowledge, this is the first high performance design and imple-
mentation of a user-level parallel file system, PVFS2, over Quadrics
interconnects.

In future, we intend to leverage more features of Quadrics tosup-
port PVFS2 and study their possible benefits to different aspects
of parallel file system. For example, we intend to study the feasi-
bility of offloading PVFS2 communication-related processing into
Quadrics programmable network interface to free up more host
CPU computation power for disk IO operations. We also intendto
study the benefits of integrating Quadrics NIC memory into PVFS2
memory hierarchy, such as data caching with client and/or server-
side NIC memory.

Acknowledgment

We gratefully acknowledge Dr. Pete Wyckoff from Ohio Super-
computing Center and Dr. Jiesheng Wu from Ask Jeeves, Inc for
many technical discussions. We would like to thank members from
the PVFS2 team for their technical help. Furthermore, We also
would like to thank Drs Daniel Kidger and David Addison from
Quadrics, Inc for their valuable technical support.

10 References

[1] The Parallel Virtual File System, version 2. http://www.
pvfs.org/pvfs2.

[2] The Public Netperf Homepage. http://www.netperf.org/
netperf/NetperfPage.html.

[3] J. Beecroft, D. Addison, F. Petrini, and M. McLaren. QsNet-
II: An Interconnect for Supercomputing Applications. Inthe
Proceedings of Hot Chips ’03, Stanford, CA, August 2003.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area Network.IEEE Micro, 15(1):29–36,
1995.

[5] D. Bonachea, C. Bell, P. Hargrove, and M. Welcome. GAS-
Net 2: An Alternative High-Performance Communication In-
terface, Nov. 2004.

[6] P. H. Carns, W. B. Ligon III, R. Ross, and P. Wyckoff. BMI:
A Network Abstraction Layer for Parallel I/O, April 2005.

[7] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp.
Noncontiguous I/O through PVFS. InProceedings of
the IEEE International Conference on Cluster Computing,
Chicago, IL, September 2002.

[8] Cluster File System, Inc. Lustre: A Scalable, High Perfor-
mance File System. http://www.lustre.org/docs.html.

[9] A. M. David Nagle, Denis Serenyi. The Panasas ActiveScale
Storage Cluster – Delivering Scalable High Bandwidth Stor-
age. InProceedings of Supercomputing ’04, November 2004.

[10] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck,
T. Talpey, and M. Wittle. The Direct Access File System.
In Proceedings of Second USENIX Conference on File and
Storage Technologies (FAST ’03), 2003.

[11] J. Duato, S. Yalamanchili, and L. Ni.Interconnection Net-
works: An Engineering Approach. The IEEE Computer Soci-
ety Press, 1997.

[12] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blu-
menthal. PPFS: A High Performance Portable Parallel File
System. InProceedings of the 9th ACM International Confer-
ence on Supercomputing, pages 385–394, Barcelona, Spain,
July 1995. ACM Press.

[13] IBM Corp. IBM AIX Parallel I/O File System: Installation,
Administration, and Use. Document Number SH34-6065-01,
August 1995.

[14] Infiniband Trade Association. http://www.infinibandta.org.

[15] Intel Scalable Systems Division. Paragon System User’s
Guide, May 1995.

[16] R. Latham, R. Ross, and R. Thakur. The impact of file sys-
tems on mpi-io scalability. InProceedings of the 11th Eu-

ropean PVM/MPI Users’ Group Meeting (Euro PVM/MPI
2004), pages 87–96, September 2004.

[17] J. Liu, M. Banikazemi, B. Abali, and D. K. Panda. A Portable
Client/Server Communication Middleware over SANs: De-
sign and Performance Evaluation with InfiniBand. InSAN-02
Workshop (in conjunction with HPCA), February 2003.

[18] Message Passing Interface Forum.MPI-2: Extensions to the
Message-Passing Interface, Jul 1997.

[19] N. Nieuwejaar and D. Kotz. The Galley Parallel File System.
Parallel Computing, (4):447–476, June 1997.

[20] P. H. Carns and W. B. Ligon III and R. B. Ross and R. Thakur.
PVFS: A Parallel File System For Linux Clusters. InProceed-
ings of the 4th Annual Linux Showcase and Conference, pages
317–327, Atlanta, GA, October 2000.

[21] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Re-
dundant Arrays of Inexpensive Disks. InProceedings of the
1988 ACM SIGMOD International Conference on Manage-
ment of Data, Chicago, IL, 1988.

[22] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network: High Performance Cluster-
ing Technology.IEEE Micro, 22(1):46–57, January-February
2002.

[23] Quadrics, Inc. Quadrics Linux Cluster Documentation.

[24] R. B. Ross. Parallel i/o benchmarking consortium. http://
www-unix.mcs.anl.gov/rross/pio-benchmark/html/.

[25] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. InProceedings of
the 6th Workshop on I/O in Parallel and Distributed Systems,
pages 23–32. ACM Press, May 1999.

[26] P. Wong and R. F. Van der Wijngaart. NAS Parallel Bench-
marks I/O Version 2.4. Technical Report NAS-03-002, Com-
puter Sciences Corporation, NASA Advanced Supercomput-
ing (NAS) Division.

[27] J. Wu, P. Wychoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. InProceedings of the
International Conference on Parallel Processing ’03, Kaohsi-
ung, Taiwan, October 2003.

[28] J. Wu, P. Wychoff, and D. K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand. InProceed-
ings of Cluster Computing ’03, Hong Kong, December 2004.

[29] W. Yu, T. S. Woodall, R. L. Graham, and D. K. Panda. De-
sign and Implementation of Open MPI over Quadrics/Elan4.
In Proceedings of the International Conference on Parallel
and Distributed Processing Symposium ’05, Colorado, Den-
ver, April 2005.

[30] R. Zahir. Lustre Storage Networking Transport Layer.
http://www.lustre.org/docs.html.

[31] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin,
and K. Li. Experiences with VI Communication for Database
Storage. InProceedings of the 29th Annual International
Symposium on Computer Architecture, pages 257–268. IEEE
Computer Society, 2002.

