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Abstract—MapReduce is a popular parallel processing framework for large-scale dataanalytics. To keepupwith the increasingvolumeof
datasets, it requires efficient I/O capability from the underlying computer systems to processandanalyzedata in twophases (mapping and
reducing). Between these phases, MapReduce requires a shuffling phase to globally exchange the intermediate data generated by
themapping phase.We reveal that data shuffling, by physicallymoving segments of intermediate data across disks, causes significant I/O
contention and compounds the I/O problem. In this paper, we propose a novel virtual shuffling strategy to enable efficient data movement
and reduce I/O for MapReduce shuffling, thereby reducing power consumption and conserving energy. Virtual shuffling is realized
through a combination of three techniques including a three-level segment table, near-demand merging, and dynamic and balanced
mergingsubtrees.Our experimental results show that virtual shuffling significantly speedsupdatamovement inMapReduceandachieves
faster job execution. Particularly, its reduction in disk I/O accesses results in as much as 12% savings in power consumption for
MapReduce programs.

Index Terms—Hadoop, MapReduce, virtual shuffling, near-demand merging

1 INTRODUCTION

MAPREDUCE [1] has emerged as a popular and easy-to-use
programming model for large-scale data analytics in

data centers. It is an important application for numerous orga-
nizations to process explosive amounts of data, perform mas-
sive computation, and extract critical knowledge out of big
data for business intelligence. The efficiency of MapReduce
performance and scalability can directly affect our society’s
ability tomine knowledge out of rawdata. In addition, energy
consumption accounts for a large portion of the operating cost
of data centers in analyzing such big data.While business and
scientific applications are increasingly relying on the MapRe-
ducemodel, the energyefficiencyofMapReduce is also critical
for data centers’ energy conservation.

Hadoop [2] is an open-source implementation of MapRe-
duce, currently maintained by the Apache Foundation, and
supported by leading IT companies such as Facebook and
Yahoo!. It implements the MapReduce model by distributing
user inputs as data splits across a large number of compute
nodes. Hadoop uses amaster program (called the JobTracker)
to command many TaskTrackers (a.k.a slaves) and schedule
map tasks (MapTasks) and reduce tasks (ReduceTasks) to the
TaskTrackers, A Hadoop program processes data through
two main functions (map and reduce). Accordingly, the
analytic functions are performed in two phases: mapping
and reducing. In the mapping phase, the input dataset of
a program is divided into many data splits. Each split is

organized as many records of key and value ( < > ) pairs.
OneMapTask is launchedper data split to convert the original
records into intermediate data in the form of many ordered
< k’,v’ > pairs. These ordered records are stored as a MOF
(Map Output File) split. A MOF is organized into many data
partitions, one per ReduceTask. In the reducing phase, each
ReduceTask applies the reduce function to its own share of
data partitions (a.k.a segments).

Between the mapping and reducing phases, a ReduceTask
needs to fetch a segment of the intermediate output from all
finished MapTasks. Globally, this leads to a shuffling of
intermediate data (in segments) from MapTasks to Reduce-
Tasks. For data-intensive MapReduce programs such as
TeraSort, data shuffling can add a significant number of disk
accesses, contending for the limited I/O bandwidth. In order
to elaborate this problem, we conduct a data-intensive
MapReduce test, where we run 200 GB TeraSort on 10 slave
nodes. We have examined the wait (queuing) time and the
service time of I/O requests during the execution. As shown
in Fig. 1, the wait time can be more than 1,100 milliseconds.
Worse yet, most I/O requests are spending close to 100% of
this time waiting in the queue, suggesting that the disk is not
able to keep up with the requests. The shuffling of intermedi-
ate data competes for disk bandwidth with MapTasks. This
can significantly overload the disk subsystem. It results in a
serious bottleneck along with the severe disk I/O contention
in data-intensiveMapReduce programs,which entails further
research on efficient data shuffling techniques.

Although anumber of recent efforts have investigated data
locality of MapReduce by either preventing stragglers (slow
MapReduce tasks) [3]–[6]orapplyinghigh-performance inter-
connects to transfer data in large-scale Hadoop cluster [7], [8],
few studies have addressed the need of efficient I/O during
data shuffling in theHadoopMapReduce framework. Condie
et al. [9] have proposed a MapReduce online architecture to
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open up direct network channels between MapTasks and
ReduceTasks and speed up the delivery of data from
MapTasks to ReduceTasks. While their work reduces job
completion time and improves system utilization, it cannot
accommodate a gigantic dataset that does not fit in memory,
and also complicates the fault tolerance handling of Hadoop
tasks.Itoftenfallsbacktospillingdatatothedisksforlargedata
sets. Our priorwork [8] has offered a network-levitatedmerg-
ing scheme to keep the data shuffling phase above disks. But
the aggressive use of memory buffers in network-levitated
merging makes it unable to cope with MapReduce jobs with
tens of thousands or even millions of data splits.

In thiswork,we undertake another effort to investigate the
issue of disk I/O contention in data shuffling. As shown in
Fig. 2, we take a new perspective at data shuffling of MapRe-
duce programs. In the default Hadoop implementation,
intermediate data segments are pulled by ReduceTasks in
their entirety to local disks, and then merged before being
reduced for final results. This is shown by Fig. 2(a). Because
the physical movement of entire segments across disks, we
refer to this strategy as physical shuffling.

Inspired by the classic concepts of virtual memory and
demand paging, we propose a virtual shuffling strategy to
enable efficient shuffling for MapReduce programs. Fig. 2(b)
shows the general idea. Instead of moving entire segments to
local disks before starting the reduce function, virtual shuf-
fling allows a ReduceTask to fetch only a minimal set of
segment attributes and create a virtual segment table that
records the actual locations of remote segments. Once the
global segment table is fully constructed, the ReduceTask can
start thefinalmerge andgenerate data for the reduce function.
When the reduce function starts, themajority of segments still
reside on remote disks. In another word, segments will not be
brought in locally through the global segment table until they
areneededby the reduce function.Virtual shufflingdelays the
actual movement of data until the ReduceTask requests data.
Compared to physical shuffling, when the reduce function
demands more data input, virtual shuffling employs near-
demand merging to fetch data in small blocks into memory,
merge and send themdirectly to the reduce function. In doing
so, virtual shuffling greatly reduces the number of disk
accesses of physical shuffling, and enables efficient data

movement. Suchoptimizations in I/Oandprogramexecution
also benefit MapReduce programs in terms of power con-
sumption and energy savings. The design of virtual shuffling
is described in detail in Section 3. Accordingly, we have
implemented virtual shuffling, tuned a number of perfor-
mance-critical parameters, and evaluated its benefits to job
execution an I/O reduction. Furthermore, we have measured
power consumption during the execution of MapReduce
programs to quantify the energy savings.

In summary, this paper makes the following research
contributions:

A novel virtual shuffling strategy that enables efficient
data movement and relieves the disk I/O contention
problem in the original Hadoop MapReduce;
The design and implementation of virtual shuffling using
a three-level segment table, near-demand merging, and
dynamic and balanced merging subtrees;
Systematic evaluation and documentation of the benefits
provided by virtual shuffling in terms of job execution
time and disk access. Particularly, we show that virtual
shuffling can lead to 12% savings in power consumption
for MapReduce programs.

The rest of the paper is organized as follows. Section 2gives
a review of related work. Section 3 presents virtual shuffling
in detail, followed by Section 4 that describes the implemen-
tation of virtual shuffling. Section 5 introduces experimental
setup and benchmarks. Sections 6, 7 and 8 provide our tuning
and evaluation of virtual shuffling. Section 9 discusses a few
relevant issues of virtual shuffling. Finally, we conclude the
paper in Section 10.

2 RELATED WORK

MapReduce is popularized by Google as a very simple but
powerful program model that offers parallelized computa-
tion, fault-tolerance and distributing data processing [1]. Its
open-source implementation, Hadoop, provides a software
framework for distributed processing of large datasets [2].We
review related work in a number of directions.

MapReduce Performance Tuning: Several studies were
published on tuning the performance of MapReduce. These
include [4], [10]–[12] that tuned different parameters of
Hadoop MapReduce for performance. Dai et al. [13] devel-
oped HiTune for Hadoop performance analysis and tuning.
Herodotou et al. [14] designed a cost-based optimizer with
performance knobs to help choose better Hadoop configura-
tions. Zaharia et al. [6] proposed a new scheduling algorithm,
called Longest Approximate Time to End (LATE), for
environments with heterogeneous server configurations.
Ananthanarayanan et al. proposedMantri [3] tomonitor tasks
and cull outliers for better job completion time, and later
proposed Scarlett [15] to replicate data blocks to alleviate
hotspots. Jahani et al. [16] applied compiler techniques for
Hadoop optimizations. Tan et al. [12] documented and exten-
sively analyzed the performance problem of delay tails in
HadoopMapReduce programs caused by long ReduceTasks.
However, none of these works investigated the I/O problem
caused byMapReduce intermediate data shuffling. Ourwork
takes on a different perspective to investigate new strategies
for efficient data movement in MapReduce, relieving its I/O
contention.

Fig. 1. Disk I/O contention in a MapReduce program.
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MapReduce Data Communication: Kim et al. [17]
improved theperformance ofMapReduce by reducing redun-
dant I/O in the software architecture. But it did not study the
I/O issue caused by data shuffling between MapTasks and
ReduceTasks. The closest work to our project is MapReduce
Online as proposed by Condie et al. [9]. This work focused on
enabling instant shuffling (so called online) of intermediate
data fromMapTasks toReduceTasks.Essentially,MapReduce
Online introduces direct data shuffling channels between
MapTasks and ReduceTasks to avoid the creation of interme-
diate Map Output Files. In doing so, it requires the direct
coupling of each MapTask with all ReduceTasks, and com-
pletely changes the fault handling mechanism of Hadoop.
A failure of a MapTask or a ReduceTask is no longer a local
event that can easily be recovered by re-launching the failed
task. In addition, MapReduce Online requires a large number
of sustained TCP connections, which severely limits its
scalability. In contrast, our work does not require close
coupling of data flow between MapTasks and ReduceTasks,
thus allowing separated recovery from failures of either
MapTasks or ReduceTasks.

Spark [18] is an emergingMapReduce-based system for big
data analytics. It recognizes the disk I/O bottleneck issue
during the data shuffling and relaxes the sorting/merging
requirement at the reduce sides. i.e., it is not necessary to sort
intermediate data before a ReduceTask starts processing them. By
relaxing such constraint, data shuffling and computation can
be pipelined and accomplished in memory. Spark requires
very highmemory consumption for shuffling andmerging in
memory. In addition, by retaining intermediate results in
memory, Spark can efficiently acceleratemany data-intensive
programs, such as weather prediction applications that re-
quire iterative algorithms [19].

Power and Energy of MapReduce Programs: Leverich
et al. [20] modified Hadoop to allow scale-down of opera-
tional clusters which could save between 9% and 50% of
energy consumption. They also outlined further research into
the energy-efficiency of Hadoop. Lang et al. [21] closely
examined two techniques, namely Covering Set (CS) and
All-In Strategy (AIS), which could be used for the manage-
ment of MapReduce clusters. They showed that AIS was the
right strategy for energy conservations. Chen et al. [22] pre-
sented a statistics-driven workload generation framework
which distilled summary statistics from production MapRe-
duce traces and realistically reproduced representative
workloads. This methodology could be useful for under-
standing design trade-offs in MapReduce. The same team

also exploited and analyzed how compression could improve
performance and energy efficiency for MapReduce work-
loads [23]. They proposed an algorithm that examines per-
job data characteristics and I/O patterns, and decides when
and where to use compression. Our work does not directly
study energy conservation techniques, but evaluates the ben-
efits of virtual shuffling in energy savings. This is comple-
mentary to previous research efforts. Our work documents a
case study in conserving energy by reducing other related
system activities such as disk access.

3 VIRTUAL SHUFFLING

In this section, we describe in detail the design of virtual
shuffling that can enable efficient data movement forMapRe-
duce. In order to overcome the disk I/O problem of physical
shuffling, virtual shuffling needs to address three important
issues: (1) how to scalably represent intermediate data seg-
ments in a virtual manner, (2) how to minimize the impact of
actual shuffling of data; and (3) how to dynamically coordi-
nate and balance data shuffling andmergingwithout degrad-
ing the performance.

3.1 A Three-Level Segment Table
We draw our inspiration from the classic concept of virtual
memory in designing virtual shuffling. To manage many
intermediate data segments produced by MapTasks, we de-
sign a three-level segment table to organize them in a scalable
manner. The hierarchical table includes three kinds of direc-
tories: the Segment Table Directory, the Segment Middle
Directory, and the Segment Global Directory. These direc-
tories and their associated data structures are listed in Table 1.

Fig. 3 shows the organization and relationship among
these three levels. At the completion of a MapTask, its data
segment is not physically fetched all at once by a ReduceTask.
Instead, a Segment Table Entry (STE) is created at the lowest
level-Segment Table Directory (STD)-to represent the seg-
ment in a virtual manner. The STE includes several attributes
of the segment such as its total length, its source MapTask, as
well as its physical location on the remote disk. The number of
STEs in an STD is a tunable parameter based on the compu-
tation,memory, and I/O resources.Many STDs are organized
into a Segment Middle Directory (SMD), in which each entry
(SME) represents an STD. Many SMDs in turn are organized
as a Segment Global Directory (SGD) with each entry (SGE)
referring to an SMD. Within a ReduceTask, we allocate

Fig. 2. Comparisons of different shuffling strategies.
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Segment Entry Buffers (SEBs) for each STE. SEBs are used to
store partial blocks of data for incoming segments. In addi-
tion, three kinds of memory buffers are used as temporary
merging buffers. For example, an SGD will merge the data
from its constituent SMDs to the SGD Buffer (SGB); an SMD
willmerge data from its STDs to its SMDBuffer (SMB); and an
STD will merge data from its constituent SEBs to its STD
Buffer (STB). With this three-level hierarchical table, if there
were memory pressure, we can keep only a few active STDs
and their ancestral SMDs and SGDs in memory, while other
STDs are temporarily stored on disk.

3.2 Near-Demand Merging
Physical shuffling causes frequent I/O accesses because
ReduceTasks fetch all segments and merge them using local
memory/storage before they are needed. Because of the
pressure of hosting more data than available memory,
ReduceTasks often have to spill the intermediate data to the
disks. To adress this issue, virtual shuffling mimics the con-
cept of demand paging and realizes near-demandmerging to
reduce the pressure of data spilling and minimize the impact
of actual data movement. With near-demand merging, we
wait until it is clear which segments are needed by the reduce
function of ReduceTasks. Near-demand merging does not
really wait until the last moment to fetch data. Instead, it
works as part of virtual shuffling to form a pipeline of
fetching, merging and reducing data segments, with an
emphasis on hiding the cost of data transfer over the network.
With near-demandmerging, virtual shuffling is not designed
to eliminate data movement, but to hide its cost within the
reduce phase.

Fig. 4 shows the operation of near-demandmerging.When
a ReduceTask needs to reduce some data, it initiates a data

request to the segment table, which in turn triggers the
fetching of data blocks (which contain more intermediate
< > pairs from MapTasks) from remote segments.
These blocks will then be buffered at SEBs. Based on
the virtual segment table, these < > pairs in SEBs
will then be merged through STBs, SMBs, and finally into
SGBs. The ordered < > pairs in SGBs are ready to be
reduced by the reduce function.

To avoid synchronouslywaitingon the completionof these
steps, two sets of buffers are provided at each interface. This
enables double buffering and overlaps the near-demand
merging of incoming datawith the reducing of previous data.
Data from each segment is brought in sequentially as small
blocks. One block will be fetched into an SEB only when it is
the next block to bemerged.Near-demandmerging is built on
top of our previous work network-levitated merging [8]. While
network-levitated merging strives to lift the merging process
of segments above disks, near-demand merging emphasizes
the importance of minimizing and hiding the cost of shuffling
to the reduce phase.Near-demandmergingdoes not preclude
the need of flushing data to disks, as will be described in
Section 3.3.

3.3 Dynamic and Balanced Subtrees
With a hierarchical segment table, all virtual segments are
essentially organized into a merging tree in which the leaves
are the SEBs. If near-demand merging with double buffering
were to activate all leaves, there would be a need of SEBs,
where is the number of total virtual segments. For an
application with a dataset ( ) and a data split size ( ), it will
then have segments. Assume a split size of 64MB, SEB
of 32KB, and the use of double buffering for blocks from each
segment, the amount ofmemory needed for all SEBswould be

Fig. 3. Design of a three-level segment table for virtual shuffling.

TABLE 1
Segment Table Terms and Their Definitions

Fig. 4. Near-demand merging.
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bytes per ReduceTask. This means that
even if we reserve 1 GB memory per ReduceTask, we can
only support an application with 1 Terabyte of data. Clearly,
there is a need of better scalability for applications with
petascale data and beyond. Because of this issue, our network-
levitated merging technique faces a dilemma between the
growing need of scalability and the need to keep data
levitated, i.e., inmemory.Weemployadynamicorchestration
mechanism to manage the merging of virtual segments.
Instead of activating all leaves, we organize the whole tree
as many subtrees, each composed of an STD and its SEBs. At
any time, only a limited number of subtrees are actively
merging data. As shown in Fig. 5, two subtrees are currently
active in merging its SEBs into STBs. The merged data will be
furthermerged to SMBsand/or SGBs. Tobalance themerging
progress at different subtrees, previously active subtrees will
be deactivated to allow other subtrees to make progress.

There is an intriguing issue here. At the time when a
subtree is to be deactivated, their SEBs usually contain data
not yet merged to the STB. Worse yet, the use of double
bufferingmeans that, for any segment, one SEBhas data left to
bemergedwhile the other SEB iswaiting ondata to be fetched
remotely. A decision needs to bemade on either dumping the
data (including the remaining data in one SEB and the data in
flight for the other SEB) or flushing the data to the disk, to
make memory available for other subtrees. To improve the
utilization of data in memory, we prevent a subtree from
fetching more data into SEBs when its STB is already 70%
full, and also provide a configurable period of 0.5 second
(a configurable parameter) in the deactivation of a subtree,
allowingmore data in SEBs to be consumed (merged) into the
STB. For a subtree that still has data left in its SEB, we by
default dump the data. A user option is also introduced to
allow the flushing of data to disk. The reason for dumping
data by default is to avoid frequently writing small data
blocks to, and reading them back from, disks.

4 IMPLEMENTATION

In this section, we describe the detailed implementation of
virtual shuffling. The design of virtual shuffling is built on top
of our previous work, Hadoop-A [8], which provides an
acceleration framework for performance enhancement and
protocol optimizations. We start with some background on
Hadoop-A and then explain in detail the implementation of
virtual shuffling.

4.1 MOFSupplier and NetMerger
The Hadoop-A framework optimizes Hadoop with two
main plugin components, MOFSupplier and NetMerger. As
shown in the Fig. 6, the MOFSupplier and NetMerger are
standalone native C processes. They are launched by the local
TaskTracker and connected back to TaskTracker through
asynchronous loop-back sockets.

MOFSupplier: A MOFSupplier communicates with all
local MapTasks and manages all the MOFs generated by
these MapTasks. It employs a network server to serve the
requests from remote ReduceTasks. Each ReduceTask will
fetch one segment of each MOF. Since all MOFs are stored
on the disk and the incoming requests incur frequent disk
accesses. Two cache structures, IndexCache and DataCache,
are provided in the MOFSupplier to facilitate I/O. Index-
Cache is provided to speed up the retrieval of segment
locations of MOFs. The DataCache is used to prefetch and
buffer segment data thereby reducing the actual disk I/O
upon requests. EachMOFSupplier also providesmultiple I/O
threads to serve requests in parallel.

NetMerger: A NetMerger works with local ReduceTasks
on the samenode. It contains a client thread, anupload thread,
aswell as onemerging thread for each ReduceTask. The client
thread issues fetch requests on behalf of local ReduceTasks.
When segments arrive, it forwards them to the merging
thread to be merged. The upload thread will in turn push
the merged segments to Hadoop Java-side ReduceTask for
data processing by the reduce function.

4.2 Leveraging the Hierarchical Segment Table
We implement virtual shuffling by extending the user-
configurable plugin components, MOFSupplier and NetMerger
in Hadoop-A. The bulk of virtual shuffling implementa-
tion centers around the three-level segment table. As men-
tioned earlier in Section 1, when a ReduceTask is notified
about the availability of MOFs, it starts fetching the segments
from all the MOFs and merges them. Since not all segments
can be stored in the limited memory of a ReduceTask, it is
crucial to decide when and how to shuffle, order and merge
the intermediate segments of < > pairs. The original
Hadoop employs a heap-like structure called priority queue, to
manage the ordering and merging of segments. A segment
descriptor is used to represent each segment in the priority
queue. Compared to the cost of data shuffling and merging,
the storage and computation overheads for constructing the
priority queue of segment descriptors are negligible. Virtual

Fig. 5. Dynamic and balanced subtrees for concurrent merging.
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shuffling takes advantage of the fact that it is really not
necessary to fetch all segments to the local node before
merging them. Instead we can allow partial fetching and
merging of segments, thereby reducing the demand onmem-
ory and disk I/O. Through this accumulative procedure,
virtual shuffling completes the fetching and merging of all
segments.

In our implementation of virtual shuffling, we use a three-
level hierarchical table to manage near-demand merging of
segments. The initialization of multiple level segment table is
shown in Fig. 7.Herewe showonly two levels of directories in
the table for simplification. At the very bottom, a set of SEBs
are prepared for fetching remote segments on demand.When
more andmore segment headers (the first 64KB < > )
are available, an STD is created to manage and merge avail-
able segments. Each STE entry in the STDdirectory represents
such a partial segment. Once an STD is fully established, the
merging of SEBs in this STD will be triggered on demand by
the reduce function, as described in Section 3.2. The merged
< > pairs are stored in the STB.
More arriving segment headers will lead to more STDs, in

turn leading to more STBs. To manage and merge
< > pairs contained in these STBs, an SMD will be
created. Each SMD entry points to an STD and the data
location points to the STB. The SMB is the memory buffer
that will host the merged < > pairs from STBs. For a
three-level segment table, similar to the organization of STBs
into an SMD,many SMDswill form an SGD inwhich the data
for each entry is stored in anSMB.TheSGB is then thememory
buffer that will host the final merged < > pairs from
SMBs.

To relieve thememorypressure and achieve scalability, the
merging process of different merging trees is orchestrated
dynamically based on resource availability. The design of
virtual shuffling only allows a limitednumber of sub-merging
trees to be activated as shown in Fig. 5. In addition, we recycle
all buffers in the hierarchical table. All subtrees aremonitored
and ordered based on the merging progress of their data
segments.Once theprogress of SEBs in one subtree falls below
a threshold, it is then scheduled to fetch andmergemore data.
All these merging tasks are undertaken by the same pool of
merging threads. The reduce function can get delayed if there
is nodata in SGBs. Tominimize suchdelays,wegrant a higher
priority to the task of merging STBs into SGBs, allocate and

activate a threadwhen there is a need to refill SGBswithmore
< > pairs.

4.3 Scalability of Our Implementation
Hadoop intermediate data is fetched from remote MOFs and
stored in SEBs before being merged through the three-level
segment table. As previously analyzed in Section 3.3, there
must be at least one SEB ( ) for each segment (weuse two for
double buffering). For aHadoopapplication, the total number
of segments ( ) is , where is the size of application’s
dataset and the size of a data split. If we use only a segment
table with only one-level directory, all SEB must be loaded
with activememorywhile their < > pairs aremerged
through the priority queue. The amount of needed memory
( ) is then given by . Conversely, the
application data size is given by . There are usually
multiple ReduceTasks per computer server. As mentioned in
Section 3.3, on commodity servers with GBs of memory, we
can only support Hadoop programs with terabytes of data.
Furthermore, a key issue here is that thememory requirement
grows linearly (i.e., on the order of ) with respect to the
number of segments.

In virtual shuffling, we can organize all segments into a
three-level segment table, which is essentially a hierarchy of
many priority queues. We can activate the data shuffling for
as few as one subtree (which has an embedded priority
queue), and leave the other subtrees temporarily inactive,
i.e., not holding any data in memory. For simplicity, we can
assume that the SGD, the SMDs and STDs have the same
number of entries. If virtual shuffling is designed with only a
two-level segment table, the number of segments in one STD
is then on the order of . When we keep only one STD

active, thememory requirement becomes .

With such a hierarchical organization, the maximum sup-
ported data size for a single Hadoop job can be calculated as
16 petabytes, using the same numbers as before. If virtual
shuffling is designed with a three-level segment table, the
number of segments in one STD is then in the order of .

Fig. 7. Implementation of near-demand merging.

Fig. 6. Software implementation of virtual shuffling.
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When we keep only one STD and one SMD active, the

memory requirement becomes .With such

a hierarchical organization, the maximum supported data
size for a singleHadoop jobwould be 256 exabytes.However,
a deeper hierarchy implies that each segment has to go
through multiple levels of directories. While it can improve
memory scalability, a deeper hierarchy impliesmorememory
copies. Based on the above analysis, provided enough com-
puter nodes, the two-level segment table can theoretically
support a single MapReduce application with tens of peta-
bytes under a reasonable consumption of 1 GB memory per
ReduceTask. The size of data splits and that of SEBs (see
Section 6) can be adjusted further to support applicationswith
100s of petabytes. We consider such theoretical scalability as
sufficient, therefore adopt the two-level segment table in our
implementation of virtual shuffling.

5 EXPERIMENTAL SETUP AND TEST BENCHMARKS

We conduct all our experiments on a cluster of 21 compute
nodes. Each node is equipped with dual-socket quad-core
2.13 GHz Intel Xeon processors and 8 GB of DDR2 800 MHz
memory, along with 8x PCI-Express Gen 2.0 bus. Four
cores on a socket share 4MB L2 cache. These nodes run Linux
2.6.18-164.el5 kernels. All nodes are equipped with Mellanox
ConnectX-2 QDR Host Channel Adapters and are connected
to both a 108-port InfiniBand QDR switch and a 48-port
10GigEVantage switch.Weuse the InfiniBand software stack,
OFED [24] version 1.5.3.2, as released byMellanox. Each node
has one 500 GB, 7200 RPM,Western Digital SATA hard drive
and Hadoop version 0.20.0 is used. On each node, we have
configured 4 map slots and 2 reduce slots. Each MapTask is
assigned 512 MB maximal heap size, while 2 GB for each
ReduceTask.

We evaluate virtual shuffling with a number of popular
public benchmarks. These include the TeraSort, Grep, and
WordCount test programs that are distributed as part of
Hadoop. Grep searches in a text file for a predefined expres-
sion and creates a file with matches. WordCount counts the
number of occurrences of different words in a data file.
TeraSort is a popular benchmark that measures the capability
of a program in sorting a large-scale dataset. In addition, we
examine a benchmark of Hive [25]—a high-level query lan-
guage that is designed to facilitate user queries for data
processing and analysis over Hadoop.

6 PARAMETER TUNING OF VIRTUAL SHUFFLING

Virtual shuffling enables a seamless flow of data, starting
from MOF segments, going through a series of steps includ-
ing fetching, buffering, and merging, and finally reaching
the reduce function at ReduceTasks. A number of important
parameters, such as SEB and STB buffer sizes and the
number of virtual segments in a subtree, need to be tuned
for this pipeline to work efficiently. In our tuning tests, we
have examined a variety of different data sizes on a number
of different nodes. For brevity, we present several represen-
tative case studies, running the TeraSort program with the
data size being 128 GB and the data split size 128 MB. This
results in a total of 1024 splits in the job, equal to the number
of data segments per ReduceTask.

6.1 SEB and STB Buffer Sizes
In the three-level segment table, SEB and STB are the primary
interfaces formerging data segments into the SGB. Their sizes
can affect the effectiveness of the fetching and merging pro-
cesses. It is important to understand how they impact the
performance of MapReduce programs. To do this, we first fix
the number of virtual segments in a subtree, whichwe choose
as the square root of the total number of segments.

Fig. 8(a) shows the tuning of SEB buffer size. For a fixed STB
buffer size, with an increasing SEB buffer size, the execution
time decreases. This is because, when a large SEB buffer is
used, the data fetching speed can catch up with the merging
speed of the active subtree, which benefits the pipeline of
fetching and merging. However, when the SEB buffer size
goes further up, the execution time becomes worse. This is
because more data from SEBs are dumped when a subtree is
deactivated. The same data often have to be re-fetched from
remote segments, resulting in wasteful and repetitive disk
accesses. In addition, this delays the effectiveness of data
fetching and stalls the entire pipeline. As shown in the figure,
with different STB buffer sizes, these performance curves
reach their minimum at different points. The best SEB buffer
sizes are 32KB and 64KB for different STB buffers. Since the
STB buffer sizes are different, the fetching speed andmerging
speed on the subtrees are different aswell. The lowest point in
a curve suggests a balance where the data fetching speed
matches up with the merging speed.

To reveal more performance impact of the STB buffer size,
we conduct another experiment to tune the STB buffer size
with a fixed SEB buffer size. Fig. 8(b) shows the results of this
tuning experiment.With an increasing STB buffer size, the job
execution time gets shorter and reaches the lowest pointwhen
the STB size is between 4 MB and 6 MB. After that, the job
execution stays roughly flat. The underlying cause of this
behavior is again the interplay between the speed of data
fetching and that of merging. In another word, there is a
competition between the speed of data fetching and data
merging. The optimal performance occurs when the data
fetching and merging speeds are well balanced. Thus, when
the size of the subtree is fixed, the job execution time can
benefit from a large STB buffer until it can hold all SEBs
buffers. For the rest experiments of the paper, we use 4 MB
STB buffers and 64KB SEB buffers unless otherwise specified.

6.2 Virtual Segments in a Subtree
The number of virtual segments in a subtree is another factor
that can directly affect the concurrency of data merging, thus
impact the performance. It is important to understand its
performance implications. Fig. 9 shows the results of our
tuning experiment, in which we fix the STB size to be 4 MB.
As subtrees grow in size, the number of total subtrees is
decreased, which consequently reduces the load of merging
threads. That is to say, the merging threads are able to merge
active subtrees efficiently without having to deactivate many
of them. If subtrees grow further in size, one active subtree
will trigger more SEBs to fetch data from remote segments,
which in turn causes more disk contention on the accessing of
MapOutput files. The program execution is then affected,
resulting in longer execution time.

Given this intriguing behavior, we speculate that there is a
theoretical relationship between the subtree size and the job
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execution time. On one hand, smaller subtrees will lead to
more of them, causing a linear increasing complexity in
managing subtrees (activating anddeactivating).On theother
hand, virtual segments in a subtree need to be fetched
remotely, thus more of them will lead to a linear increasing
cost of data movement. In addition, Hadoop uses a heap-
based priority queue for merging < > pairs, which is
inherited by virtual shuffling aswell. This implies that there is
a logarithmic complexity in merging SEBs into STBs and the
same in merging STBs to the SGB.

To gain more insight on the relationship, we perform an
analysis on the scalability trend. Let us denote the total
number of segments as , and the subtree size as . The
total number of subtrees is then . The time for managing
these subtrees and merging their STBs can be denoted as

. The total time for fetching SEBs of a sub-
tree and merging them into the STB can be denoted as

, where > is a constant factor
that represents the longer time for fetching data remotely,
compared to that of managing subtrees locally. Ideally, the
merging processes conducted on STB and SEB would be
completely asynchronous and be able to achieve a pipeline
without any stall, when the two time durations are the same.
The lower bound for can be solved by letting .
Approximately, is equal to . With the total number
of segments being 1024, the theoretical lower boundwould be
a number close to 16, depending on the exact value of . As
shown in Fig. 9, this conjecture matches well with our empiri-
cal results.

7 BENEFITS TO JOB EXECUTION

7.1 Overall Performance
We runHadoopTeraSort benchmarkwith different data sizes
and different numbers of nodes. Each slave runs 8 MapTasks
and 4 ReduceTasks concurrently. Fig. 10 shows the perfor-
mance of TeraSort on 20 nodes using different shuffling
strategies, where the total amount of physical memory is
160 GB. Three different cases are included in the comparison:
virtual shuffling as implemented in Hadoop-A, physical
shuffling in Hadoop-A, and physical shuffling in the original
Hadoop. Hadoop-A tests were run with InfiniBand RDMA

(Remote Direct Memory Access) and RoCE (RDMA over
ConvergedEthernet) transport protocol. The originalHadoop
was run with InfiniBand IPoIB and 10GigE. Because of its
scalability limitation, we did not include our previous work
network-levitated merge in this comparison.

As shown in the figure, physical shuffling in Hadoop-A
performs slightly better than the originalHadoop for all cases.
This is because the use of the high-speed RDMA protocol
compared to the IPoIB and 10GigE protocol. While RDMA is
beneficial to datamovement on the network, the performance
bottleneck lies with the disk I/O performance when physical
shuffling is used. Therefore, marginal benefits are observed
when the transport protocol is replaced. Among the three
cases, virtual shuffling consistently performs the best and
improve the overall performance by up to 27%, which de-
monstrates that virtual shuffling is able to speed up the data
movement and boost the performance. Virtual shuffling also
shows good scalability on different networks, which demon-
strates consistent performance improvement compared to the
physical shuffling. Because of the comparable performance,
we use the original Hadoop as the representative implemen-
tation of physical shuffling for the rest of the paper and we
conduct all the rest tests on InfiniBand network.

Fig. 8. Tuning of memory buffer sizes.

Fig. 9. Tuning of virtual segments in a subtree.
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Fig. 11 shows the performance of different shuffling strate-
gies on four representative benchmarks, namely WordCount
(256GB), Grep (256 GB), Hive Benchmarks (Order By, 60 GB),
and TeraSort (512 GB). As shown by the figure, virtual
shuffling speeds up the total execution time significantly for
the Hive Benchmarks and TeraSort, by 54.6% and 26%,
respectively, compared to physical shuffling. For two other
common web crawling benchmarks, Grep and WordCount,
virtual shuffling does not lead to much performance
benefit. This is because these programs generate very little
intermediate data, requiring little datamovement duringdata
shuffling. Thus, their data shuffling phase is mostly CPU
bound. Overall, these performance results indicate that vir-
tual shuffling can significantly improve the performance of
data-intensive MapReduce programs, and the benefit dwin-
dles for the programs that do not have much intermediate
data.

7.2 Progress of TeraSort Execution
We compare the progress of TeraSort program execution
using different shuffling strategies. The results are shown in
Fig. 12. The Y-axis shows the percentage of completion for
Map andReduce Tasks. TheX-axis shows the progress of time
during execution. Fig. 12(a) shows thatMapTasks of TeraSort
complete much faster with virtual shuffling, especially when
the percentage of completion goes over 50%. This is because
MapTasks are launched asmultiplewaves of tasks. Right after
the first wave of MapTasks finished, under the physical
shuffling strategy, ReduceTasks are launched and compete
for the disk bandwidth with later waves of MapTasks. This
leads to severe disk contention and a cascading impact to the
job execution time. In contrast, virtual shuffling eliminates
such disk contention to MapTasks, which consequently ben-
efits the progress of MapTasks. Similarly, Fig. 12(b) shows
that ReduceTasks are completed faster with virtual shuffling.
Note that in the case of physical shuffling, the progress of
ReduceTasks is reported while the data are being merged.
However, with virtual shuffling, we do not report progress
until the completion of all MapTasks, and then near the
completion of merging all segments. This is reflected in the
figure as seemingly slow initial progress for virtual shuffling.
Virtual shuffling actually still makes progress on Reduce-
Tasks. Once it begins reporting, the progress in terms of

percentage jumps up quickly, first at the completion of Map-
Tasks and then at the end of merging, as indicated by the two
jumps in the figure.

7.3 Scalability
Being able to leveragemore nodes to process large amounts of
data is an essential feature of Hadoop.Wewant to ensure that
virtual shuffling deliver scalability in a similar manner. Sowe
measure the total execution time of TeraSort in two scaling
patterns: one with fixed amount of total data (200 GB) and an
increasing number of nodes, and the other with fixed data
(10 GB) per node and an increasing number of nodes. The
aggregated throughput is calculated by dividing the total size
with the program execution time.

Fig. 13 shows the scalability comparison between virtual
shuffling and physical shuffling with a fixed data size (10 GB)
per node. Both of them can achieve linear scalability. Virtual
shuffling can speed up the execution time by approximately
30% and improve throughput by 43%. Fig. 14 shows the
scalability comparison between virtual shuffling andphysical
shufflingwith afixed size of total data (200GB). Again both of
them can achieve good scalability. Virtual shuffling can cut
the execution time by up to 33%, compared to physical
shuffling. Conversely, this results in a throughput improve-
ment of 49.2%. To summarize, compared to physical

Fig. 10. Performance comparison of different shuffling strategies.

Fig. 11. Performance of different benchmarks.
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shuffling, these results adequately demonstrate better scal-
ability of virtual shuffling for large-scale data processing.

8 BENEFITS TO I/O AND POWER CONSUMPTION

Virtual shuffling is designed to alleviate the severe disk
contention problem in MapReduce infrastructure. In this
section, we analyze the detailed I/O behavior of virtual
shufflingand compare it tophysical shuffling. Thebenchmark
used is TeraSort andwe conduct the experiments on 12 slaves
nodes with a fixed size of input data (250 GB).

8.1 Profile of I/O Accesses
We trace the vmstat output every second on all the slave nodes
at run time. Table 2 shows the average total number of read
and write blocks on a slave node. Physical shuffling aggres-
sively fetches the entire intermediate to local disk for shuffling
andmerging,which has to use external sort. However, virtual
shuffling pulls the data only when needed and merges data
through memory for the reduction function, avoiding the
extra disk accesses. Thus, we have significantly reduced the
disk accesses for both read andwrite operations, by 30.9%and
36.2% respectively. The total reduction by using virtual shuf-
fling technique is up to 34.1% as shown in the table.

Fig. 15 provides the run-time profile of read and write
blocks,which indirectly reflects the number of requests issued

during the program execution. The more read and write
blocks are issued, the more traffic is generated which essen-
tially increases the disk contention andhurts the performance.
Note that total disk read and write blocks are different
because intermediate files are read and written in different
ways and these I/O activities are concurrent with those to the
Hadoop Distributed File System.

When disk bandwidth is a scarce resource, high disk I/O
traffic can lead to long queuing time of I/O requests which
essentially degrades the performance of the original Hadoop.
However, virtual shuffling is able to reduce the disk I/O
traffic and support efficient datamovement. Fig. 16 illustrates
the number of I/O requests across the test. At the beginning of
the figure, it shows the map phase, virtual shuffling shares
similar number of I/O requests as current Hadoop due to all
the MapTasks still materialize the map output into the disks.
However, once ReduceTasks are launched, we observe sig-
nificant drop in the number of I/O requests in the virtual
shuffling due to its in-memorymerging algorithm. In order to
further understand the benefits of disk accesses reduction, we
analyze the service time and thewait timeof I/Orequests. The
service time is the time taken to complete one I/O request and
the wait time includes the queuing time and the service time.
Fig. 17(a) shows the details for both virtual shuffling and
physical shuffling. Several I/O behaviors can be observed
from this figure. First, virtual shuffling has the similar I/O

Fig. 12. Progress diagrams of terasort.

Fig. 13. Scalability with a fixed data size per node. Fig. 14. Scalability with a fixed data size for the program.
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service time as physical shuffling. Second, virtual shuffling
leads to similar or lower I/O wait time during the first
20 minutes, which correspond to the mapping phase of the
execution. As the execution progresses into the reducing
phase, the I/O wait time is significantly reduced. This is
because virtual shuffling significantly reduces disk accesses.
Third, for physical shuffling, especially during the reducing
phase, most of the I/O requests spendmore than 95% of their
turnaround time waiting in the queue, which means the disk
is not being able to keep upwith the requests. On the contrary,
I/O requests only spend around 40% of the total timewaiting
in the queue with virtual shuffling.

Taken together, the experiment demonstrates that virtual
shuffling is able to efficiently alleviate disk contention and
leave it in an efficient working status. It achieves so via
completely eliminating the disk I/O and conducting all of
the data shuffling and merging in memory, thereby signifi-
cantly reducing the number of I/O requests.

8.2 Power Consumption
To examine the energy implication of virtual shuffling, we
attach WattsUp PRO/ES power meters to several compute
nodes andmeasure their power consumptions at a per-second
interval. TheWattsUpmeter has a simple serial-USB interface
that allows us to record the power profile of MapReduce
programs in a fine-grained manner into a tracefile. We then
plot the power profile based on the trace files. The power is
recorded every second. For clarity, we plot the power con-
sumption profile on a per-minute basis.

Fig. 18 shows the run-time profile of the power consump-
tion per minute. The average draw for virtual shuffling was
160 watts with a standard deviation of about 8 watts, while
180 watts on average with a standard deviation 23 watts for
physical shuffling. Compared to physical shuffling, the aver-
age power consumption of virtual shuffling is reduced by
12%. It suggests that, by reducing disk accesses, virtual

shuffling can lead to significant savings on run-time power
consumption for MapReduce programs.

9 DISCUSSION

9.1 Active Subtrees
The main objective of virtual shuffling is to keep the merging
process scalable with limited memory consumption and
without disk spilling. With an increasing application data
size, it is crucial to efficiently use and manage the memory
buffers. The virtual segment table is to mimic the classic
paging mechanism, which builds a global index on the
description of all the segments.

When the number of subtrees grows significantly, it is
unrealistic to keep all subtrees active due to the memory
pressure. Thus we only allow a limited number of active
subtrees. Our tree-based management of virtual segments is
able to achieve high scalability. To shed light on the impact of
memory management, it is important to study parameters
such as the buffer size for SEBs and STBs and the size of
subtrees. Thus we conduct the performance tuning experi-
ments and analyze the impact of different data sizes as
provided in Section 6. These tuning experiments help us find
the optimal choices for these parameters. We adopt these
parameters to achieve a smooth pipeline in shuffling,merging
and reducing virtual segments while keeping the memory
consumption scalable.

TABLE 2
I/O Blocks

Fig. 15. Run-time profile of I/O accesses.

Fig. 16. Number of I/O requests.
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9.2 Fault Tolerance
In addition, the handling of execution faults is worth men-
tioning here. Hadoop adopts a simple fault-tolerance model
through task re-execution to handle node failures. During the
job execution, the JobTracker periodically communicateswith
TaskTrackers through heartbeat messages. If a TaskTracker
fails to communicate with the JobTracker for a period of time
(by default, 1 minute in Hadoop), JobTracker will assume
that this TaskTracker has crashed. The JobTracker chooses
another TaskTracker to re-execute allMapTasks, if it is inmap
phase (or ReduceTasks if it is in reduce phase), that were
previously executed at the failed TaskTracker. The MapRe-
duce online work significantly complicates the fault tolerance
of Hadoop. It directly couples map tasks with reduce tasks,
hence called online. A faulty reduce task means that all
coupled map tasks and the associated data are potentially at
fault. In contrast, virtual shuffling does not change the fault
tolerance features of Hadoop, which are continued to be
enabled by speculative tasks and task re-execution. If a job
fails in the map phase, the JobTracker will choose another
TaskTracker to re-execute the MapTasks. Meanwhile, all
ReduceTasks will re-fetch the segment headers belonging to
the failed MapTasks, which will be updated to the global
segment table. Similarly, if a jobs fails in the reduce phase,
another TaskTracker will re-execute the failed ReduceTasks
and the global segment table will be created and all the
intermediate data will be shuffled again. Virtual shuffling
only renovates the shuffling algorithm, with which Reduce-
Tasks determine the time and manner for fetching and
merging of data segments. This algorithm is external to the
TaskTrackers and does not complicate the speculative execu-
tion and re-execution of tasks by TaskTrackers.

10 CONCLUSIONS

We have proposed virtual shuffling as a new strategy to
enable efficient data movement for MapReduce applications.
Accordingly, we have designed and implemented virtual
shuffling as a combination of three techniques including a
three-level segment table, near-demand merging, and
dynamic and balanced merging subtrees. Our experimental
results show that virtual shuffling significantly relieves the
disk I/O contention problem and speeds up data movement
in MapReduce programs. In addition, it reduces power

consumption of MapReduce programs by as much as 12%.
For future work, we are interested in the applicability of
virtual shuffling over different network protocols. we also
plan to investigate the benefits of virtual shuffling for more
commercial and scientific workloads on large-scale commer-
cial cloud computing systems.
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