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Abstract—Phase Change Memory (PCM) is a promising alter-
native technology for DRAM because of its advantages in terms of
transistor density and energy consumption. It has been exploited
to work in concert or alone inside various memory systems to
meet the growing bandwidth needs of massive parallelism. PCM
memory cells, however, have a common problem of limited write
endurance. Various wear-leaving techniques have been employed
for uniform distribution of memory writes, typically through
address transformation schemes such as randomization to avoid
hot writes. Unfortunately, such address transformation can have
the undesirable consequence of disrupting the row buffer locality
in sequential memory accesses, resulting in the loss of memory
performance. Our analysis reveals that this situation is partic-
ularly severe under massive parallelism of manycore processors
such as GPUs. In this paper, we introduce a combination of
two techniques, matrix-based partial randomization and row-
buffer locality-aware rotation, to alleviate the locality disruption
of address transformation and preserve the row buffer locality
of PCM-based global memory in GPU. Our evaluation results
show that, compared to existing techniques, our techniques can
adequately preserve the row buffer locality and minimize the loss
of memory performance, while achieving similar endurance and
better energy efficiency for a variety of GPGPU applications.

I. INTRODUCTION

Graphic Processing Units (GPUs) have become a com-

pelling solution due to their massive parallelism and high

energy efficiency. However, massive parallelism with hundreds

of thousands of threads places enormous pressure on memory

capacity and bandwidth. One strategy is to leverage the Non-

Volatile Memory (NVM), such as Phase-Change Memory

(PCM), Resistive Random Access Memory (ReRAM) or Spin-

Transfer Torque RAM (STT-RAM or MRAM). These memory

devices have superior features, such as higher performance,

greater energy efficiency, and higher cell density. Nevertheless,

a main hurdle for these memory devices is their limited

lifetime. For example, compared to DRAM (1015 writes), the

lifetime of PCM (108) is orders of magnitude shorter.

A lot of wear-leveling techniques [22, 23, 26, 14, 2]

have been proposed to address such endurance issue. Among

them, Start-Gap [22] becomes quite popular, because it can

uniformly spread memory accesses to all memory sub-regions

with small overhead. In general, Start-Gap first uses a low-

cost rotation scheme to relocate heavily written cache lines

to neighboring positions, and then randomizes the memory

address space to reduce the clustering of heavily written lines.

Normally, memory devices use row buffers to facilitate

memory accesses. Row buffer is an external circuitry to

temporarily hold a row of data loaded from memory chips.

Consecutive memory requests that hit in row buffer, which is

referred to as Row Buffer Locality (RBL), can be serviced

immediately. Otherwise, a new row will be loaded into row

buffer through a series of memory commands, which can be

10X slower than direct row buffer accesses. Considering the

long latency and high energy cost of PCM writes, preserving

RBL can have triple impacts on latency, throughput, and

energy efficiency [9, 19, 27, 35, 11].
For GPU programming, streaming access pattern is common

and critical to gain high performance and reduce the pro-

gramming complexity. This pattern generates bursty sequential

accesses to logically contiguous memory regions and can

greatly benefit from preserved RBL. However, randomizing

memory address space due to endurance concerns distributes

logically contiguous memory blocks into arbitrary regions,

destroying potential RBL for both reads and writes inside

GPU memory access streams. Similar issues also exist in

other wear leveling techniques [23, 26]. Thus, RBL-oblivious

wear-leveling techniques can incur significant penalty to the

performance of GPU memory sub-systems.
These observations have motivated us to investigate and

explore a RBL-aware wear leveling solution. In this paper,

we examine several address mapping schemes and empirically

analyze their impacts on RBL, performance and endurance.

We present a novel bijective matrix-based partial random

scheme and a RBL-aware rotation algorithm. They reduce the

RBL losses caused by the existing wear-leveling schemes and

hence improve PCM-based GPU performance. Our evaluation

results show that the integrated RBL preservation scheme can

minimize the loss of RBL, while achieving similar endurance

and better energy efficiency for PCM devices than the Start-

Gap for a variety of GPU applications.
In summary, our study makes the following contributions:

1) We have observed that randomization-based wear lev-

eling for non-volatile memories can destroy the RBL

inherently embedded in GPGPU applications, degrading

the performance of memory systems;

2) We propose a partial randomization method to constrain

the degradation of RBL via bijective matrices, prove the

prerequisite of matrices locality, analyze and compare

the changes of variances in linear method;

3) We design a RBL-aware Rotation (RAR) policy to
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Fig. 1: GPU architecture and hierarchical address mapping

further preserve RBL in the operations of relocating

heavily written blocks;

4) We implement the two techniques in a cycle-accurate

simulator. Our evaluations show that, compared with the

state-of-the-art wear leveling technique (Start-Gap), our

techniques on average achieve 9% reduction of mem-

ory service latency, 8% saving of power consumption,

8% of IPC performance improvement, and comparable

endurance for a variety of GPGPU applications.

In the rest of this paper, we first introduce our baseline

GPU architecture in Section II and describe our motivations

in Section III. The two key techniques are elaborated in

Sections IV and V. Experimental results are presented in

Section VI. Finally, we review the related work in Section VII

and conclude the paper in Section VIII.

II. BASELINE GPU ARCHITECTURE

We study a baseline GPU that is similar to the NVIDIA’s

Fermi Architecture [20]. As shown on the left of Fig. 1,

there are several Streaming Multiprocessors (SMs or shade

cores) in our baseline GPU, each of which has on-chip L1

caches and shared memory. Multiple Memory Partitions (MPs)

are equipped to collectively sustain the memory bandwidth

requirement of massive threads in the SMs. Each MP consists

of a L2 data cache and a Memory Controller (MC) to manage

the high-bandwidth but long-latency off-chip memory devices.

SMs and MPs are connected through an interconnection

network. The right part of Fig. 1 illustrates the steps of

transforming the addresses of individual memory requests in

the global memory address space into physical addresses in

memory chips. First, global addresses are striped into local

addresses in each MP in an interleaved manner. Our baseline

GPU has a default stride length of 256B. Then local addresses

are mapped into physical addresses in the memory chips, i.e.,

banks, rows, and columns.

Our baseline architecture is simulated on GPGPU-Sim

(version 3.2.1), a cycle-accurate GPGPU Simulator [3]. The

characteristics of our baseline GPU [1] and parameters of

PCM [11] are summarized in Table I. This baseline GPU is

also studied in [32, 29, 31, 33, 30]. tCCD, tRRD, and tRCD

specify the delays in column-to-column, row-to-row, and row-

to-column activations. tRAS is the time interval between row

access and data restoration in PCM. We use tRP to simulate

TABLE I: Baseline GPU Configuration

# SM 30

SM Config. 1.4GHz, Pipeline width:32, Branch divergence handling:
immediate post-dominator, Warp scheduling: RR

Resources/SM #Reg: 32 KB, Shared Memory: 48KB, 32 threads/warp,
48 warps/SM, 8 blocks/SM

L1 Private Data$ 32KB, 128B line, 4-way assoc., 32 MSHRs

L2 Cache/MP 128KB, 128B line, 16-way assoc., 32 MSHRs, 700 MHz,
Minimum latency: 120 cycles

Interconnect 1400 MHz, 32B channel width, 1 stage butterfly network

# Mem. Partitions 6

Mem. Channel FR-FCFS, 8 bytes/cycle, Minimum Latency: 220 cycles

Mem. Model 1848 MHz, 16 Banks/channel, 4KB row size

Mem. Timing nbk =16, nbkgrp=4, tCCD=7, tRRD=18, tRCD=37,
tRAS=46, tRP=100, tRC=146, tCL=5, tWL=4, tWTR=10

Mem. Energy
(pJ/b)

Array read: 2.47, Array write: 16.82, Row buffer read:
0.92, Row buffer write: 1.02, background: 0.08

TABLE II: Access Patterns of Benchmarks

# Benchmark Description MPKI WPKI write%

1 SP ScalarProd 2.68 0.001 0.038

2 NN Nearest Neighbor 6.25 2.5 40

3 KM Kmeans 2.15 0.027 1.3

4 FWT FastWalshTransform 2.67 1.293 48.5

5 SN SortingNetworks 1.12 0.534 47.5

6 CS ConvolutionSeparable 2.05 0.994 48.4

7 BFS Breadth First Search 23.4 6.74 28.8

8 BS BlackScholes 2.21 0.633 28.6

9 SC Streamcluster 4.31 0.38 8.8

10 MT MersenneTwister 1.49 0.746 50.1

the Write Recovery time (tWR) of PCM. tRC indicates the

time of row accesses and row buffer precharge. tCL and tWL

restrict the frequency of the buffer commands, and tWTR

shows the delay time from write to read. We consider a wide

range of memory intensive GPGPU applications from CUDA

SDK [21] and Rodinia [4]. Table II lists major characteristics

of the benchmarks used in this study. MPKI denotes Misses

Per Kilo Instructions; WPKI denotes memory Writes Per Kilo

Instructions; write% represents the percentage of writes in

each benchmark.

III. ANALYSIS OF ADDRESS MAPPING SCHEMES

In this section, we motivate this paper by examining three

typical address mapping schemes and analyzing their distinct

impacts on endurance, performance, and energy efficiency for

a PCM-based GPU global memory sub-system.

A. Address Mapping Schemes

We use a 30-bit virtual address space to illustrate the

mapping from local addresses to physical addresses. In our

baseline, local addresses are mapped onto banks, rows, and

columns in the unit of 256B memory segment. Fig. 2 shows

how bank (Bank Index), row (Row Index), and column (Col-
umn Index) addresses are calculated in three baseline mapping

schemes. The lowest several bits represent the offset within

each memory segment. These schemes are further described

below in more details.

• Basic Address Mapping scheme (BAM) preserves RBL

by mapping 2c logically contiguous memory seg-

ments into the row that is located via Row Index and

Bank Index. When the current row is full, the row with

the same Row Index but different Bank Index is selected.
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Fig. 2: Address mapping in BAM, BOM and RIB

TABLE III: Bank-level skews in three schemes

SP NN KM FWT SN CS BFS BS SC MT GMean

BAM 1.03 1.03 1.14 1.15 1.18 1.06 2.23 1.03 3.67 1.04 1.31

BOM 1.99 1.94 1.78 2.04 2.04 1.91 1.96 2.00 1.98 1.98 1.96

RIB 1.01 1.01 1.02 1.03 1.05 1.01 2.69 1.04 3.27 1.03 1.26

• Bank-Oriented Mapping scheme (BOM) achieves high

bank level parallelism (BLP) by constantly mapping

contiguous memory segments into neighboring banks.

• Random Invertible Binary matrix based scheme (RIB)

is used in conjunction with the Start-Gap wear leveling

algorithm [22]. In this illustration, RIB first uses an

invertible matrix to randomize the local address space

and then takes the BAM scheme for a final mapping of

addresses. RIB can better normalize accesses to different

memory sub-regions of a PCM device, which is the key

to improve its lifetime.

Note that Row Index in the three schemes are always in the

most significant bits of the local addresses to maximize either

RBL (in BAM) or BLP (in BOM).

B. Wear Leveling Capabilities

Address mapping schemes determine the distribution of

memory segments in the memory devices, thus they can

affect the endurance of PCM chips. We use bank-level write

skew [3, 15] to quantify such impacts. Bank-level write skew is

calculated as the ratio of the maximal write counts to average

write counts for all banks, as shown below:

BankSkew = Wmax/E{Wi}, (3.1)

where Wi is the number of writes to the ith memory bank,

Wmax means the maximal value among Wi, and E{Wi} is the

average (or expected) write counts of all banks. BankSkew
indicates the write skew among different banks of PCM chips,

thus it is directly correlated with the lifetime of a PCM device.

A minimum value of 1 for BankSkew indicates a perfect

wear-leveling, while other larger values represent non-uniform

writes to PCM chips. Substantial BankSkew can quickly

wear out a PCM chip. Table III lists the bank-level write skews

in the three mapping schemes. As we can see, on average, RIB

has the lowest bank-level skews, i.e., the best wear leveling

potentials.

C. Row Buffer Locality and Performance

Fig. 3 shows the impacts of the three address mapping

schemes on the performance of the evaluated GPU bench-

marks in terms of Instructions Per Cycle (IPC). The results

are normalized to BAM. Since the evaluated benchmarks
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Fig. 4: Row Buffer Locality of RIB, BOM and BAM

have streaming access patterns with high RBL for inter-warp

memory accesses, BAM has the best performance among

the three schemes. By contrast, BOM and RIB on average

(geometric mean) cause 4% and 10% IPC loss, respectively.

The performance degradation is especially significant for SP,

NN, KM and FWT, whose memory accesses are dominated

by streaming patterns. BOM can maximize BLP, which is

important to sustain memory throughput. The performance

loss of BOM reflects that the GPGPU applications are more

sensitive to RBL. Meanwhile, BAM can help preserve BLP to

certain extent.

We define the following metric to quantify RBL:

RBLavg =

∑s
i=1 ACCi∑s
i=1 ACTi

, (3.2)

where RBLavg stands for the average RBL among different

banks, ACCi is the total number of memory accesses to the

ith bank, ACTi is the total number of row activations in the

ith bank, and s is the number of banks. Fig. 4 shows the

RBLavg of the evaluated benchmarks in the three mapping

schemes. The results are normalized to BAM, which achieves

the maximal RBL. Compared to BAM, BOM and RIB on

average conserve only 50% and 36% of RBL, respectively.

BOM degrades RBL but achieves higher BLP. However, RIB

weakens both RBL and BLP due to its address randomization

component that aims at uniformly spreading accesses. Such

performance disadvantage of RIB is essentially caused by its

focus on wear leveling, as shown in Table III. Lack of RBL

can incur frequent long-latency row activation commands to

memory chips, degrading the throughput of GPU memory sub-

systems. Thus, we can conclude that a RBL-aware address

mapping scheme is crucial to sustain the performance of

GPGPU applications on GPUs.

D. Row Buffer Locality and Energy Efficiency

Besides aforementioned performance implications, preserv-

ing RBL can merge consecutive write requests and then reduce

write traffic to memory chips. Because of the asymmetric en-

ergy consumption of PCM read/write requests, exploiting RBL

is also critical to achieve high energy efficiency of leveraging
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PCM devices in GPGPUs. Fig. 5 illustrates how RBL-aware

and randomization-based address mapping schemes differ in

maintaining performance and energy efficiency.

Fig. 5(a) lists the key PCM parameters, which are based

on the parameters reported in [11]. In order to illustrate this

problem, we assume six memory requests to different memory

blocks, A, B, C, D, E, and F. Randomization-based and RBL-

aware address mapping schemes result in distinct distributions

for the six data blocks, shown in Fig. 5(b) and Fig. 5(c),

respectively. In this example, only A and F are mapped into

the same row in the randomization-based address mapping;

while A, B, and C (similarly, D, E, and F) are mapped in the

same row in RBL-aware address mapping. Due to the different

capabilities in preserving RBL, randomization-based address

mapping (RND) consumes 57,870 pJ energy, while RBL-aware

address mapping (RBL) consumes 52,930 pJ energy, saving

4,940 pJ. Meanwhile, RBL-aware address mapping also saves

1500 cycles for the memory sub-system to service the six

requests. Note that this energy saving is mainly from the

reduced dynamic energy consumption, and this can be more

significant if the static power consumption is also considered.

In this paper, we aim to design an address mapping scheme

that can achieve comparable endurance potential of RIB and

high performance of BAM. To this end, we propose a partial

randomization method using bijective matrices to constrain

randomization into smaller blocks rather than the whole

memory address space. On top of that, we propose a RBL-

aware rotation mechanism to further improve the endurance

of PCM-based global memory in GPUs. These techniques are

elaborated in detail in the next two sections.

IV. PARTIAL RANDOMIZATION THROUGH BIJECTIVE

MATRICES

In this section, we propose an address transformation

scheme that can achieve partial randomization through bi-

jective matrices. Then, we prove its partial randomization

ability and the prerequisite of invertibility, including how to

set up the matrix. Furthermore, we analyze the variance of

address randomization and show a strategy for the hardware

implementation of bijective matrices.

A. Partial Randomization

The main idea of partial randomization is to construct a

partitioned matrix which can partially randomize the memory

addresses so that bank-level write skews can be minimized

while retaining RBL in streaming accesses.

Suppose we have a square matrix M with dimension

(r + b + c) × (r + b + c), where r, b and c represent the

width of Row Index, Bank index, and Column Index as

shown in Fig. 2, respectively. Since the offset bits do not

affect RBL, we can ignore them to simplify the problem.

Although the column bits can not destroy RBL directly,

randomizing them conduces to shuffling the entire addresses

and simplifying the implementation of hardware. The address

space of bank, row, and column can be formulated as single

square bijective matrices [6]. Such matrices can be partitioned

into nine submatrix blocks as the matrix M shown in (4.1):

M =

⎛
⎝A B C

D E F
G H K

⎞
⎠ (4.1)

The dimensions of A,B,C,D,E, F,G,H, and K are r×r,

r×b, r×c, b×r, b×b, b×c, c×r, c×b, and c×c, respectively.

Note that A, E, and K in the cross line are square matrices.

Theorem 1: If A and E − DA−1B are invertible, then M
of (4.1) is invertible, ⇔ K −GA−1C − (H −GA−1B)(E −
DA−1B)−1(F −DA−1C) is invertible.

Proof: We elaborate the deduction process of Theorem 1

in two steps. First we describe the required condition in

Theorem 1. The first line of matrix M , multiplies matrix

−DA−1, where each line of block matrix undergoes the

Element Row Operation (ERO), then is added to the second

line. Similarly, we multiply the first line with −GA−1, and

add the result to the third line. The resulting matrix is then

M1 as shown below:

M1 =

⎛
⎝A B C

0 E − DA−1B F − DA−1C

0 H − GA−1B K − GA−1C

⎞
⎠ (4.2)

∵ E −DA−1B is invertible ∴ (E −DA−1B)−1 exists.

We then multiply the second line of M1 with (H −
GA−1B)(E −DA−1B)−1, and add the product to the third

line. Let us consider T = K−GA−1C− (H−GA−1B)(E−
DA−1B)−1(F −DA−1C). We will have a new matrix, M2

as shown below:

M2 =

⎛
⎝A B C

0 E − DA−1B F − DA−1C
0 0 T

⎞
⎠ (4.3)
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Using similar ERO, M2 is further transformed into matrix M3

as shown below:

M3 =

⎛
⎝A 0 0

0 E − DA−1B 0
0 0 T

⎞
⎠ (4.4)

∵
∣
∣M

∣
∣ =

∣
∣A

∣
∣ · ∣∣E −DA−1B

∣
∣ · ∣∣T ∣∣ �= 0 ∴

∣
∣T

∣
∣ �= 0 .

∴ If A and E −DA−1B are invertible, then M is invertible.

⇒ (K −GA−1C − (H −GA−1B)(E −DA−1B)−1(F −
DA−1C)) is invertible.

Next we prove the necessary condition of Theorem 1 by

constructing an extended matrix M
′

to calculate matrix M−1.

M
′
=

⎛
⎝A B C In 0 0

D E F 0 Im 0
G H K 0 0 Is

⎞
⎠ (4.5)

Using the same ERO, we can multiply the first line with matrix

−DA−1, then add the product to the second line. In addition,

we multiply the first line with matrix −GA−1, then add the

product to the third line. Matrix M
′

is then transformed to

matrix M∗ as shown below:

M
∗
=

⎛
⎝A B C In 0 0

0 E − DA−1B F − DA−1C −DA−1 Im 0

0 H − GA−1B K − GA−1C −GA−1 0 Is

⎞
⎠ (4.6)

Let us consider matrix T1 = −(H − GA−1B)(E −
DA−1B)−1, and matrix T2 = (H − GA−1B)(E −
DA−1B)−1DA−1−GA−1. We then multiply the second line

with matrix T1, and add T2 to the third line. Matrix M∗ is

then transformed to matrix M∗∗ as shown below:

M
∗∗

=

⎛
⎝A B C In 0 0

0 E − DA−1B F − DA−1C −DA−1 Im 0
0 0 T T2 T1 Is

⎞
⎠

(4.7)

We further multiply each line with the invertible matrices of

the first non-zero block matrices. Through these procedures,

the extended matrix M
′

is eventually transformed into the

Row Echelon Form (REF) which is shown as below:

⎛
⎝In . . . . .

0 Im . . . .
0 0 Is . . .

⎞
⎠ (4.8)

Matrices of Row Echelon Form (REF) can be transformed

into the Reduced Row Echelon Form (RREF) through ERO.

Therefore, the extended matrix can be transformed into a form

of matrices as shown below:⎛
⎝In 0 0 . . .

0 Im 0 . . .
0 0 Is . . .

⎞
⎠ (4.9)

Hence, Theorem 1 is correct.

Invertibility of matrix M is the prerequisite of randomiza-

tion in Start-Gap and its variants. Therefore, we raise Theorem

1 satisfying the basic requirement of full randomization.

However, based on our aforementioned analysis, we need to

restrict the randomization to maintain RBL and performance.

From blocked matrix M , it is obvious that the sub-matrix

E influences the randomization of Row Index. To maintain

RBL, we constrain the variations of row indexes. The form of

matrix M can not be directly utilized to preserve RBL. We

narrow down the range of M and derive Theorem 2.

Theorem 2: Matrix A and E are invertible, then matrix P
in (4.10) is invertible, ⇔ K −GA−1C is invertible.

P =

⎛
⎝A 0 C

0 E 0
G 0 K

⎞
⎠ (4.10)

where C and G are r×c and c×r matrices, respectively. A,E,

and K are r×r, b×b, and c×c matrices, and are either identity

matrices or matrices of the form as shown by (4.11)⎛
⎜⎜⎜⎝

0 1 0 . . . . 0
0 0 1 . . . . 0
0 . . . 1 . . 0
0 . . . 0 . 1 0
α1 α2 . . . . αn−1 αn

⎞
⎟⎟⎟⎠ (4.11)

The diagonal elements of (4.11) are all zeros except the last

one. The cross line behind it has all ones. The last row (α1,

α2, ..., αn−1, αn) has all non-zero values. Therefore, all the

row and column vectors are linearly independent of each other.

Thus, this form of matrices is guaranteed to be invertible.

Theorem 2 offers a distinct strategy of preserving RBL

and constraining randomized addresses by adding four zero

matrices. We replace matrices B,D, and F with zero matrices,

then matrix M becomes matrix P . When A,E, and K are set

to identity matrices and C and G are set to zero matrices, P
does not take any effect in randomizing memory addresses.

A,E, and K can not be set to zero matrices, only to the form

of equation (4.11). C and G randomize the address spaces of

banks and columns.

We can then use this bijective matrix P for partial random-

ization of memory addresses. Suppose one set of consecutive

bits needs to be excluded from randomization, the correspond-

ing submatrix can be set to the identity matrix. Otherwise,

we use square matrices as shown by (4.11). Suppose the local

memory address from the rth bit to the (r+b)th bit in address

space is required to keep unchanged, and all the other bits need

to be randomized. In this case, matrix E is a b × b identity

matrix or form of (4.11). A and K also have the form of (4.11).

C and G can be set according to Theorem 2 to ensure the

whole matrix is invertible.

B. Variance Analysis

We further analyze the variation of memory addresses

after the partial randomization by the bijective matrix. We

define a variance metric to measure the dispersion degree of

random addresses. Suppose a random variable X representing

a random memory address, we can construct a vector series

{xi; i ∈ N} as a distribution of its transformed addresses,

where N denotes a natural number. The expected value of X
is μ = E [X]. We then need to formulate a divergent and

unstationary process. Hereby, we denote xi = detXi. The

randomized address can use the above block matrix such that

Y = P ×X , where Y is the randomized address vector after

using matrix (4.10), P is one instance of (4.10) and X is the

unchanged vector.

Upon a large number of memory writes, the total write

counts of a cache line can be approximated as a Gaussian

Distribution. By the Central Limit Theorem [25], we can de-

note X ∼ N(μ, σ2). After a linear multiplication of matrices,

the mean has changed to E [Y ].
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Let X =
(
x1, x2, · · · , xn

)T
, Y =

(
y1, y2, · · · , yn

)T
, aij

is an element of matrix Pn×n. After multiplying with matrix

Pn×n, compute the mean and variance of Y ,

E(yi) =
n∑

j=0

aijE(xj) (4.12)

Similarly, we have

V ar(yi) =
n∑

j=0

aijV ar(xj) (4.13)

We simplify the procedure of computation of address values,

using the above pre-conditions in (4.12) and (4.13), we define

the metric of transformation of address variables as below

(4.14)

Y10 =

n∑
i=1

yi2
i−1

(4.14)

where Y10 represents the decimal value of address variable.

Since random variable X follows a Gaussian Distribution ap-

proximately with large writes, x1, x2, · · · , xn are independent

normal random variables, then the sum of them also follows

Gaussian Distribution. Therefore, the variance of decimal

value of (4.14) can be calculated as below,

V ar (Y ) =
n∑

i=1

⎡
⎣(

2
i−1

) n∑
j=0

aijV ar (xj)

⎤
⎦2

(4.15)

Similarly, we have

V ar (X) =

n∑
i=1

[(
2
i−1

)
V ar (xi)

]2
(4.16)

Because of invertible matrix P , there must be none-zero,

i.e., at least one aij either in each row or in each column.

From (4.15) and (4.16),

V ar (Y ) − V ar (X)

=
n∑

i=1

⎡
⎣(

2
i−1

) n∑
j=0

aijV ar (xj)

⎤
⎦2

−
n∑

i=1

[(
2
i−1

)
V ar (xi)

]2

=
n∑

i=1

{(
2
i−1

)2

⎛
⎝ n∑

j=0

aijV ar (xj) + V ar (xi)

⎞
⎠

⎛
⎝ n∑

j=0

aijV ar (xj) − V ar (xi)

⎞
⎠}

≥ 0

(4.17)

Therefore, we get V ar (Y ) ≥ V ar (X).
The variance of random variable X shows the address vari-

ation after using partial randomization. Furthermore, different

partial matrices will reflect different degree of how far a set

of addresses is spread out. Comparing two invertible matrices,

we define variable Y
′
, Y

′′
as randomized address variables by

multiplying matrices B and C, respectively. Δ denotes the

difference of their variances:

Δ = V ar
(
Y
′) − V ar

(
Y
′′)

=

n∑
i=1

⎡
⎣(

2
i−1

) n∑
j=0

bijV ar (xj)

⎤
⎦2

−
n∑

i=1

⎡
⎣(

2
i−1

) n∑
j=0

cijV ar (xj)

⎤
⎦2

=
n∑

i=1

{(
2
i−1

)2

⎛
⎝ n∑

j=0

bijV ar (xj) +
n∑

j=0

cijV ar (xj)

⎞
⎠

⎛
⎝ n∑

j=0

bijV ar (xj) −
n∑

j=0

cijV ar (xj)

⎞
⎠}

=

n∑
i=1

(
2
i−1

)2

⎛
⎝ n∑

j=0

(bij + cij) (bij − cij)V ar (xj)
2

⎞
⎠

(4.18)

Fig. 6: Implementation for the Partial Randomization

When multiplying different invertible matrices to the ad-

dress vectors, we need to discuss whether Δ is positive or

negative due to the uncertainty of differences between two

matrices. We can reasonably assume that there are some zero

blocked matrices in a bijective matrix C, the number of ones

in matrix B is more than or equal to that of C. Hence Δ ≥ 0.

This means that the address variable is not only sporadic but

also very well centralized.

C. Hardware Implementation

In practice, this transformation scheme could be done using

logic circuits. Multiplication and addition operations can be

substituted by an AND gate and a NOR gate. Fig. 6 gives a

demonstration of a possible implementation. M is the operation

matrix, X is the input address and Y is the mapped address.

Y1 is the first bit of the output address, which equals to the

inner product of X and first row of M; Y2 is equal to the inner

product of X and the second row of M, etc. The elements in

M can be either constant digital logic values or programmable

values that have associated registers operated by a micro-

controller. Using this solution, the proposed mapping and

randomization can be implemented by hardware.

For a memory system with r + b + c bits address space,

computing each bit requires 2(r+ b+ c) AND gates and two-

input NOR gates. Thus, the total storage overhead is (r+b+c)2

and approximately 2(r + b + c)2 gates for logic. The extra

latency is less than one cycle.

V. ROW BUFFER LOCALITY-AWARE ROTATION

Section IV has introduced an address transform scheme that

preserves RBL. In this section, we further introduce a novel

RBL-aware Rotation (RAR) algorithm to minimize the perfor-

mance impact of rotation-based wear leveling algorithms.

The randomization used by Start-Gap can destroy RBL

while our bijective matrix based partial randomization solves

this issue. Nevertheless, the overhead caused by rotation is

non-trivial. As evaluated in [34], the cache line movement

of Start-Gap can degrade the memory performance by 2%

on average and up to 7%. Furthermore, the data invalidation

scheme introduced in [34] is not applicable to GPU device

memory because such data cannot be discarded like cache

blocks. Therefore, we propose a novel rotation algorithm based

on several observations: 1) rotation requests are not as urgent
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Algorithm 1 RBL-Aware Opportunistic Rotation

1: while TRUE do
2: Randomize(Addr);
3: if WriteRequest then
4: Writecounts ← Writecounts+ 1;
5: end if
6: if Writecounts ≥ Interval then
7: if Mem busy then
8: Tbatch ← Tbatch + 1;
9: RTQ ← Push(Addr);

10: else
11: Rotate Current Line;

12: end if
13: Writecounts ← 0;
14: end if
15: if (RTQ.length ≥ RTTh ∧ !Mem busy) ∨

RTQ.isFull then
16: //Rotate the bank by Tbatch lines

17: while Tbatch ≥ 1 do
18: Rotate one line;

19: Tbatch ← Tbatch − 1;
20: end while
21: end if
22: end while

as front-end memory requests, which means that they can be

delayed; 2) rotation requests may destroy the RBL of ongoing

sequential requests if they are not well scheduled; and 3) by

aggregating several discrete rotation requests together, such

rotation requests can show good RBL, thereby reducing the

degradation to system performance.

To mitigate the performance overhead caused by rotations

in wear-leveling, we introduce an opportunistic and batched

rotation algorithm. As shown in Algorithm 1, the addresses

of memory accesses are randomized by partial randomiza-

tion function, which converts virtual addresses to physical

addresses. First, we activate rotation only when the rotation

queue is full or the memory is idle, in which way the cache

line movement will be delayed and the RBL of normal ac-

cesses will not be interrupted by rotations. Second, we enable

opportunistic row rotation, which means that rotation is started

only when the memory is not very busy, i.e., when the number

of entries in the queue is smaller than a threshold. Third, we

enable batched rotation to accumulate good RBL. With these

three features, the overhead of wear-leveling rotations will be

mostly hidden, thus not degrading the system performance.

In Algorithm 1, Interval is a configurable parameter, and

we adopt a commonly used value of 100 writes. RTTh
denotes the threshold of rotation request number in the rotation

queue. Memory status (Mem busy) is determined by count-

ing the number of pending requests in the memory request

queue. If the memory is currently busy, Addr is put into the

rotation queue, which means delaying the rotation instruction

and continues the execution of normal requests (Lines 7-9).

When the memory is idle and there is a rotation operation

that needs to be executed, the rotation operation can be issued
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Fig. 7: Implementation of RBL-Aware Rotation

immediately (Line 11). When the rotation queue has enough

pending rotation requests (i.e., larger than RTTh) and the

memory is idle, the memory scheduler can execute these

delayed rotation operations in a batch manner (Lines 15-21). In

case the rotation queue is full, rotation requests are prioritized.

Fig. 7 depicts the implementation of our RAR technique. In

the memory controller, one new component - RoTation Queue

(RTQ) is introduced to manage the scheduling of rotation

requests. To identify the normal requests and rotation requests

in the Request Queue (REQ), we added a 1-bit flag to each

request entry of the request queue. To implement RAR, adding

several registers to monitor the status of memory systems is

necessary. For each bank, a start register, a gap register and

a counter register are needed. In addition, another counter

Mem busy is needed for monitoring the realtime RBL of

current accesses. In total, we have 16 banks per chip and each

bank needs around 5 bytes, including registers and monitor

flags. Therefore, our algorithm will have a storage overhead of

less than 100 bytes. In addition, the RTQ has a write port and

a read port, and is implemented by a 256B SRAM. Each of the

16 banks has 4 entries, which can support up to 400 writes per

bank. The GPU memory address space has a width of 40 bits.

We ignore its 8 burst bits and accept the 32-bit useful address.

By using the Cacti tool [7] to estimate the hardware cost (using

45nm technology), we find that the overall area usage is 0.023

mm2. In sum, RAR incurs overhead at an acceptable level.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of our bijec-

tive matrix based locality preserving policy and RBL-aware

wear-leveling technique. We denote Start-Gap (including both

RIB and rotation) as SG [22], the bijective matrix partial

randomization as BJM, and BJM with RBL-aware rotation as

BJM+RAR. In the rest of this section, we first introduce the

endurance results and then the performance results including

IPC, RBL and memory access latency. Then, we analyze

variations of RBL along with data size and performance.

Finally, we demonstrate the energy consumption results.

A. Endurance

Table IV shows the bank-level write skew for BAM, SG,

BJM and BJM+RAR for different benchmarks. We use the

bank-level metric as shown by (3.1). The worn-out banks

can impact the lifetime of the entire GPU memory. Due

to its RBL preservation, BJM+RAR achieves better write

uniformity (lower bank-level write skews) than BAM and SG.

The improvement is especially significant for two benchmarks

BFS and SC. While SG is able to balance most bank writes,
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Fig. 8: Intra-Bank Endurance Comparison of SG and BJM+RAR

TABLE IV: Bank-level Write Skews of Different Schemes.

SP NN KM FWT SN CS BFS BS SC MT GMean

BAM 1.03 1.03 1.14 1.15 1.18 1.06 2.23 1.03 3.67 1.04 1.31

SG 1.01 1.01 1.02 1.03 1.05 1.01 2.69 1.04 3.27 1.03 1.26

BJM 1.01 1.01 1.02 1.04 1.04 1.02 1.64 1.00 1.70 1.03 1.12

BJM+RAR 1.01 1.01 1.01 1.02 1.02 1.01 1.71 1.01 1.45 1.02 1.10
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Fig. 9: IPC comparisons of different schemes

our techniques further decrease the inter-bank skews for pro-

longing the whole memory’s lifetime.

Fig. 8 further shows the variation of intra-bank endurance

for 4 different benchmarks: SP, NN, KM, and BS. The

calculation of intra-bank endurance metric has a similar format

as (3.1), but at the finer-grained cache line level. As we can

see, for the 16 memory banks, SG incurs intra-bank endurance

variations for NN and BS. However, our technique BJM+RAR

achieves uniform bank endurance for all benchmarks as well.

B. Performance

Fig. 9 shows the IPC performance of BAM, SG, BJM and

BJM+RAR for different benchmarks (normalized to BAM).

On average (Geometric Means), SG, BJM and BJM+RAR

achieve 90%, 99% and 97% of the IPC performance of BAM,

respectively. We observe that BJM leads to better write en-

durance through partial randomization while causing only 1%

performance loss to BAM. Note that both SG and BJM+RAR

have rotation enabled for wear leveling. We can see that

BJM+RAR leads to 8% performance improvement compared

to SG due to the combined benefit of RBL preservation from

BJM and the batched rotation from RAR.

The IPC improvement mainly attributes to the better mem-

ory access performance from improved RBL. Fig. 10 shows

RBL variations when choosing different schemes. We can see

that SG causes a dramatic drop of RBL (66% lower than

BAM) because both the rotation and randomization reduce the
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Fig. 10: Row buffer locality comparisons of different schemes
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Fig. 11: Memory access latencies in different schemes

memory access sequentiality. However, BJM mitigates such

problem using bijective matrix based partial randomization.

It conserves 99% of RBL compared to BAM. BJM+RAR

preserves as much as 96% of RBL because of RAR algorithm.

Fig. 11 shows memory access latency for BAM, SG, BJM

and BJM+RAR (normalized to SG). BAM has the lowest

access latency because no rotation is enabled. SG demonstrates

the highest latency because of the lost RBL and wear leveling

rotation. In contrast, BJM and BJM+RAR cause minimal

performance loss compared to BAM and achieve 8%-9%

faster memory access compared to SG. This is due to locality

preservation features in our techniques.

C. RBL analysis

To gain more insights into the importance of selecting

a proper matrix P as defined in (4.10) for BJM, we use

the NN benchmark as an example and show the impacts of

different matrices P on the RBL and IPC of NN in Fig. 12(a).

Specifically, we chose eight matrices according to the theory

introduced in (4.10). The x-axis denotes the eight different

matrices used for BJM and we can observe how they affect

the RBL (the left y-axis) and IPC performance (right y-axis)
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Fig. 13: Power consumption compared with SG

of the NN benchmark, respectively. In general, a matrix P can

achieve good performance when the distribution of address

variables is controlled in a reasonable range and measurably

dispersed. Furthermore, other empirical experiments are con-

ducted to find a matrix among the eight that can achieve the

best overall performance for all the benchmarks. In addition,

we also observe that the enhancement on RBL directly leads

to performance improvement on IPC.

To investigate how RBL varies with an application’s input

data sizes, we configure the NN benchmark with five different

input sizes (64KB, 128KB, 256KB, 512KB, 1024KB) and

evaluate for two cases: SG and BJM in Fig. 12(b). As we

can see, for both schemes, RBL does not vary much with the

increasing of input data sizes. We observe similar trends for

other benchmarks and omit the discussion for succinctness.

This figure demonstrates that for a benchmark with different

input sizes, BJM shows consistent RBL improvement over SG.

D. Energy Consumption

Our BJM+RAR scheme not only improves the performance

and balances the inter-bank lifetime, but also reduces the

energy consumption compared to the baseline technique. We

calculate the dynamic power consumption as the operation

energy plus background energy divided by execution time [13].

Fig. 13 shows that BJM+RAR can averagely save 8% power

consumption compared to SG. To be specific, BJM+RAR

brings different improvements over SG on power consumption

for these benchmarks with diversified access patterns. The

main reason for such advantage is that BJM+RAR improves

the access locality through efficient bijective matrix-based

address mapping and reduces rotation overheads by a RBL-

aware rotation scheme, which together contribute to the energy

consumption savings.

VII. RELATED WORK

A. Wear Leveling for PCM

Qureshi et al. [23] proposed to uniformly distribute writes

in the average case by organizing data as rotating lines in

a page. Seong et al. [26] used a dynamically randomized

address mapping scheme that swaps data using random keys

to prevent adversaries. Zhou et al. [36] proposed a wear-

leveling mechanism that integrates two techniques at differ-

ent granularity: a fine-grained row shifting mechanism and

a coarse-grained segment swapping mechanism. Their work

suffers from the storage overhead of address mapping units and

the time overhead of periodical sorting to pick up appropriate

segments for swapping. Ipek et al. [8] proposed a solution to

improve the lifetime of PCM by replicating a single physical

memory page over two faulty, otherwise unusable PCM pages.

Ferreira et al. [5] proposed three schemes to manage PCM-

based main memory: minimizing writeback traffic via cache

replacement policies, avoiding unnecessary writes of clean

bits, and swapping logical pages with idle regions. Kong

and Zhou [10] argued that using non-volatile technology as

main memory imposed the need to encrypt the data on the

memory devices since the data would be resilient on the

device for many years without power. Wang et al. [34] studied

the wear leveling techniques for PCM-based caches. In their

work, the authors proposed an invalidation based scheme that

discards dirty cache blocks to avoid unbalanced write traffic.

Our work is distinguished from these prior efforts in that we

have identified the locality issue for both performance and

endurance improvement.

B. Row Buffer Locality Aware Techniques

RBL has been widely investigated in memory request

scheduling algorithms, due to its triple impacts on reducing

memory service latency, increasing throughput, and saving

energy costs. FR-FCFS algorithm [24] pioneered to prioritize

the requests that could hit in row buffer, and later this concept

has been extensively exploited in [9, 12, 18, 19] to improve

both performance and fairness in multi-threaded environments.

Stuecheli et al. [27] proposed to speculatively schedule write-

backs from last level cache to form longer bursts of writes.

Sudan et al. [28] proposed to co-locate hot data blocks into

the same row via virtual address mapping of micro-pages.

Muralidhara et al. [17] proposed to disperse a large number

of data into different memory channels based on memory

intensity and dynamically observed RBL.

Yoon et al. [35] proposed to map data that might incur

frequent row buffer misses into DRAM while mapping data

that might exhibit high RBL into PCM in a hybrid memory

setting. Wang et al. [32, 29, 31] proposed a hybrid GPU global

memory design that can leverage RBL to guide dynamic data

migrations. The PCM device architecture could be optimized

to have separate sensing and buffering circuitry, thus providing

the flexibility to build multiple smaller row buffers in the same

memory bank [11, 16] with limited area overhead. In general,

better RBL could be achieved via multiple row buffers, which
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have larger potential to selectively buffer hot data chunks at

finer granularity. To the best of our knowledge, we are among

the first to explore the RBL issue in PCM wear leveling.

VIII. CONCLUSION

In this paper, we have revealed the issue of row buffer local-

ity loss in wear-leveling techniques for PCM devices, exam-

ined several address transformation schemes, and empirically

analyzed their impacts on performance and row buffer locality.

We propose several row buffer locality preserving techniques

for PCM wear-leveling under massive parallelism so as to

balance the memory access performance and the endurance

of PCM-based GPU global memory. Accordingly, we have

introduced a bijective matrix based locality preservation policy

and an RBL-aware rotation algorithm. We have measured the

performance of our techniques using a GPGPU simulator for

a diverse set of GPU benchmarks. Our experimental results

demonstrate that, while providing comparable write endurance,

our techniques can preserve row buffer locality and improve

the IPC performance of benchmarks by as much as 8%

compared to existing wear-leveling techniques such as Start-

Gap. We also achieve steady energy consumption savings

compared to Start-Gap.
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